// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (c) by Jaroslav Kysela * Lee Revell * James Courtier-Dutton * Oswald Buddenhagen * Creative Labs, Inc. * * Routines for control of EMU10K1 chips */ #include #include #include #include #include #include "p17v.h" static inline bool check_ptr_reg(struct snd_emu10k1 *emu, unsigned int reg) { if (snd_BUG_ON(!emu)) return false; if (snd_BUG_ON(reg & (emu->audigy ? (0xffff0000 & ~A_PTR_ADDRESS_MASK) : (0xffff0000 & ~PTR_ADDRESS_MASK)))) return false; if (snd_BUG_ON(reg & 0x0000ffff & ~PTR_CHANNELNUM_MASK)) return false; return true; } unsigned int snd_emu10k1_ptr_read(struct snd_emu10k1 * emu, unsigned int reg, unsigned int chn) { unsigned long flags; unsigned int regptr, val; unsigned int mask; regptr = (reg << 16) | chn; if (!check_ptr_reg(emu, regptr)) return 0; spin_lock_irqsave(&emu->emu_lock, flags); outl(regptr, emu->port + PTR); val = inl(emu->port + DATA); spin_unlock_irqrestore(&emu->emu_lock, flags); if (reg & 0xff000000) { unsigned char size, offset; size = (reg >> 24) & 0x3f; offset = (reg >> 16) & 0x1f; mask = (1 << size) - 1; return (val >> offset) & mask; } else { return val; } } EXPORT_SYMBOL(snd_emu10k1_ptr_read); void snd_emu10k1_ptr_write(struct snd_emu10k1 *emu, unsigned int reg, unsigned int chn, unsigned int data) { unsigned int regptr; unsigned long flags; unsigned int mask; regptr = (reg << 16) | chn; if (!check_ptr_reg(emu, regptr)) return; if (reg & 0xff000000) { unsigned char size, offset; size = (reg >> 24) & 0x3f; offset = (reg >> 16) & 0x1f; mask = (1 << size) - 1; if (snd_BUG_ON(data & ~mask)) return; mask <<= offset; data <<= offset; spin_lock_irqsave(&emu->emu_lock, flags); outl(regptr, emu->port + PTR); data |= inl(emu->port + DATA) & ~mask; } else { spin_lock_irqsave(&emu->emu_lock, flags); outl(regptr, emu->port + PTR); } outl(data, emu->port + DATA); spin_unlock_irqrestore(&emu->emu_lock, flags); } EXPORT_SYMBOL(snd_emu10k1_ptr_write); void snd_emu10k1_ptr_write_multiple(struct snd_emu10k1 *emu, unsigned int chn, ...) { va_list va; u32 addr_mask; unsigned long flags; if (snd_BUG_ON(!emu)) return; if (snd_BUG_ON(chn & ~PTR_CHANNELNUM_MASK)) return; addr_mask = ~((emu->audigy ? A_PTR_ADDRESS_MASK : PTR_ADDRESS_MASK) >> 16); va_start(va, chn); spin_lock_irqsave(&emu->emu_lock, flags); for (;;) { u32 data; u32 reg = va_arg(va, u32); if (reg == REGLIST_END) break; data = va_arg(va, u32); if (snd_BUG_ON(reg & addr_mask)) // Only raw registers supported here continue; outl((reg << 16) | chn, emu->port + PTR); outl(data, emu->port + DATA); } spin_unlock_irqrestore(&emu->emu_lock, flags); va_end(va); } EXPORT_SYMBOL(snd_emu10k1_ptr_write_multiple); unsigned int snd_emu10k1_ptr20_read(struct snd_emu10k1 * emu, unsigned int reg, unsigned int chn) { unsigned long flags; unsigned int regptr, val; regptr = (reg << 16) | chn; spin_lock_irqsave(&emu->emu_lock, flags); outl(regptr, emu->port + PTR2); val = inl(emu->port + DATA2); spin_unlock_irqrestore(&emu->emu_lock, flags); return val; } void snd_emu10k1_ptr20_write(struct snd_emu10k1 *emu, unsigned int reg, unsigned int chn, unsigned int data) { unsigned int regptr; unsigned long flags; regptr = (reg << 16) | chn; spin_lock_irqsave(&emu->emu_lock, flags); outl(regptr, emu->port + PTR2); outl(data, emu->port + DATA2); spin_unlock_irqrestore(&emu->emu_lock, flags); } int snd_emu10k1_spi_write(struct snd_emu10k1 * emu, unsigned int data) { unsigned int reset, set; unsigned int reg, tmp; int n, result; int err = 0; /* This function is not re-entrant, so protect against it. */ spin_lock(&emu->spi_lock); if (emu->card_capabilities->ca0108_chip) reg = P17V_SPI; else { /* For other chip types the SPI register * is currently unknown. */ err = 1; goto spi_write_exit; } if (data > 0xffff) { /* Only 16bit values allowed */ err = 1; goto spi_write_exit; } tmp = snd_emu10k1_ptr20_read(emu, reg, 0); reset = (tmp & ~0x3ffff) | 0x20000; /* Set xxx20000 */ set = reset | 0x10000; /* Set xxx1xxxx */ snd_emu10k1_ptr20_write(emu, reg, 0, reset | data); tmp = snd_emu10k1_ptr20_read(emu, reg, 0); /* write post */ snd_emu10k1_ptr20_write(emu, reg, 0, set | data); result = 1; /* Wait for status bit to return to 0 */ for (n = 0; n < 100; n++) { udelay(10); tmp = snd_emu10k1_ptr20_read(emu, reg, 0); if (!(tmp & 0x10000)) { result = 0; break; } } if (result) { /* Timed out */ err = 1; goto spi_write_exit; } snd_emu10k1_ptr20_write(emu, reg, 0, reset | data); tmp = snd_emu10k1_ptr20_read(emu, reg, 0); /* Write post */ err = 0; spi_write_exit: spin_unlock(&emu->spi_lock); return err; } /* The ADC does not support i2c read, so only write is implemented */ int snd_emu10k1_i2c_write(struct snd_emu10k1 *emu, u32 reg, u32 value) { u32 tmp; int timeout = 0; int status; int retry; int err = 0; if ((reg > 0x7f) || (value > 0x1ff)) { dev_err(emu->card->dev, "i2c_write: invalid values.\n"); return -EINVAL; } /* This function is not re-entrant, so protect against it. */ spin_lock(&emu->i2c_lock); tmp = reg << 25 | value << 16; /* This controls the I2C connected to the WM8775 ADC Codec */ snd_emu10k1_ptr20_write(emu, P17V_I2C_1, 0, tmp); tmp = snd_emu10k1_ptr20_read(emu, P17V_I2C_1, 0); /* write post */ for (retry = 0; retry < 10; retry++) { /* Send the data to i2c */ tmp = 0; tmp = tmp | (I2C_A_ADC_LAST|I2C_A_ADC_START|I2C_A_ADC_ADD); snd_emu10k1_ptr20_write(emu, P17V_I2C_ADDR, 0, tmp); /* Wait till the transaction ends */ while (1) { mdelay(1); status = snd_emu10k1_ptr20_read(emu, P17V_I2C_ADDR, 0); timeout++; if ((status & I2C_A_ADC_START) == 0) break; if (timeout > 1000) { dev_warn(emu->card->dev, "emu10k1:I2C:timeout status=0x%x\n", status); break; } } //Read back and see if the transaction is successful if ((status & I2C_A_ADC_ABORT) == 0) break; } if (retry == 10) { dev_err(emu->card->dev, "Writing to ADC failed!\n"); dev_err(emu->card->dev, "status=0x%x, reg=%d, value=%d\n", status, reg, value); /* dump_stack(); */ err = -EINVAL; } spin_unlock(&emu->i2c_lock); return err; } static void snd_emu1010_fpga_write_locked(struct snd_emu10k1 *emu, u32 reg, u32 value) { if (snd_BUG_ON(reg > 0x3f)) return; reg += 0x40; /* 0x40 upwards are registers. */ if (snd_BUG_ON(value > 0x3f)) /* 0 to 0x3f are values */ return; outw(reg, emu->port + A_GPIO); udelay(10); outw(reg | 0x80, emu->port + A_GPIO); /* High bit clocks the value into the fpga. */ udelay(10); outw(value, emu->port + A_GPIO); udelay(10); outw(value | 0x80 , emu->port + A_GPIO); /* High bit clocks the value into the fpga. */ } void snd_emu1010_fpga_write(struct snd_emu10k1 *emu, u32 reg, u32 value) { unsigned long flags; spin_lock_irqsave(&emu->emu_lock, flags); snd_emu1010_fpga_write_locked(emu, reg, value); spin_unlock_irqrestore(&emu->emu_lock, flags); } static void snd_emu1010_fpga_read_locked(struct snd_emu10k1 *emu, u32 reg, u32 *value) { // The higest input pin is used as the designated interrupt trigger, // so it needs to be masked out. // But note that any other input pin change will also cause an IRQ, // so using this function often causes an IRQ as a side effect. u32 mask = emu->card_capabilities->ca0108_chip ? 0x1f : 0x7f; if (snd_BUG_ON(reg > 0x3f)) return; reg += 0x40; /* 0x40 upwards are registers. */ outw(reg, emu->port + A_GPIO); udelay(10); outw(reg | 0x80, emu->port + A_GPIO); /* High bit clocks the value into the fpga. */ udelay(10); *value = ((inw(emu->port + A_GPIO) >> 8) & mask); } void snd_emu1010_fpga_read(struct snd_emu10k1 *emu, u32 reg, u32 *value) { unsigned long flags; spin_lock_irqsave(&emu->emu_lock, flags); snd_emu1010_fpga_read_locked(emu, reg, value); spin_unlock_irqrestore(&emu->emu_lock, flags); } /* Each Destination has one and only one Source, * but one Source can feed any number of Destinations simultaneously. */ void snd_emu1010_fpga_link_dst_src_write(struct snd_emu10k1 *emu, u32 dst, u32 src) { unsigned long flags; if (snd_BUG_ON(dst & ~0x71f)) return; if (snd_BUG_ON(src & ~0x71f)) return; spin_lock_irqsave(&emu->emu_lock, flags); snd_emu1010_fpga_write_locked(emu, EMU_HANA_DESTHI, dst >> 8); snd_emu1010_fpga_write_locked(emu, EMU_HANA_DESTLO, dst & 0x1f); snd_emu1010_fpga_write_locked(emu, EMU_HANA_SRCHI, src >> 8); snd_emu1010_fpga_write_locked(emu, EMU_HANA_SRCLO, src & 0x1f); spin_unlock_irqrestore(&emu->emu_lock, flags); } u32 snd_emu1010_fpga_link_dst_src_read(struct snd_emu10k1 *emu, u32 dst) { unsigned long flags; u32 hi, lo; if (snd_BUG_ON(dst & ~0x71f)) return 0; spin_lock_irqsave(&emu->emu_lock, flags); snd_emu1010_fpga_write_locked(emu, EMU_HANA_DESTHI, dst >> 8); snd_emu1010_fpga_write_locked(emu, EMU_HANA_DESTLO, dst & 0x1f); snd_emu1010_fpga_read_locked(emu, EMU_HANA_SRCHI, &hi); snd_emu1010_fpga_read_locked(emu, EMU_HANA_SRCLO, &lo); spin_unlock_irqrestore(&emu->emu_lock, flags); return (hi << 8) | lo; } int snd_emu1010_get_raw_rate(struct snd_emu10k1 *emu, u8 src) { u32 reg_lo, reg_hi, value, value2; switch (src) { case EMU_HANA_WCLOCK_HANA_SPDIF_IN: snd_emu1010_fpga_read(emu, EMU_HANA_SPDIF_MODE, &value); if (value & EMU_HANA_SPDIF_MODE_RX_INVALID) return 0; reg_lo = EMU_HANA_WC_SPDIF_LO; reg_hi = EMU_HANA_WC_SPDIF_HI; break; case EMU_HANA_WCLOCK_HANA_ADAT_IN: reg_lo = EMU_HANA_WC_ADAT_LO; reg_hi = EMU_HANA_WC_ADAT_HI; break; case EMU_HANA_WCLOCK_SYNC_BNC: reg_lo = EMU_HANA_WC_BNC_LO; reg_hi = EMU_HANA_WC_BNC_HI; break; case EMU_HANA_WCLOCK_2ND_HANA: reg_lo = EMU_HANA2_WC_SPDIF_LO; reg_hi = EMU_HANA2_WC_SPDIF_HI; break; default: return 0; } snd_emu1010_fpga_read(emu, reg_hi, &value); snd_emu1010_fpga_read(emu, reg_lo, &value2); // FIXME: The /4 is valid for 0404b, but contradicts all other info. return 0x1770000 / 4 / (((value << 5) | value2) + 1); } void snd_emu1010_update_clock(struct snd_emu10k1 *emu) { int clock; u32 leds; switch (emu->emu1010.wclock) { case EMU_HANA_WCLOCK_INT_44_1K | EMU_HANA_WCLOCK_1X: clock = 44100; leds = EMU_HANA_DOCK_LEDS_2_44K; break; case EMU_HANA_WCLOCK_INT_48K | EMU_HANA_WCLOCK_1X: clock = 48000; leds = EMU_HANA_DOCK_LEDS_2_48K; break; default: clock = snd_emu1010_get_raw_rate( emu, emu->emu1010.wclock & EMU_HANA_WCLOCK_SRC_MASK); // The raw rate reading is rather coarse (it cannot accurately // represent 44.1 kHz) and fluctuates slightly. Luckily, the // clock comes from digital inputs, which use standardized rates. // So we round to the closest standard rate and ignore discrepancies. if (clock < 46000) { clock = 44100; leds = EMU_HANA_DOCK_LEDS_2_EXT | EMU_HANA_DOCK_LEDS_2_44K; } else { clock = 48000; leds = EMU_HANA_DOCK_LEDS_2_EXT | EMU_HANA_DOCK_LEDS_2_48K; } break; } emu->emu1010.word_clock = clock; // FIXME: this should probably represent the AND of all currently // used sources' lock status. But we don't know how to get that ... leds |= EMU_HANA_DOCK_LEDS_2_LOCK; snd_emu1010_fpga_write(emu, EMU_HANA_DOCK_LEDS_2, leds); } void snd_emu10k1_intr_enable(struct snd_emu10k1 *emu, unsigned int intrenb) { unsigned long flags; unsigned int enable; spin_lock_irqsave(&emu->emu_lock, flags); enable = inl(emu->port + INTE) | intrenb; outl(enable, emu->port + INTE); spin_unlock_irqrestore(&emu->emu_lock, flags); } void snd_emu10k1_intr_disable(struct snd_emu10k1 *emu, unsigned int intrenb) { unsigned long flags; unsigned int enable; spin_lock_irqsave(&emu->emu_lock, flags); enable = inl(emu->port + INTE) & ~intrenb; outl(enable, emu->port + INTE); spin_unlock_irqrestore(&emu->emu_lock, flags); } void snd_emu10k1_voice_intr_enable(struct snd_emu10k1 *emu, unsigned int voicenum) { unsigned long flags; unsigned int val; spin_lock_irqsave(&emu->emu_lock, flags); if (voicenum >= 32) { outl(CLIEH << 16, emu->port + PTR); val = inl(emu->port + DATA); val |= 1 << (voicenum - 32); } else { outl(CLIEL << 16, emu->port + PTR); val = inl(emu->port + DATA); val |= 1 << voicenum; } outl(val, emu->port + DATA); spin_unlock_irqrestore(&emu->emu_lock, flags); } void snd_emu10k1_voice_intr_disable(struct snd_emu10k1 *emu, unsigned int voicenum) { unsigned long flags; unsigned int val; spin_lock_irqsave(&emu->emu_lock, flags); if (voicenum >= 32) { outl(CLIEH << 16, emu->port + PTR); val = inl(emu->port + DATA); val &= ~(1 << (voicenum - 32)); } else { outl(CLIEL << 16, emu->port + PTR); val = inl(emu->port + DATA); val &= ~(1 << voicenum); } outl(val, emu->port + DATA); spin_unlock_irqrestore(&emu->emu_lock, flags); } void snd_emu10k1_voice_intr_ack(struct snd_emu10k1 *emu, unsigned int voicenum) { unsigned long flags; spin_lock_irqsave(&emu->emu_lock, flags); if (voicenum >= 32) { outl(CLIPH << 16, emu->port + PTR); voicenum = 1 << (voicenum - 32); } else { outl(CLIPL << 16, emu->port + PTR); voicenum = 1 << voicenum; } outl(voicenum, emu->port + DATA); spin_unlock_irqrestore(&emu->emu_lock, flags); } void snd_emu10k1_voice_half_loop_intr_enable(struct snd_emu10k1 *emu, unsigned int voicenum) { unsigned long flags; unsigned int val; spin_lock_irqsave(&emu->emu_lock, flags); if (voicenum >= 32) { outl(HLIEH << 16, emu->port + PTR); val = inl(emu->port + DATA); val |= 1 << (voicenum - 32); } else { outl(HLIEL << 16, emu->port + PTR); val = inl(emu->port + DATA); val |= 1 << voicenum; } outl(val, emu->port + DATA); spin_unlock_irqrestore(&emu->emu_lock, flags); } void snd_emu10k1_voice_half_loop_intr_disable(struct snd_emu10k1 *emu, unsigned int voicenum) { unsigned long flags; unsigned int val; spin_lock_irqsave(&emu->emu_lock, flags); if (voicenum >= 32) { outl(HLIEH << 16, emu->port + PTR); val = inl(emu->port + DATA); val &= ~(1 << (voicenum - 32)); } else { outl(HLIEL << 16, emu->port + PTR); val = inl(emu->port + DATA); val &= ~(1 << voicenum); } outl(val, emu->port + DATA); spin_unlock_irqrestore(&emu->emu_lock, flags); } void snd_emu10k1_voice_half_loop_intr_ack(struct snd_emu10k1 *emu, unsigned int voicenum) { unsigned long flags; spin_lock_irqsave(&emu->emu_lock, flags); if (voicenum >= 32) { outl(HLIPH << 16, emu->port + PTR); voicenum = 1 << (voicenum - 32); } else { outl(HLIPL << 16, emu->port + PTR); voicenum = 1 << voicenum; } outl(voicenum, emu->port + DATA); spin_unlock_irqrestore(&emu->emu_lock, flags); } #if 0 void snd_emu10k1_voice_set_loop_stop(struct snd_emu10k1 *emu, unsigned int voicenum) { unsigned long flags; unsigned int sol; spin_lock_irqsave(&emu->emu_lock, flags); if (voicenum >= 32) { outl(SOLEH << 16, emu->port + PTR); sol = inl(emu->port + DATA); sol |= 1 << (voicenum - 32); } else { outl(SOLEL << 16, emu->port + PTR); sol = inl(emu->port + DATA); sol |= 1 << voicenum; } outl(sol, emu->port + DATA); spin_unlock_irqrestore(&emu->emu_lock, flags); } void snd_emu10k1_voice_clear_loop_stop(struct snd_emu10k1 *emu, unsigned int voicenum) { unsigned long flags; unsigned int sol; spin_lock_irqsave(&emu->emu_lock, flags); if (voicenum >= 32) { outl(SOLEH << 16, emu->port + PTR); sol = inl(emu->port + DATA); sol &= ~(1 << (voicenum - 32)); } else { outl(SOLEL << 16, emu->port + PTR); sol = inl(emu->port + DATA); sol &= ~(1 << voicenum); } outl(sol, emu->port + DATA); spin_unlock_irqrestore(&emu->emu_lock, flags); } #endif void snd_emu10k1_voice_set_loop_stop_multiple(struct snd_emu10k1 *emu, u64 voices) { unsigned long flags; spin_lock_irqsave(&emu->emu_lock, flags); outl(SOLEL << 16, emu->port + PTR); outl(inl(emu->port + DATA) | (u32)voices, emu->port + DATA); outl(SOLEH << 16, emu->port + PTR); outl(inl(emu->port + DATA) | (u32)(voices >> 32), emu->port + DATA); spin_unlock_irqrestore(&emu->emu_lock, flags); } void snd_emu10k1_voice_clear_loop_stop_multiple(struct snd_emu10k1 *emu, u64 voices) { unsigned long flags; spin_lock_irqsave(&emu->emu_lock, flags); outl(SOLEL << 16, emu->port + PTR); outl(inl(emu->port + DATA) & (u32)~voices, emu->port + DATA); outl(SOLEH << 16, emu->port + PTR); outl(inl(emu->port + DATA) & (u32)(~voices >> 32), emu->port + DATA); spin_unlock_irqrestore(&emu->emu_lock, flags); } int snd_emu10k1_voice_clear_loop_stop_multiple_atomic(struct snd_emu10k1 *emu, u64 voices) { unsigned long flags; u32 soll, solh; int ret = -EIO; spin_lock_irqsave(&emu->emu_lock, flags); outl(SOLEL << 16, emu->port + PTR); soll = inl(emu->port + DATA); outl(SOLEH << 16, emu->port + PTR); solh = inl(emu->port + DATA); soll &= (u32)~voices; solh &= (u32)(~voices >> 32); for (int tries = 0; tries < 1000; tries++) { const u32 quart = 1U << (REG_SIZE(WC_CURRENTCHANNEL) - 2); // First we wait for the third quarter of the sample cycle ... u32 wc = inl(emu->port + WC); u32 cc = REG_VAL_GET(WC_CURRENTCHANNEL, wc); if (cc >= quart * 2 && cc < quart * 3) { // ... and release the low voices, while the high ones are serviced. outl(SOLEL << 16, emu->port + PTR); outl(soll, emu->port + DATA); // Then we wait for the first quarter of the next sample cycle ... for (; tries < 1000; tries++) { cc = REG_VAL_GET(WC_CURRENTCHANNEL, inl(emu->port + WC)); if (cc < quart) goto good; // We will block for 10+ us with interrupts disabled. This is // not nice at all, but necessary for reasonable reliability. udelay(1); } break; good: // ... and release the high voices, while the low ones are serviced. outl(SOLEH << 16, emu->port + PTR); outl(solh, emu->port + DATA); // Finally we verify that nothing interfered in fact. if (REG_VAL_GET(WC_SAMPLECOUNTER, inl(emu->port + WC)) == ((REG_VAL_GET(WC_SAMPLECOUNTER, wc) + 1) & REG_MASK0(WC_SAMPLECOUNTER))) { ret = 0; } else { ret = -EAGAIN; } break; } // Don't block for too long spin_unlock_irqrestore(&emu->emu_lock, flags); udelay(1); spin_lock_irqsave(&emu->emu_lock, flags); } spin_unlock_irqrestore(&emu->emu_lock, flags); return ret; } void snd_emu10k1_wait(struct snd_emu10k1 *emu, unsigned int wait) { volatile unsigned count; unsigned int newtime = 0, curtime; curtime = inl(emu->port + WC) >> 6; while (wait-- > 0) { count = 0; while (count++ < 16384) { newtime = inl(emu->port + WC) >> 6; if (newtime != curtime) break; } if (count > 16384) break; curtime = newtime; } } unsigned short snd_emu10k1_ac97_read(struct snd_ac97 *ac97, unsigned short reg) { struct snd_emu10k1 *emu = ac97->private_data; unsigned long flags; unsigned short val; spin_lock_irqsave(&emu->emu_lock, flags); outb(reg, emu->port + AC97ADDRESS); val = inw(emu->port + AC97DATA); spin_unlock_irqrestore(&emu->emu_lock, flags); return val; } void snd_emu10k1_ac97_write(struct snd_ac97 *ac97, unsigned short reg, unsigned short data) { struct snd_emu10k1 *emu = ac97->private_data; unsigned long flags; spin_lock_irqsave(&emu->emu_lock, flags); outb(reg, emu->port + AC97ADDRESS); outw(data, emu->port + AC97DATA); spin_unlock_irqrestore(&emu->emu_lock, flags); }