/* SPDX-License-Identifier: GPL-2.0 */ /* XDP user-space ring structure * Copyright(c) 2018 Intel Corporation. */ #ifndef _LINUX_XSK_QUEUE_H #define _LINUX_XSK_QUEUE_H #include #include #include #include #include "xsk.h" struct xdp_ring { u32 producer ____cacheline_aligned_in_smp; /* Hinder the adjacent cache prefetcher to prefetch the consumer * pointer if the producer pointer is touched and vice versa. */ u32 pad1 ____cacheline_aligned_in_smp; u32 consumer ____cacheline_aligned_in_smp; u32 pad2 ____cacheline_aligned_in_smp; u32 flags; u32 pad3 ____cacheline_aligned_in_smp; }; /* Used for the RX and TX queues for packets */ struct xdp_rxtx_ring { struct xdp_ring ptrs; struct xdp_desc desc[] ____cacheline_aligned_in_smp; }; /* Used for the fill and completion queues for buffers */ struct xdp_umem_ring { struct xdp_ring ptrs; u64 desc[] ____cacheline_aligned_in_smp; }; struct xsk_queue { u32 ring_mask; u32 nentries; u32 cached_prod; u32 cached_cons; struct xdp_ring *ring; u64 invalid_descs; u64 queue_empty_descs; size_t ring_vmalloc_size; }; struct parsed_desc { u32 mb; u32 valid; }; /* The structure of the shared state of the rings are a simple * circular buffer, as outlined in * Documentation/core-api/circular-buffers.rst. For the Rx and * completion ring, the kernel is the producer and user space is the * consumer. For the Tx and fill rings, the kernel is the consumer and * user space is the producer. * * producer consumer * * if (LOAD ->consumer) { (A) LOAD.acq ->producer (C) * STORE $data LOAD $data * STORE.rel ->producer (B) STORE.rel ->consumer (D) * } * * (A) pairs with (D), and (B) pairs with (C). * * Starting with (B), it protects the data from being written after * the producer pointer. If this barrier was missing, the consumer * could observe the producer pointer being set and thus load the data * before the producer has written the new data. The consumer would in * this case load the old data. * * (C) protects the consumer from speculatively loading the data before * the producer pointer actually has been read. If we do not have this * barrier, some architectures could load old data as speculative loads * are not discarded as the CPU does not know there is a dependency * between ->producer and data. * * (A) is a control dependency that separates the load of ->consumer * from the stores of $data. In case ->consumer indicates there is no * room in the buffer to store $data we do not. The dependency will * order both of the stores after the loads. So no barrier is needed. * * (D) protects the load of the data to be observed to happen after the * store of the consumer pointer. If we did not have this memory * barrier, the producer could observe the consumer pointer being set * and overwrite the data with a new value before the consumer got the * chance to read the old value. The consumer would thus miss reading * the old entry and very likely read the new entry twice, once right * now and again after circling through the ring. */ /* The operations on the rings are the following: * * producer consumer * * RESERVE entries PEEK in the ring for entries * WRITE data into the ring READ data from the ring * SUBMIT entries RELEASE entries * * The producer reserves one or more entries in the ring. It can then * fill in these entries and finally submit them so that they can be * seen and read by the consumer. * * The consumer peeks into the ring to see if the producer has written * any new entries. If so, the consumer can then read these entries * and when it is done reading them release them back to the producer * so that the producer can use these slots to fill in new entries. * * The function names below reflect these operations. */ /* Functions that read and validate content from consumer rings. */ static inline void __xskq_cons_read_addr_unchecked(struct xsk_queue *q, u32 cached_cons, u64 *addr) { struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring; u32 idx = cached_cons & q->ring_mask; *addr = ring->desc[idx]; } static inline bool xskq_cons_read_addr_unchecked(struct xsk_queue *q, u64 *addr) { if (q->cached_cons != q->cached_prod) { __xskq_cons_read_addr_unchecked(q, q->cached_cons, addr); return true; } return false; } static inline bool xp_unused_options_set(u32 options) { return options & ~(XDP_PKT_CONTD | XDP_TX_METADATA); } static inline bool xp_aligned_validate_desc(struct xsk_buff_pool *pool, struct xdp_desc *desc) { u64 addr = desc->addr - pool->tx_metadata_len; u64 len = desc->len + pool->tx_metadata_len; u64 offset = addr & (pool->chunk_size - 1); if (!desc->len) return false; if (offset + len > pool->chunk_size) return false; if (addr >= pool->addrs_cnt) return false; if (xp_unused_options_set(desc->options)) return false; return true; } static inline bool xp_unaligned_validate_desc(struct xsk_buff_pool *pool, struct xdp_desc *desc) { u64 addr = xp_unaligned_add_offset_to_addr(desc->addr) - pool->tx_metadata_len; u64 len = desc->len + pool->tx_metadata_len; if (!desc->len) return false; if (len > pool->chunk_size) return false; if (addr >= pool->addrs_cnt || addr + len > pool->addrs_cnt || xp_desc_crosses_non_contig_pg(pool, addr, len)) return false; if (xp_unused_options_set(desc->options)) return false; return true; } static inline bool xp_validate_desc(struct xsk_buff_pool *pool, struct xdp_desc *desc) { return pool->unaligned ? xp_unaligned_validate_desc(pool, desc) : xp_aligned_validate_desc(pool, desc); } static inline bool xskq_has_descs(struct xsk_queue *q) { return q->cached_cons != q->cached_prod; } static inline bool xskq_cons_is_valid_desc(struct xsk_queue *q, struct xdp_desc *d, struct xsk_buff_pool *pool) { if (!xp_validate_desc(pool, d)) { q->invalid_descs++; return false; } return true; } static inline bool xskq_cons_read_desc(struct xsk_queue *q, struct xdp_desc *desc, struct xsk_buff_pool *pool) { if (q->cached_cons != q->cached_prod) { struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring; u32 idx = q->cached_cons & q->ring_mask; *desc = ring->desc[idx]; return xskq_cons_is_valid_desc(q, desc, pool); } q->queue_empty_descs++; return false; } static inline void xskq_cons_release_n(struct xsk_queue *q, u32 cnt) { q->cached_cons += cnt; } static inline void parse_desc(struct xsk_queue *q, struct xsk_buff_pool *pool, struct xdp_desc *desc, struct parsed_desc *parsed) { parsed->valid = xskq_cons_is_valid_desc(q, desc, pool); parsed->mb = xp_mb_desc(desc); } static inline u32 xskq_cons_read_desc_batch(struct xsk_queue *q, struct xsk_buff_pool *pool, u32 max) { u32 cached_cons = q->cached_cons, nb_entries = 0; struct xdp_desc *descs = pool->tx_descs; u32 total_descs = 0, nr_frags = 0; /* track first entry, if stumble upon *any* invalid descriptor, rewind * current packet that consists of frags and stop the processing */ while (cached_cons != q->cached_prod && nb_entries < max) { struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring; u32 idx = cached_cons & q->ring_mask; struct parsed_desc parsed; descs[nb_entries] = ring->desc[idx]; cached_cons++; parse_desc(q, pool, &descs[nb_entries], &parsed); if (unlikely(!parsed.valid)) break; if (likely(!parsed.mb)) { total_descs += (nr_frags + 1); nr_frags = 0; } else { nr_frags++; if (nr_frags == pool->netdev->xdp_zc_max_segs) { nr_frags = 0; break; } } nb_entries++; } cached_cons -= nr_frags; /* Release valid plus any invalid entries */ xskq_cons_release_n(q, cached_cons - q->cached_cons); return total_descs; } /* Functions for consumers */ static inline void __xskq_cons_release(struct xsk_queue *q) { smp_store_release(&q->ring->consumer, q->cached_cons); /* D, matchees A */ } static inline void __xskq_cons_peek(struct xsk_queue *q) { /* Refresh the local pointer */ q->cached_prod = smp_load_acquire(&q->ring->producer); /* C, matches B */ } static inline void xskq_cons_get_entries(struct xsk_queue *q) { __xskq_cons_release(q); __xskq_cons_peek(q); } static inline u32 xskq_cons_nb_entries(struct xsk_queue *q, u32 max) { u32 entries = q->cached_prod - q->cached_cons; if (entries >= max) return max; __xskq_cons_peek(q); entries = q->cached_prod - q->cached_cons; return entries >= max ? max : entries; } static inline bool xskq_cons_has_entries(struct xsk_queue *q, u32 cnt) { return xskq_cons_nb_entries(q, cnt) >= cnt; } static inline bool xskq_cons_peek_addr_unchecked(struct xsk_queue *q, u64 *addr) { if (q->cached_prod == q->cached_cons) xskq_cons_get_entries(q); return xskq_cons_read_addr_unchecked(q, addr); } static inline bool xskq_cons_peek_desc(struct xsk_queue *q, struct xdp_desc *desc, struct xsk_buff_pool *pool) { if (q->cached_prod == q->cached_cons) xskq_cons_get_entries(q); return xskq_cons_read_desc(q, desc, pool); } /* To improve performance in the xskq_cons_release functions, only update local state here. * Reflect this to global state when we get new entries from the ring in * xskq_cons_get_entries() and whenever Rx or Tx processing are completed in the NAPI loop. */ static inline void xskq_cons_release(struct xsk_queue *q) { q->cached_cons++; } static inline void xskq_cons_cancel_n(struct xsk_queue *q, u32 cnt) { q->cached_cons -= cnt; } static inline u32 xskq_cons_present_entries(struct xsk_queue *q) { /* No barriers needed since data is not accessed */ return READ_ONCE(q->ring->producer) - READ_ONCE(q->ring->consumer); } /* Functions for producers */ static inline u32 xskq_prod_nb_free(struct xsk_queue *q, u32 max) { u32 free_entries = q->nentries - (q->cached_prod - q->cached_cons); if (free_entries >= max) return max; /* Refresh the local tail pointer */ q->cached_cons = READ_ONCE(q->ring->consumer); free_entries = q->nentries - (q->cached_prod - q->cached_cons); return free_entries >= max ? max : free_entries; } static inline bool xskq_prod_is_full(struct xsk_queue *q) { return xskq_prod_nb_free(q, 1) ? false : true; } static inline void xskq_prod_cancel_n(struct xsk_queue *q, u32 cnt) { q->cached_prod -= cnt; } static inline int xskq_prod_reserve(struct xsk_queue *q) { if (xskq_prod_is_full(q)) return -ENOSPC; /* A, matches D */ q->cached_prod++; return 0; } static inline int xskq_prod_reserve_addr(struct xsk_queue *q, u64 addr) { struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring; if (xskq_prod_is_full(q)) return -ENOSPC; /* A, matches D */ ring->desc[q->cached_prod++ & q->ring_mask] = addr; return 0; } static inline void xskq_prod_write_addr_batch(struct xsk_queue *q, struct xdp_desc *descs, u32 nb_entries) { struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring; u32 i, cached_prod; /* A, matches D */ cached_prod = q->cached_prod; for (i = 0; i < nb_entries; i++) ring->desc[cached_prod++ & q->ring_mask] = descs[i].addr; q->cached_prod = cached_prod; } static inline int xskq_prod_reserve_desc(struct xsk_queue *q, u64 addr, u32 len, u32 flags) { struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring; u32 idx; if (xskq_prod_is_full(q)) return -ENOBUFS; /* A, matches D */ idx = q->cached_prod++ & q->ring_mask; ring->desc[idx].addr = addr; ring->desc[idx].len = len; ring->desc[idx].options = flags; return 0; } static inline void __xskq_prod_submit(struct xsk_queue *q, u32 idx) { smp_store_release(&q->ring->producer, idx); /* B, matches C */ } static inline void xskq_prod_submit(struct xsk_queue *q) { __xskq_prod_submit(q, q->cached_prod); } static inline void xskq_prod_submit_n(struct xsk_queue *q, u32 nb_entries) { __xskq_prod_submit(q, q->ring->producer + nb_entries); } static inline bool xskq_prod_is_empty(struct xsk_queue *q) { /* No barriers needed since data is not accessed */ return READ_ONCE(q->ring->consumer) == READ_ONCE(q->ring->producer); } /* For both producers and consumers */ static inline u64 xskq_nb_invalid_descs(struct xsk_queue *q) { return q ? q->invalid_descs : 0; } static inline u64 xskq_nb_queue_empty_descs(struct xsk_queue *q) { return q ? q->queue_empty_descs : 0; } struct xsk_queue *xskq_create(u32 nentries, bool umem_queue); void xskq_destroy(struct xsk_queue *q_ops); #endif /* _LINUX_XSK_QUEUE_H */