// SPDX-License-Identifier: GPL-2.0 /* * cfg80211 MLME SAP interface * * Copyright (c) 2009, Jouni Malinen * Copyright (c) 2015 Intel Deutschland GmbH * Copyright (C) 2019-2020, 2022-2023 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include "core.h" #include "nl80211.h" #include "rdev-ops.h" void cfg80211_rx_assoc_resp(struct net_device *dev, const struct cfg80211_rx_assoc_resp_data *data) { struct wireless_dev *wdev = dev->ieee80211_ptr; struct wiphy *wiphy = wdev->wiphy; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)data->buf; struct cfg80211_connect_resp_params cr = { .timeout_reason = NL80211_TIMEOUT_UNSPECIFIED, .req_ie = data->req_ies, .req_ie_len = data->req_ies_len, .resp_ie = mgmt->u.assoc_resp.variable, .resp_ie_len = data->len - offsetof(struct ieee80211_mgmt, u.assoc_resp.variable), .status = le16_to_cpu(mgmt->u.assoc_resp.status_code), .ap_mld_addr = data->ap_mld_addr, }; unsigned int link_id; for (link_id = 0; link_id < ARRAY_SIZE(data->links); link_id++) { cr.links[link_id].status = data->links[link_id].status; cr.links[link_id].bss = data->links[link_id].bss; WARN_ON_ONCE(cr.links[link_id].status != WLAN_STATUS_SUCCESS && (!cr.ap_mld_addr || !cr.links[link_id].bss)); if (!cr.links[link_id].bss) continue; cr.links[link_id].bssid = data->links[link_id].bss->bssid; cr.links[link_id].addr = data->links[link_id].addr; /* need to have local link addresses for MLO connections */ WARN_ON(cr.ap_mld_addr && !is_valid_ether_addr(cr.links[link_id].addr)); BUG_ON(!cr.links[link_id].bss->channel); if (cr.links[link_id].bss->channel->band == NL80211_BAND_S1GHZ) { WARN_ON(link_id); cr.resp_ie = (u8 *)&mgmt->u.s1g_assoc_resp.variable; cr.resp_ie_len = data->len - offsetof(struct ieee80211_mgmt, u.s1g_assoc_resp.variable); } if (cr.ap_mld_addr) cr.valid_links |= BIT(link_id); } trace_cfg80211_send_rx_assoc(dev, data); /* * This is a bit of a hack, we don't notify userspace of * a (re-)association reply if we tried to send a reassoc * and got a reject -- we only try again with an assoc * frame instead of reassoc. */ if (cfg80211_sme_rx_assoc_resp(wdev, cr.status)) { for (link_id = 0; link_id < ARRAY_SIZE(data->links); link_id++) { struct cfg80211_bss *bss = data->links[link_id].bss; if (!bss) continue; cfg80211_unhold_bss(bss_from_pub(bss)); cfg80211_put_bss(wiphy, bss); } return; } nl80211_send_rx_assoc(rdev, dev, data); /* update current_bss etc., consumes the bss reference */ __cfg80211_connect_result(dev, &cr, cr.status == WLAN_STATUS_SUCCESS); } EXPORT_SYMBOL(cfg80211_rx_assoc_resp); static void cfg80211_process_auth(struct wireless_dev *wdev, const u8 *buf, size_t len) { struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); nl80211_send_rx_auth(rdev, wdev->netdev, buf, len, GFP_KERNEL); cfg80211_sme_rx_auth(wdev, buf, len); } static void cfg80211_process_deauth(struct wireless_dev *wdev, const u8 *buf, size_t len, bool reconnect) { struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)buf; const u8 *bssid = mgmt->bssid; u16 reason_code = le16_to_cpu(mgmt->u.deauth.reason_code); bool from_ap = !ether_addr_equal(mgmt->sa, wdev->netdev->dev_addr); nl80211_send_deauth(rdev, wdev->netdev, buf, len, reconnect, GFP_KERNEL); if (!wdev->connected || !ether_addr_equal(wdev->u.client.connected_addr, bssid)) return; __cfg80211_disconnected(wdev->netdev, NULL, 0, reason_code, from_ap); cfg80211_sme_deauth(wdev); } static void cfg80211_process_disassoc(struct wireless_dev *wdev, const u8 *buf, size_t len, bool reconnect) { struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)buf; const u8 *bssid = mgmt->bssid; u16 reason_code = le16_to_cpu(mgmt->u.disassoc.reason_code); bool from_ap = !ether_addr_equal(mgmt->sa, wdev->netdev->dev_addr); nl80211_send_disassoc(rdev, wdev->netdev, buf, len, reconnect, GFP_KERNEL); if (WARN_ON(!wdev->connected || !ether_addr_equal(wdev->u.client.connected_addr, bssid))) return; __cfg80211_disconnected(wdev->netdev, NULL, 0, reason_code, from_ap); cfg80211_sme_disassoc(wdev); } void cfg80211_rx_mlme_mgmt(struct net_device *dev, const u8 *buf, size_t len) { struct wireless_dev *wdev = dev->ieee80211_ptr; struct ieee80211_mgmt *mgmt = (void *)buf; lockdep_assert_wiphy(wdev->wiphy); trace_cfg80211_rx_mlme_mgmt(dev, buf, len); if (WARN_ON(len < 2)) return; if (ieee80211_is_auth(mgmt->frame_control)) cfg80211_process_auth(wdev, buf, len); else if (ieee80211_is_deauth(mgmt->frame_control)) cfg80211_process_deauth(wdev, buf, len, false); else if (ieee80211_is_disassoc(mgmt->frame_control)) cfg80211_process_disassoc(wdev, buf, len, false); } EXPORT_SYMBOL(cfg80211_rx_mlme_mgmt); void cfg80211_auth_timeout(struct net_device *dev, const u8 *addr) { struct wireless_dev *wdev = dev->ieee80211_ptr; struct wiphy *wiphy = wdev->wiphy; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); trace_cfg80211_send_auth_timeout(dev, addr); nl80211_send_auth_timeout(rdev, dev, addr, GFP_KERNEL); cfg80211_sme_auth_timeout(wdev); } EXPORT_SYMBOL(cfg80211_auth_timeout); void cfg80211_assoc_failure(struct net_device *dev, struct cfg80211_assoc_failure *data) { struct wireless_dev *wdev = dev->ieee80211_ptr; struct wiphy *wiphy = wdev->wiphy; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); const u8 *addr = data->ap_mld_addr ?: data->bss[0]->bssid; int i; trace_cfg80211_send_assoc_failure(dev, data); if (data->timeout) { nl80211_send_assoc_timeout(rdev, dev, addr, GFP_KERNEL); cfg80211_sme_assoc_timeout(wdev); } else { cfg80211_sme_abandon_assoc(wdev); } for (i = 0; i < ARRAY_SIZE(data->bss); i++) { struct cfg80211_bss *bss = data->bss[i]; if (!bss) continue; cfg80211_unhold_bss(bss_from_pub(bss)); cfg80211_put_bss(wiphy, bss); } } EXPORT_SYMBOL(cfg80211_assoc_failure); void cfg80211_tx_mlme_mgmt(struct net_device *dev, const u8 *buf, size_t len, bool reconnect) { struct wireless_dev *wdev = dev->ieee80211_ptr; struct ieee80211_mgmt *mgmt = (void *)buf; lockdep_assert_wiphy(wdev->wiphy); trace_cfg80211_tx_mlme_mgmt(dev, buf, len, reconnect); if (WARN_ON(len < 2)) return; if (ieee80211_is_deauth(mgmt->frame_control)) cfg80211_process_deauth(wdev, buf, len, reconnect); else cfg80211_process_disassoc(wdev, buf, len, reconnect); } EXPORT_SYMBOL(cfg80211_tx_mlme_mgmt); void cfg80211_michael_mic_failure(struct net_device *dev, const u8 *addr, enum nl80211_key_type key_type, int key_id, const u8 *tsc, gfp_t gfp) { struct wiphy *wiphy = dev->ieee80211_ptr->wiphy; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); #ifdef CONFIG_CFG80211_WEXT union iwreq_data wrqu; char *buf = kmalloc(128, gfp); if (buf) { sprintf(buf, "MLME-MICHAELMICFAILURE.indication(" "keyid=%d %scast addr=%pM)", key_id, key_type == NL80211_KEYTYPE_GROUP ? "broad" : "uni", addr); memset(&wrqu, 0, sizeof(wrqu)); wrqu.data.length = strlen(buf); wireless_send_event(dev, IWEVCUSTOM, &wrqu, buf); kfree(buf); } #endif trace_cfg80211_michael_mic_failure(dev, addr, key_type, key_id, tsc); nl80211_michael_mic_failure(rdev, dev, addr, key_type, key_id, tsc, gfp); } EXPORT_SYMBOL(cfg80211_michael_mic_failure); /* some MLME handling for userspace SME */ int cfg80211_mlme_auth(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_auth_request *req) { struct wireless_dev *wdev = dev->ieee80211_ptr; lockdep_assert_wiphy(wdev->wiphy); if (!req->bss) return -ENOENT; if (req->link_id >= 0 && !(wdev->wiphy->flags & WIPHY_FLAG_SUPPORTS_MLO)) return -EINVAL; if (req->auth_type == NL80211_AUTHTYPE_SHARED_KEY) { if (!req->key || !req->key_len || req->key_idx < 0 || req->key_idx > 3) return -EINVAL; } if (wdev->connected && ether_addr_equal(req->bss->bssid, wdev->u.client.connected_addr)) return -EALREADY; if (ether_addr_equal(req->bss->bssid, dev->dev_addr) || (req->link_id >= 0 && ether_addr_equal(req->ap_mld_addr, dev->dev_addr))) return -EINVAL; return rdev_auth(rdev, dev, req); } /* Do a logical ht_capa &= ht_capa_mask. */ void cfg80211_oper_and_ht_capa(struct ieee80211_ht_cap *ht_capa, const struct ieee80211_ht_cap *ht_capa_mask) { int i; u8 *p1, *p2; if (!ht_capa_mask) { memset(ht_capa, 0, sizeof(*ht_capa)); return; } p1 = (u8*)(ht_capa); p2 = (u8*)(ht_capa_mask); for (i = 0; i < sizeof(*ht_capa); i++) p1[i] &= p2[i]; } /* Do a logical vht_capa &= vht_capa_mask. */ void cfg80211_oper_and_vht_capa(struct ieee80211_vht_cap *vht_capa, const struct ieee80211_vht_cap *vht_capa_mask) { int i; u8 *p1, *p2; if (!vht_capa_mask) { memset(vht_capa, 0, sizeof(*vht_capa)); return; } p1 = (u8*)(vht_capa); p2 = (u8*)(vht_capa_mask); for (i = 0; i < sizeof(*vht_capa); i++) p1[i] &= p2[i]; } /* Note: caller must cfg80211_put_bss() regardless of result */ int cfg80211_mlme_assoc(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_assoc_request *req) { struct wireless_dev *wdev = dev->ieee80211_ptr; int err, i, j; lockdep_assert_wiphy(wdev->wiphy); for (i = 1; i < ARRAY_SIZE(req->links); i++) { if (!req->links[i].bss) continue; for (j = 0; j < i; j++) { if (req->links[i].bss == req->links[j].bss) return -EINVAL; } if (ether_addr_equal(req->links[i].bss->bssid, dev->dev_addr)) return -EINVAL; } if (wdev->connected && (!req->prev_bssid || !ether_addr_equal(wdev->u.client.connected_addr, req->prev_bssid))) return -EALREADY; if ((req->bss && ether_addr_equal(req->bss->bssid, dev->dev_addr)) || (req->link_id >= 0 && ether_addr_equal(req->ap_mld_addr, dev->dev_addr))) return -EINVAL; cfg80211_oper_and_ht_capa(&req->ht_capa_mask, rdev->wiphy.ht_capa_mod_mask); cfg80211_oper_and_vht_capa(&req->vht_capa_mask, rdev->wiphy.vht_capa_mod_mask); err = rdev_assoc(rdev, dev, req); if (!err) { int link_id; if (req->bss) { cfg80211_ref_bss(&rdev->wiphy, req->bss); cfg80211_hold_bss(bss_from_pub(req->bss)); } for (link_id = 0; link_id < ARRAY_SIZE(req->links); link_id++) { if (!req->links[link_id].bss) continue; cfg80211_ref_bss(&rdev->wiphy, req->links[link_id].bss); cfg80211_hold_bss(bss_from_pub(req->links[link_id].bss)); } } return err; } int cfg80211_mlme_deauth(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *bssid, const u8 *ie, int ie_len, u16 reason, bool local_state_change) { struct wireless_dev *wdev = dev->ieee80211_ptr; struct cfg80211_deauth_request req = { .bssid = bssid, .reason_code = reason, .ie = ie, .ie_len = ie_len, .local_state_change = local_state_change, }; lockdep_assert_wiphy(wdev->wiphy); if (local_state_change && (!wdev->connected || !ether_addr_equal(wdev->u.client.connected_addr, bssid))) return 0; if (ether_addr_equal(wdev->disconnect_bssid, bssid) || (wdev->connected && ether_addr_equal(wdev->u.client.connected_addr, bssid))) wdev->conn_owner_nlportid = 0; return rdev_deauth(rdev, dev, &req); } int cfg80211_mlme_disassoc(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *ap_addr, const u8 *ie, int ie_len, u16 reason, bool local_state_change) { struct wireless_dev *wdev = dev->ieee80211_ptr; struct cfg80211_disassoc_request req = { .reason_code = reason, .local_state_change = local_state_change, .ie = ie, .ie_len = ie_len, .ap_addr = ap_addr, }; int err; lockdep_assert_wiphy(wdev->wiphy); if (!wdev->connected) return -ENOTCONN; if (memcmp(wdev->u.client.connected_addr, ap_addr, ETH_ALEN)) return -ENOTCONN; err = rdev_disassoc(rdev, dev, &req); if (err) return err; /* driver should have reported the disassoc */ WARN_ON(wdev->connected); return 0; } void cfg80211_mlme_down(struct cfg80211_registered_device *rdev, struct net_device *dev) { struct wireless_dev *wdev = dev->ieee80211_ptr; u8 bssid[ETH_ALEN]; lockdep_assert_wiphy(wdev->wiphy); if (!rdev->ops->deauth) return; if (!wdev->connected) return; memcpy(bssid, wdev->u.client.connected_addr, ETH_ALEN); cfg80211_mlme_deauth(rdev, dev, bssid, NULL, 0, WLAN_REASON_DEAUTH_LEAVING, false); } struct cfg80211_mgmt_registration { struct list_head list; struct wireless_dev *wdev; u32 nlportid; int match_len; __le16 frame_type; bool multicast_rx; u8 match[]; }; static void cfg80211_mgmt_registrations_update(struct wireless_dev *wdev) { struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); struct wireless_dev *tmp; struct cfg80211_mgmt_registration *reg; struct mgmt_frame_regs upd = {}; lockdep_assert_held(&rdev->wiphy.mtx); spin_lock_bh(&rdev->mgmt_registrations_lock); if (!wdev->mgmt_registrations_need_update) { spin_unlock_bh(&rdev->mgmt_registrations_lock); return; } rcu_read_lock(); list_for_each_entry_rcu(tmp, &rdev->wiphy.wdev_list, list) { list_for_each_entry(reg, &tmp->mgmt_registrations, list) { u32 mask = BIT(le16_to_cpu(reg->frame_type) >> 4); u32 mcast_mask = 0; if (reg->multicast_rx) mcast_mask = mask; upd.global_stypes |= mask; upd.global_mcast_stypes |= mcast_mask; if (tmp == wdev) { upd.interface_stypes |= mask; upd.interface_mcast_stypes |= mcast_mask; } } } rcu_read_unlock(); wdev->mgmt_registrations_need_update = 0; spin_unlock_bh(&rdev->mgmt_registrations_lock); rdev_update_mgmt_frame_registrations(rdev, wdev, &upd); } void cfg80211_mgmt_registrations_update_wk(struct work_struct *wk) { struct cfg80211_registered_device *rdev; struct wireless_dev *wdev; rdev = container_of(wk, struct cfg80211_registered_device, mgmt_registrations_update_wk); wiphy_lock(&rdev->wiphy); list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) cfg80211_mgmt_registrations_update(wdev); wiphy_unlock(&rdev->wiphy); } int cfg80211_mlme_register_mgmt(struct wireless_dev *wdev, u32 snd_portid, u16 frame_type, const u8 *match_data, int match_len, bool multicast_rx, struct netlink_ext_ack *extack) { struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); struct cfg80211_mgmt_registration *reg, *nreg; int err = 0; u16 mgmt_type; bool update_multicast = false; if (!wdev->wiphy->mgmt_stypes) return -EOPNOTSUPP; if ((frame_type & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_MGMT) { NL_SET_ERR_MSG(extack, "frame type not management"); return -EINVAL; } if (frame_type & ~(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) { NL_SET_ERR_MSG(extack, "Invalid frame type"); return -EINVAL; } mgmt_type = (frame_type & IEEE80211_FCTL_STYPE) >> 4; if (!(wdev->wiphy->mgmt_stypes[wdev->iftype].rx & BIT(mgmt_type))) { NL_SET_ERR_MSG(extack, "Registration to specific type not supported"); return -EINVAL; } /* * To support Pre Association Security Negotiation (PASN), registration * for authentication frames should be supported. However, as some * versions of the user space daemons wrongly register to all types of * authentication frames (which might result in unexpected behavior) * allow such registration if the request is for a specific * authentication algorithm number. */ if (wdev->iftype == NL80211_IFTYPE_STATION && (frame_type & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_AUTH && !(match_data && match_len >= 2)) { NL_SET_ERR_MSG(extack, "Authentication algorithm number required"); return -EINVAL; } nreg = kzalloc(sizeof(*reg) + match_len, GFP_KERNEL); if (!nreg) return -ENOMEM; spin_lock_bh(&rdev->mgmt_registrations_lock); list_for_each_entry(reg, &wdev->mgmt_registrations, list) { int mlen = min(match_len, reg->match_len); if (frame_type != le16_to_cpu(reg->frame_type)) continue; if (memcmp(reg->match, match_data, mlen) == 0) { if (reg->multicast_rx != multicast_rx) { update_multicast = true; reg->multicast_rx = multicast_rx; break; } NL_SET_ERR_MSG(extack, "Match already configured"); err = -EALREADY; break; } } if (err) goto out; if (update_multicast) { kfree(nreg); } else { memcpy(nreg->match, match_data, match_len); nreg->match_len = match_len; nreg->nlportid = snd_portid; nreg->frame_type = cpu_to_le16(frame_type); nreg->wdev = wdev; nreg->multicast_rx = multicast_rx; list_add(&nreg->list, &wdev->mgmt_registrations); } wdev->mgmt_registrations_need_update = 1; spin_unlock_bh(&rdev->mgmt_registrations_lock); cfg80211_mgmt_registrations_update(wdev); return 0; out: kfree(nreg); spin_unlock_bh(&rdev->mgmt_registrations_lock); return err; } void cfg80211_mlme_unregister_socket(struct wireless_dev *wdev, u32 nlportid) { struct wiphy *wiphy = wdev->wiphy; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); struct cfg80211_mgmt_registration *reg, *tmp; spin_lock_bh(&rdev->mgmt_registrations_lock); list_for_each_entry_safe(reg, tmp, &wdev->mgmt_registrations, list) { if (reg->nlportid != nlportid) continue; list_del(®->list); kfree(reg); wdev->mgmt_registrations_need_update = 1; schedule_work(&rdev->mgmt_registrations_update_wk); } spin_unlock_bh(&rdev->mgmt_registrations_lock); if (nlportid && rdev->crit_proto_nlportid == nlportid) { rdev->crit_proto_nlportid = 0; rdev_crit_proto_stop(rdev, wdev); } if (nlportid == wdev->ap_unexpected_nlportid) wdev->ap_unexpected_nlportid = 0; } void cfg80211_mlme_purge_registrations(struct wireless_dev *wdev) { struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); struct cfg80211_mgmt_registration *reg, *tmp; spin_lock_bh(&rdev->mgmt_registrations_lock); list_for_each_entry_safe(reg, tmp, &wdev->mgmt_registrations, list) { list_del(®->list); kfree(reg); } wdev->mgmt_registrations_need_update = 1; spin_unlock_bh(&rdev->mgmt_registrations_lock); cfg80211_mgmt_registrations_update(wdev); } static bool cfg80211_allowed_address(struct wireless_dev *wdev, const u8 *addr) { int i; for_each_valid_link(wdev, i) { if (ether_addr_equal(addr, wdev->links[i].addr)) return true; } return ether_addr_equal(addr, wdev_address(wdev)); } static bool cfg80211_allowed_random_address(struct wireless_dev *wdev, const struct ieee80211_mgmt *mgmt) { if (ieee80211_is_auth(mgmt->frame_control) || ieee80211_is_deauth(mgmt->frame_control)) { /* Allow random TA to be used with authentication and * deauthentication frames if the driver has indicated support. */ if (wiphy_ext_feature_isset( wdev->wiphy, NL80211_EXT_FEATURE_AUTH_AND_DEAUTH_RANDOM_TA)) return true; } else if (ieee80211_is_action(mgmt->frame_control) && mgmt->u.action.category == WLAN_CATEGORY_PUBLIC) { /* Allow random TA to be used with Public Action frames if the * driver has indicated support. */ if (!wdev->connected && wiphy_ext_feature_isset( wdev->wiphy, NL80211_EXT_FEATURE_MGMT_TX_RANDOM_TA)) return true; if (wdev->connected && wiphy_ext_feature_isset( wdev->wiphy, NL80211_EXT_FEATURE_MGMT_TX_RANDOM_TA_CONNECTED)) return true; } return false; } int cfg80211_mlme_mgmt_tx(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_mgmt_tx_params *params, u64 *cookie) { const struct ieee80211_mgmt *mgmt; u16 stype; lockdep_assert_wiphy(&rdev->wiphy); if (!wdev->wiphy->mgmt_stypes) return -EOPNOTSUPP; if (!rdev->ops->mgmt_tx) return -EOPNOTSUPP; if (params->len < 24 + 1) return -EINVAL; mgmt = (const struct ieee80211_mgmt *)params->buf; if (!ieee80211_is_mgmt(mgmt->frame_control)) return -EINVAL; stype = le16_to_cpu(mgmt->frame_control) & IEEE80211_FCTL_STYPE; if (!(wdev->wiphy->mgmt_stypes[wdev->iftype].tx & BIT(stype >> 4))) return -EINVAL; if (ieee80211_is_action(mgmt->frame_control) && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC) { int err = 0; switch (wdev->iftype) { case NL80211_IFTYPE_ADHOC: /* * check for IBSS DA must be done by driver as * cfg80211 doesn't track the stations */ if (!wdev->u.ibss.current_bss || !ether_addr_equal(wdev->u.ibss.current_bss->pub.bssid, mgmt->bssid)) { err = -ENOTCONN; break; } break; case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_P2P_CLIENT: if (!wdev->connected) { err = -ENOTCONN; break; } /* FIXME: MLD may address this differently */ if (!ether_addr_equal(wdev->u.client.connected_addr, mgmt->bssid)) { err = -ENOTCONN; break; } /* for station, check that DA is the AP */ if (!ether_addr_equal(wdev->u.client.connected_addr, mgmt->da)) { err = -ENOTCONN; break; } break; case NL80211_IFTYPE_AP: case NL80211_IFTYPE_P2P_GO: case NL80211_IFTYPE_AP_VLAN: if (!ether_addr_equal(mgmt->bssid, wdev_address(wdev)) && (params->link_id < 0 || !ether_addr_equal(mgmt->bssid, wdev->links[params->link_id].addr))) err = -EINVAL; break; case NL80211_IFTYPE_MESH_POINT: if (!ether_addr_equal(mgmt->sa, mgmt->bssid)) { err = -EINVAL; break; } /* * check for mesh DA must be done by driver as * cfg80211 doesn't track the stations */ break; case NL80211_IFTYPE_P2P_DEVICE: /* * fall through, P2P device only supports * public action frames */ case NL80211_IFTYPE_NAN: default: err = -EOPNOTSUPP; break; } if (err) return err; } if (!cfg80211_allowed_address(wdev, mgmt->sa) && !cfg80211_allowed_random_address(wdev, mgmt)) return -EINVAL; /* Transmit the management frame as requested by user space */ return rdev_mgmt_tx(rdev, wdev, params, cookie); } bool cfg80211_rx_mgmt_ext(struct wireless_dev *wdev, struct cfg80211_rx_info *info) { struct wiphy *wiphy = wdev->wiphy; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); struct cfg80211_mgmt_registration *reg; const struct ieee80211_txrx_stypes *stypes = &wiphy->mgmt_stypes[wdev->iftype]; struct ieee80211_mgmt *mgmt = (void *)info->buf; const u8 *data; int data_len; bool result = false; __le16 ftype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE); u16 stype; trace_cfg80211_rx_mgmt(wdev, info); stype = (le16_to_cpu(mgmt->frame_control) & IEEE80211_FCTL_STYPE) >> 4; if (!(stypes->rx & BIT(stype))) { trace_cfg80211_return_bool(false); return false; } data = info->buf + ieee80211_hdrlen(mgmt->frame_control); data_len = info->len - ieee80211_hdrlen(mgmt->frame_control); spin_lock_bh(&rdev->mgmt_registrations_lock); list_for_each_entry(reg, &wdev->mgmt_registrations, list) { if (reg->frame_type != ftype) continue; if (reg->match_len > data_len) continue; if (memcmp(reg->match, data, reg->match_len)) continue; /* found match! */ /* Indicate the received Action frame to user space */ if (nl80211_send_mgmt(rdev, wdev, reg->nlportid, info, GFP_ATOMIC)) continue; result = true; break; } spin_unlock_bh(&rdev->mgmt_registrations_lock); trace_cfg80211_return_bool(result); return result; } EXPORT_SYMBOL(cfg80211_rx_mgmt_ext); void cfg80211_sched_dfs_chan_update(struct cfg80211_registered_device *rdev) { cancel_delayed_work(&rdev->dfs_update_channels_wk); queue_delayed_work(cfg80211_wq, &rdev->dfs_update_channels_wk, 0); } void cfg80211_dfs_channels_update_work(struct work_struct *work) { struct delayed_work *delayed_work = to_delayed_work(work); struct cfg80211_registered_device *rdev; struct cfg80211_chan_def chandef; struct ieee80211_supported_band *sband; struct ieee80211_channel *c; struct wiphy *wiphy; bool check_again = false; unsigned long timeout, next_time = 0; unsigned long time_dfs_update; enum nl80211_radar_event radar_event; int bandid, i; rdev = container_of(delayed_work, struct cfg80211_registered_device, dfs_update_channels_wk); wiphy = &rdev->wiphy; rtnl_lock(); for (bandid = 0; bandid < NUM_NL80211_BANDS; bandid++) { sband = wiphy->bands[bandid]; if (!sband) continue; for (i = 0; i < sband->n_channels; i++) { c = &sband->channels[i]; if (!(c->flags & IEEE80211_CHAN_RADAR)) continue; if (c->dfs_state != NL80211_DFS_UNAVAILABLE && c->dfs_state != NL80211_DFS_AVAILABLE) continue; if (c->dfs_state == NL80211_DFS_UNAVAILABLE) { time_dfs_update = IEEE80211_DFS_MIN_NOP_TIME_MS; radar_event = NL80211_RADAR_NOP_FINISHED; } else { if (regulatory_pre_cac_allowed(wiphy) || cfg80211_any_wiphy_oper_chan(wiphy, c)) continue; time_dfs_update = REG_PRE_CAC_EXPIRY_GRACE_MS; radar_event = NL80211_RADAR_PRE_CAC_EXPIRED; } timeout = c->dfs_state_entered + msecs_to_jiffies(time_dfs_update); if (time_after_eq(jiffies, timeout)) { c->dfs_state = NL80211_DFS_USABLE; c->dfs_state_entered = jiffies; cfg80211_chandef_create(&chandef, c, NL80211_CHAN_NO_HT); nl80211_radar_notify(rdev, &chandef, radar_event, NULL, GFP_ATOMIC); regulatory_propagate_dfs_state(wiphy, &chandef, c->dfs_state, radar_event); continue; } if (!check_again) next_time = timeout - jiffies; else next_time = min(next_time, timeout - jiffies); check_again = true; } } rtnl_unlock(); /* reschedule if there are other channels waiting to be cleared again */ if (check_again) queue_delayed_work(cfg80211_wq, &rdev->dfs_update_channels_wk, next_time); } void __cfg80211_radar_event(struct wiphy *wiphy, struct cfg80211_chan_def *chandef, bool offchan, gfp_t gfp) { struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); trace_cfg80211_radar_event(wiphy, chandef, offchan); /* only set the chandef supplied channel to unavailable, in * case the radar is detected on only one of multiple channels * spanned by the chandef. */ cfg80211_set_dfs_state(wiphy, chandef, NL80211_DFS_UNAVAILABLE); if (offchan) queue_work(cfg80211_wq, &rdev->background_cac_abort_wk); cfg80211_sched_dfs_chan_update(rdev); nl80211_radar_notify(rdev, chandef, NL80211_RADAR_DETECTED, NULL, gfp); memcpy(&rdev->radar_chandef, chandef, sizeof(struct cfg80211_chan_def)); queue_work(cfg80211_wq, &rdev->propagate_radar_detect_wk); } EXPORT_SYMBOL(__cfg80211_radar_event); void cfg80211_cac_event(struct net_device *netdev, const struct cfg80211_chan_def *chandef, enum nl80211_radar_event event, gfp_t gfp) { struct wireless_dev *wdev = netdev->ieee80211_ptr; struct wiphy *wiphy = wdev->wiphy; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); unsigned long timeout; /* not yet supported */ if (wdev->valid_links) return; trace_cfg80211_cac_event(netdev, event); if (WARN_ON(!wdev->cac_started && event != NL80211_RADAR_CAC_STARTED)) return; switch (event) { case NL80211_RADAR_CAC_FINISHED: timeout = wdev->cac_start_time + msecs_to_jiffies(wdev->cac_time_ms); WARN_ON(!time_after_eq(jiffies, timeout)); cfg80211_set_dfs_state(wiphy, chandef, NL80211_DFS_AVAILABLE); memcpy(&rdev->cac_done_chandef, chandef, sizeof(struct cfg80211_chan_def)); queue_work(cfg80211_wq, &rdev->propagate_cac_done_wk); cfg80211_sched_dfs_chan_update(rdev); fallthrough; case NL80211_RADAR_CAC_ABORTED: wdev->cac_started = false; break; case NL80211_RADAR_CAC_STARTED: wdev->cac_started = true; break; default: WARN_ON(1); return; } nl80211_radar_notify(rdev, chandef, event, netdev, gfp); } EXPORT_SYMBOL(cfg80211_cac_event); static void __cfg80211_background_cac_event(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, const struct cfg80211_chan_def *chandef, enum nl80211_radar_event event) { struct wiphy *wiphy = &rdev->wiphy; struct net_device *netdev; lockdep_assert_wiphy(&rdev->wiphy); if (!cfg80211_chandef_valid(chandef)) return; if (!rdev->background_radar_wdev) return; switch (event) { case NL80211_RADAR_CAC_FINISHED: cfg80211_set_dfs_state(wiphy, chandef, NL80211_DFS_AVAILABLE); memcpy(&rdev->cac_done_chandef, chandef, sizeof(*chandef)); queue_work(cfg80211_wq, &rdev->propagate_cac_done_wk); cfg80211_sched_dfs_chan_update(rdev); wdev = rdev->background_radar_wdev; break; case NL80211_RADAR_CAC_ABORTED: if (!cancel_delayed_work(&rdev->background_cac_done_wk)) return; wdev = rdev->background_radar_wdev; break; case NL80211_RADAR_CAC_STARTED: break; default: return; } netdev = wdev ? wdev->netdev : NULL; nl80211_radar_notify(rdev, chandef, event, netdev, GFP_KERNEL); } static void cfg80211_background_cac_event(struct cfg80211_registered_device *rdev, const struct cfg80211_chan_def *chandef, enum nl80211_radar_event event) { wiphy_lock(&rdev->wiphy); __cfg80211_background_cac_event(rdev, rdev->background_radar_wdev, chandef, event); wiphy_unlock(&rdev->wiphy); } void cfg80211_background_cac_done_wk(struct work_struct *work) { struct delayed_work *delayed_work = to_delayed_work(work); struct cfg80211_registered_device *rdev; rdev = container_of(delayed_work, struct cfg80211_registered_device, background_cac_done_wk); cfg80211_background_cac_event(rdev, &rdev->background_radar_chandef, NL80211_RADAR_CAC_FINISHED); } void cfg80211_background_cac_abort_wk(struct work_struct *work) { struct cfg80211_registered_device *rdev; rdev = container_of(work, struct cfg80211_registered_device, background_cac_abort_wk); cfg80211_background_cac_event(rdev, &rdev->background_radar_chandef, NL80211_RADAR_CAC_ABORTED); } void cfg80211_background_cac_abort(struct wiphy *wiphy) { struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); queue_work(cfg80211_wq, &rdev->background_cac_abort_wk); } EXPORT_SYMBOL(cfg80211_background_cac_abort); int cfg80211_start_background_radar_detection(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_chan_def *chandef) { unsigned int cac_time_ms; int err; lockdep_assert_wiphy(&rdev->wiphy); if (!wiphy_ext_feature_isset(&rdev->wiphy, NL80211_EXT_FEATURE_RADAR_BACKGROUND)) return -EOPNOTSUPP; /* Offchannel chain already locked by another wdev */ if (rdev->background_radar_wdev && rdev->background_radar_wdev != wdev) return -EBUSY; /* CAC already in progress on the offchannel chain */ if (rdev->background_radar_wdev == wdev && delayed_work_pending(&rdev->background_cac_done_wk)) return -EBUSY; err = rdev_set_radar_background(rdev, chandef); if (err) return err; cac_time_ms = cfg80211_chandef_dfs_cac_time(&rdev->wiphy, chandef); if (!cac_time_ms) cac_time_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; rdev->background_radar_chandef = *chandef; rdev->background_radar_wdev = wdev; /* Get offchain ownership */ __cfg80211_background_cac_event(rdev, wdev, chandef, NL80211_RADAR_CAC_STARTED); queue_delayed_work(cfg80211_wq, &rdev->background_cac_done_wk, msecs_to_jiffies(cac_time_ms)); return 0; } void cfg80211_stop_background_radar_detection(struct wireless_dev *wdev) { struct wiphy *wiphy = wdev->wiphy; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); lockdep_assert_wiphy(wiphy); if (wdev != rdev->background_radar_wdev) return; rdev_set_radar_background(rdev, NULL); rdev->background_radar_wdev = NULL; /* Release offchain ownership */ __cfg80211_background_cac_event(rdev, wdev, &rdev->background_radar_chandef, NL80211_RADAR_CAC_ABORTED); }