// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2023 Meta Platforms, Inc. and affiliates. */ #define _GNU_SOURCE #include #include #include #include /* ================================= * SHORT AND CONSISTENT NUMBER TYPES * ================================= */ #define U64_MAX ((u64)UINT64_MAX) #define U32_MAX ((u32)UINT_MAX) #define U16_MAX ((u32)UINT_MAX) #define S64_MIN ((s64)INT64_MIN) #define S64_MAX ((s64)INT64_MAX) #define S32_MIN ((s32)INT_MIN) #define S32_MAX ((s32)INT_MAX) #define S16_MIN ((s16)0x80000000) #define S16_MAX ((s16)0x7fffffff) typedef unsigned long long ___u64; typedef unsigned int ___u32; typedef long long ___s64; typedef int ___s32; /* avoid conflicts with already defined types in kernel headers */ #define u64 ___u64 #define u32 ___u32 #define s64 ___s64 #define s32 ___s32 /* ================================== * STRING BUF ABSTRACTION AND HELPERS * ================================== */ struct strbuf { size_t buf_sz; int pos; char buf[0]; }; #define DEFINE_STRBUF(name, N) \ struct { struct strbuf buf; char data[(N)]; } ___##name; \ struct strbuf *name = (___##name.buf.buf_sz = (N), ___##name.buf.pos = 0, &___##name.buf) __printf(2, 3) static inline void snappendf(struct strbuf *s, const char *fmt, ...) { va_list args; va_start(args, fmt); s->pos += vsnprintf(s->buf + s->pos, s->pos < s->buf_sz ? s->buf_sz - s->pos : 0, fmt, args); va_end(args); } /* ================================== * GENERIC NUMBER TYPE AND OPERATIONS * ================================== */ enum num_t { U64, first_t = U64, U32, S64, S32, last_t = S32 }; static __always_inline u64 min_t(enum num_t t, u64 x, u64 y) { switch (t) { case U64: return (u64)x < (u64)y ? (u64)x : (u64)y; case U32: return (u32)x < (u32)y ? (u32)x : (u32)y; case S64: return (s64)x < (s64)y ? (s64)x : (s64)y; case S32: return (s32)x < (s32)y ? (s32)x : (s32)y; default: printf("min_t!\n"); exit(1); } } static __always_inline u64 max_t(enum num_t t, u64 x, u64 y) { switch (t) { case U64: return (u64)x > (u64)y ? (u64)x : (u64)y; case U32: return (u32)x > (u32)y ? (u32)x : (u32)y; case S64: return (s64)x > (s64)y ? (s64)x : (s64)y; case S32: return (s32)x > (s32)y ? (u32)(s32)x : (u32)(s32)y; default: printf("max_t!\n"); exit(1); } } static __always_inline u64 cast_t(enum num_t t, u64 x) { switch (t) { case U64: return (u64)x; case U32: return (u32)x; case S64: return (s64)x; case S32: return (u32)(s32)x; default: printf("cast_t!\n"); exit(1); } } static const char *t_str(enum num_t t) { switch (t) { case U64: return "u64"; case U32: return "u32"; case S64: return "s64"; case S32: return "s32"; default: printf("t_str!\n"); exit(1); } } static enum num_t t_is_32(enum num_t t) { switch (t) { case U64: return false; case U32: return true; case S64: return false; case S32: return true; default: printf("t_is_32!\n"); exit(1); } } static enum num_t t_signed(enum num_t t) { switch (t) { case U64: return S64; case U32: return S32; case S64: return S64; case S32: return S32; default: printf("t_signed!\n"); exit(1); } } static enum num_t t_unsigned(enum num_t t) { switch (t) { case U64: return U64; case U32: return U32; case S64: return U64; case S32: return U32; default: printf("t_unsigned!\n"); exit(1); } } #define UNUM_MAX_DECIMAL U16_MAX #define SNUM_MAX_DECIMAL S16_MAX #define SNUM_MIN_DECIMAL S16_MIN static bool num_is_small(enum num_t t, u64 x) { switch (t) { case U64: return (u64)x <= UNUM_MAX_DECIMAL; case U32: return (u32)x <= UNUM_MAX_DECIMAL; case S64: return (s64)x >= SNUM_MIN_DECIMAL && (s64)x <= SNUM_MAX_DECIMAL; case S32: return (s32)x >= SNUM_MIN_DECIMAL && (s32)x <= SNUM_MAX_DECIMAL; default: printf("num_is_small!\n"); exit(1); } } static void snprintf_num(enum num_t t, struct strbuf *sb, u64 x) { bool is_small = num_is_small(t, x); if (is_small) { switch (t) { case U64: return snappendf(sb, "%llu", (u64)x); case U32: return snappendf(sb, "%u", (u32)x); case S64: return snappendf(sb, "%lld", (s64)x); case S32: return snappendf(sb, "%d", (s32)x); default: printf("snprintf_num!\n"); exit(1); } } else { switch (t) { case U64: if (x == U64_MAX) return snappendf(sb, "U64_MAX"); else if (x >= U64_MAX - 256) return snappendf(sb, "U64_MAX-%llu", U64_MAX - x); else return snappendf(sb, "%#llx", (u64)x); case U32: if ((u32)x == U32_MAX) return snappendf(sb, "U32_MAX"); else if ((u32)x >= U32_MAX - 256) return snappendf(sb, "U32_MAX-%u", U32_MAX - (u32)x); else return snappendf(sb, "%#x", (u32)x); case S64: if ((s64)x == S64_MAX) return snappendf(sb, "S64_MAX"); else if ((s64)x >= S64_MAX - 256) return snappendf(sb, "S64_MAX-%lld", S64_MAX - (s64)x); else if ((s64)x == S64_MIN) return snappendf(sb, "S64_MIN"); else if ((s64)x <= S64_MIN + 256) return snappendf(sb, "S64_MIN+%lld", (s64)x - S64_MIN); else return snappendf(sb, "%#llx", (s64)x); case S32: if ((s32)x == S32_MAX) return snappendf(sb, "S32_MAX"); else if ((s32)x >= S32_MAX - 256) return snappendf(sb, "S32_MAX-%d", S32_MAX - (s32)x); else if ((s32)x == S32_MIN) return snappendf(sb, "S32_MIN"); else if ((s32)x <= S32_MIN + 256) return snappendf(sb, "S32_MIN+%d", (s32)x - S32_MIN); else return snappendf(sb, "%#x", (s32)x); default: printf("snprintf_num!\n"); exit(1); } } } /* =================================== * GENERIC RANGE STRUCT AND OPERATIONS * =================================== */ struct range { u64 a, b; }; static void snprintf_range(enum num_t t, struct strbuf *sb, struct range x) { if (x.a == x.b) return snprintf_num(t, sb, x.a); snappendf(sb, "["); snprintf_num(t, sb, x.a); snappendf(sb, "; "); snprintf_num(t, sb, x.b); snappendf(sb, "]"); } static void print_range(enum num_t t, struct range x, const char *sfx) { DEFINE_STRBUF(sb, 128); snprintf_range(t, sb, x); printf("%s%s", sb->buf, sfx); } static const struct range unkn[] = { [U64] = { 0, U64_MAX }, [U32] = { 0, U32_MAX }, [S64] = { (u64)S64_MIN, (u64)S64_MAX }, [S32] = { (u64)(u32)S32_MIN, (u64)(u32)S32_MAX }, }; static struct range unkn_subreg(enum num_t t) { switch (t) { case U64: return unkn[U32]; case U32: return unkn[U32]; case S64: return unkn[U32]; case S32: return unkn[S32]; default: printf("unkn_subreg!\n"); exit(1); } } static struct range range(enum num_t t, u64 a, u64 b) { switch (t) { case U64: return (struct range){ (u64)a, (u64)b }; case U32: return (struct range){ (u32)a, (u32)b }; case S64: return (struct range){ (s64)a, (s64)b }; case S32: return (struct range){ (u32)(s32)a, (u32)(s32)b }; default: printf("range!\n"); exit(1); } } static __always_inline u32 sign64(u64 x) { return (x >> 63) & 1; } static __always_inline u32 sign32(u64 x) { return ((u32)x >> 31) & 1; } static __always_inline u32 upper32(u64 x) { return (u32)(x >> 32); } static __always_inline u64 swap_low32(u64 x, u32 y) { return (x & 0xffffffff00000000ULL) | y; } static bool range_eq(struct range x, struct range y) { return x.a == y.a && x.b == y.b; } static struct range range_cast_to_s32(struct range x) { u64 a = x.a, b = x.b; /* if upper 32 bits are constant, lower 32 bits should form a proper * s32 range to be correct */ if (upper32(a) == upper32(b) && (s32)a <= (s32)b) return range(S32, a, b); /* Special case where upper bits form a small sequence of two * sequential numbers (in 32-bit unsigned space, so 0xffffffff to * 0x00000000 is also valid), while lower bits form a proper s32 range * going from negative numbers to positive numbers. * * E.g.: [0xfffffff0ffffff00; 0xfffffff100000010]. Iterating * over full 64-bit numbers range will form a proper [-16, 16] * ([0xffffff00; 0x00000010]) range in its lower 32 bits. */ if (upper32(a) + 1 == upper32(b) && (s32)a < 0 && (s32)b >= 0) return range(S32, a, b); /* otherwise we can't derive much meaningful information */ return unkn[S32]; } static struct range range_cast_u64(enum num_t to_t, struct range x) { u64 a = (u64)x.a, b = (u64)x.b; switch (to_t) { case U64: return x; case U32: if (upper32(a) != upper32(b)) return unkn[U32]; return range(U32, a, b); case S64: if (sign64(a) != sign64(b)) return unkn[S64]; return range(S64, a, b); case S32: return range_cast_to_s32(x); default: printf("range_cast_u64!\n"); exit(1); } } static struct range range_cast_s64(enum num_t to_t, struct range x) { s64 a = (s64)x.a, b = (s64)x.b; switch (to_t) { case U64: /* equivalent to (s64)a <= (s64)b check */ if (sign64(a) != sign64(b)) return unkn[U64]; return range(U64, a, b); case U32: if (upper32(a) != upper32(b) || sign32(a) != sign32(b)) return unkn[U32]; return range(U32, a, b); case S64: return x; case S32: return range_cast_to_s32(x); default: printf("range_cast_s64!\n"); exit(1); } } static struct range range_cast_u32(enum num_t to_t, struct range x) { u32 a = (u32)x.a, b = (u32)x.b; switch (to_t) { case U64: case S64: /* u32 is always a valid zero-extended u64/s64 */ return range(to_t, a, b); case U32: return x; case S32: return range_cast_to_s32(range(U32, a, b)); default: printf("range_cast_u32!\n"); exit(1); } } static struct range range_cast_s32(enum num_t to_t, struct range x) { s32 a = (s32)x.a, b = (s32)x.b; switch (to_t) { case U64: case U32: case S64: if (sign32(a) != sign32(b)) return unkn[to_t]; return range(to_t, a, b); case S32: return x; default: printf("range_cast_s32!\n"); exit(1); } } /* Reinterpret range in *from_t* domain as a range in *to_t* domain preserving * all possible information. Worst case, it will be unknown range within * *to_t* domain, if nothing more specific can be guaranteed during the * conversion */ static struct range range_cast(enum num_t from_t, enum num_t to_t, struct range from) { switch (from_t) { case U64: return range_cast_u64(to_t, from); case U32: return range_cast_u32(to_t, from); case S64: return range_cast_s64(to_t, from); case S32: return range_cast_s32(to_t, from); default: printf("range_cast!\n"); exit(1); } } static bool is_valid_num(enum num_t t, u64 x) { switch (t) { case U64: return true; case U32: return upper32(x) == 0; case S64: return true; case S32: return upper32(x) == 0; default: printf("is_valid_num!\n"); exit(1); } } static bool is_valid_range(enum num_t t, struct range x) { if (!is_valid_num(t, x.a) || !is_valid_num(t, x.b)) return false; switch (t) { case U64: return (u64)x.a <= (u64)x.b; case U32: return (u32)x.a <= (u32)x.b; case S64: return (s64)x.a <= (s64)x.b; case S32: return (s32)x.a <= (s32)x.b; default: printf("is_valid_range!\n"); exit(1); } } static struct range range_improve(enum num_t t, struct range old, struct range new) { return range(t, max_t(t, old.a, new.a), min_t(t, old.b, new.b)); } static struct range range_refine(enum num_t x_t, struct range x, enum num_t y_t, struct range y) { struct range y_cast; y_cast = range_cast(y_t, x_t, y); /* the case when new range knowledge, *y*, is a 32-bit subregister * range, while previous range knowledge, *x*, is a full register * 64-bit range, needs special treatment to take into account upper 32 * bits of full register range */ if (t_is_32(y_t) && !t_is_32(x_t)) { struct range x_swap; /* some combinations of upper 32 bits and sign bit can lead to * invalid ranges, in such cases it's easier to detect them * after cast/swap than try to enumerate all the conditions * under which transformation and knowledge transfer is valid */ x_swap = range(x_t, swap_low32(x.a, y_cast.a), swap_low32(x.b, y_cast.b)); if (!is_valid_range(x_t, x_swap)) return x; return range_improve(x_t, x, x_swap); } /* otherwise, plain range cast and intersection works */ return range_improve(x_t, x, y_cast); } /* ======================= * GENERIC CONDITIONAL OPS * ======================= */ enum op { OP_LT, OP_LE, OP_GT, OP_GE, OP_EQ, OP_NE, first_op = OP_LT, last_op = OP_NE }; static enum op complement_op(enum op op) { switch (op) { case OP_LT: return OP_GE; case OP_LE: return OP_GT; case OP_GT: return OP_LE; case OP_GE: return OP_LT; case OP_EQ: return OP_NE; case OP_NE: return OP_EQ; default: printf("complement_op!\n"); exit(1); } } static const char *op_str(enum op op) { switch (op) { case OP_LT: return "<"; case OP_LE: return "<="; case OP_GT: return ">"; case OP_GE: return ">="; case OP_EQ: return "=="; case OP_NE: return "!="; default: printf("op_str!\n"); exit(1); } } /* Can register with range [x.a, x.b] *EVER* satisfy * OP (<, <=, >, >=, ==, !=) relation to * a regsiter with range [y.a, y.b] * _in *num_t* domain_ */ static bool range_canbe_op(enum num_t t, struct range x, struct range y, enum op op) { #define range_canbe(T) do { \ switch (op) { \ case OP_LT: return (T)x.a < (T)y.b; \ case OP_LE: return (T)x.a <= (T)y.b; \ case OP_GT: return (T)x.b > (T)y.a; \ case OP_GE: return (T)x.b >= (T)y.a; \ case OP_EQ: return (T)max_t(t, x.a, y.a) <= (T)min_t(t, x.b, y.b); \ case OP_NE: return !((T)x.a == (T)x.b && (T)y.a == (T)y.b && (T)x.a == (T)y.a); \ default: printf("range_canbe op %d\n", op); exit(1); \ } \ } while (0) switch (t) { case U64: { range_canbe(u64); } case U32: { range_canbe(u32); } case S64: { range_canbe(s64); } case S32: { range_canbe(s32); } default: printf("range_canbe!\n"); exit(1); } #undef range_canbe } /* Does register with range [x.a, x.b] *ALWAYS* satisfy * OP (<, <=, >, >=, ==, !=) relation to * a regsiter with range [y.a, y.b] * _in *num_t* domain_ */ static bool range_always_op(enum num_t t, struct range x, struct range y, enum op op) { /* always op <=> ! canbe complement(op) */ return !range_canbe_op(t, x, y, complement_op(op)); } /* Does register with range [x.a, x.b] *NEVER* satisfy * OP (<, <=, >, >=, ==, !=) relation to * a regsiter with range [y.a, y.b] * _in *num_t* domain_ */ static bool range_never_op(enum num_t t, struct range x, struct range y, enum op op) { return !range_canbe_op(t, x, y, op); } /* similar to verifier's is_branch_taken(): * 1 - always taken; * 0 - never taken, * -1 - unsure. */ static int range_branch_taken_op(enum num_t t, struct range x, struct range y, enum op op) { if (range_always_op(t, x, y, op)) return 1; if (range_never_op(t, x, y, op)) return 0; return -1; } /* What would be the new estimates for register x and y ranges assuming truthful * OP comparison between them. I.e., (x OP y == true) => x <- newx, y <- newy. * * We assume "interesting" cases where ranges overlap. Cases where it's * obvious that (x OP y) is either always true or false should be filtered with * range_never and range_always checks. */ static void range_cond(enum num_t t, struct range x, struct range y, enum op op, struct range *newx, struct range *newy) { if (!range_canbe_op(t, x, y, op)) { /* nothing to adjust, can't happen, return original values */ *newx = x; *newy = y; return; } switch (op) { case OP_LT: *newx = range(t, x.a, min_t(t, x.b, y.b - 1)); *newy = range(t, max_t(t, x.a + 1, y.a), y.b); break; case OP_LE: *newx = range(t, x.a, min_t(t, x.b, y.b)); *newy = range(t, max_t(t, x.a, y.a), y.b); break; case OP_GT: *newx = range(t, max_t(t, x.a, y.a + 1), x.b); *newy = range(t, y.a, min_t(t, x.b - 1, y.b)); break; case OP_GE: *newx = range(t, max_t(t, x.a, y.a), x.b); *newy = range(t, y.a, min_t(t, x.b, y.b)); break; case OP_EQ: *newx = range(t, max_t(t, x.a, y.a), min_t(t, x.b, y.b)); *newy = range(t, max_t(t, x.a, y.a), min_t(t, x.b, y.b)); break; case OP_NE: /* below logic is supported by the verifier now */ if (x.a == x.b && x.a == y.a) { /* X is a constant matching left side of Y */ *newx = range(t, x.a, x.b); *newy = range(t, y.a + 1, y.b); } else if (x.a == x.b && x.b == y.b) { /* X is a constant matching rigth side of Y */ *newx = range(t, x.a, x.b); *newy = range(t, y.a, y.b - 1); } else if (y.a == y.b && x.a == y.a) { /* Y is a constant matching left side of X */ *newx = range(t, x.a + 1, x.b); *newy = range(t, y.a, y.b); } else if (y.a == y.b && x.b == y.b) { /* Y is a constant matching rigth side of X */ *newx = range(t, x.a, x.b - 1); *newy = range(t, y.a, y.b); } else { /* generic case, can't derive more information */ *newx = range(t, x.a, x.b); *newy = range(t, y.a, y.b); } break; default: break; } } /* ======================= * REGISTER STATE HANDLING * ======================= */ struct reg_state { struct range r[4]; /* indexed by enum num_t: U64, U32, S64, S32 */ bool valid; }; static void print_reg_state(struct reg_state *r, const char *sfx) { DEFINE_STRBUF(sb, 512); enum num_t t; int cnt = 0; if (!r->valid) { printf("%s", sfx); return; } snappendf(sb, "scalar("); for (t = first_t; t <= last_t; t++) { snappendf(sb, "%s%s=", cnt++ ? "," : "", t_str(t)); snprintf_range(t, sb, r->r[t]); } snappendf(sb, ")"); printf("%s%s", sb->buf, sfx); } static void print_refinement(enum num_t s_t, struct range src, enum num_t d_t, struct range old, struct range new, const char *ctx) { printf("REFINING (%s) (%s)SRC=", ctx, t_str(s_t)); print_range(s_t, src, ""); printf(" (%s)DST_OLD=", t_str(d_t)); print_range(d_t, old, ""); printf(" (%s)DST_NEW=", t_str(d_t)); print_range(d_t, new, "\n"); } static void reg_state_refine(struct reg_state *r, enum num_t t, struct range x, const char *ctx) { enum num_t d_t, s_t; struct range old; bool keep_going = false; again: /* try to derive new knowledge from just learned range x of type t */ for (d_t = first_t; d_t <= last_t; d_t++) { old = r->r[d_t]; r->r[d_t] = range_refine(d_t, r->r[d_t], t, x); if (!range_eq(r->r[d_t], old)) { keep_going = true; if (env.verbosity >= VERBOSE_VERY) print_refinement(t, x, d_t, old, r->r[d_t], ctx); } } /* now see if we can derive anything new from updated reg_state's ranges */ for (s_t = first_t; s_t <= last_t; s_t++) { for (d_t = first_t; d_t <= last_t; d_t++) { old = r->r[d_t]; r->r[d_t] = range_refine(d_t, r->r[d_t], s_t, r->r[s_t]); if (!range_eq(r->r[d_t], old)) { keep_going = true; if (env.verbosity >= VERBOSE_VERY) print_refinement(s_t, r->r[s_t], d_t, old, r->r[d_t], ctx); } } } /* keep refining until we converge */ if (keep_going) { keep_going = false; goto again; } } static void reg_state_set_const(struct reg_state *rs, enum num_t t, u64 val) { enum num_t tt; rs->valid = true; for (tt = first_t; tt <= last_t; tt++) rs->r[tt] = tt == t ? range(t, val, val) : unkn[tt]; reg_state_refine(rs, t, rs->r[t], "CONST"); } static void reg_state_cond(enum num_t t, struct reg_state *x, struct reg_state *y, enum op op, struct reg_state *newx, struct reg_state *newy, const char *ctx) { char buf[32]; enum num_t ts[2]; struct reg_state xx = *x, yy = *y; int i, t_cnt; struct range z1, z2; if (op == OP_EQ || op == OP_NE) { /* OP_EQ and OP_NE are sign-agnostic, so we need to process * both signed and unsigned domains at the same time */ ts[0] = t_unsigned(t); ts[1] = t_signed(t); t_cnt = 2; } else { ts[0] = t; t_cnt = 1; } for (i = 0; i < t_cnt; i++) { t = ts[i]; z1 = x->r[t]; z2 = y->r[t]; range_cond(t, z1, z2, op, &z1, &z2); if (newx) { snprintf(buf, sizeof(buf), "%s R1", ctx); reg_state_refine(&xx, t, z1, buf); } if (newy) { snprintf(buf, sizeof(buf), "%s R2", ctx); reg_state_refine(&yy, t, z2, buf); } } if (newx) *newx = xx; if (newy) *newy = yy; } static int reg_state_branch_taken_op(enum num_t t, struct reg_state *x, struct reg_state *y, enum op op) { if (op == OP_EQ || op == OP_NE) { /* OP_EQ and OP_NE are sign-agnostic */ enum num_t tu = t_unsigned(t); enum num_t ts = t_signed(t); int br_u, br_s, br; br_u = range_branch_taken_op(tu, x->r[tu], y->r[tu], op); br_s = range_branch_taken_op(ts, x->r[ts], y->r[ts], op); if (br_u >= 0 && br_s >= 0 && br_u != br_s) ASSERT_FALSE(true, "branch taken inconsistency!\n"); /* if 64-bit ranges are indecisive, use 32-bit subranges to * eliminate always/never taken branches, if possible */ if (br_u == -1 && (t == U64 || t == S64)) { br = range_branch_taken_op(U32, x->r[U32], y->r[U32], op); /* we can only reject for OP_EQ, never take branch * based on lower 32 bits */ if (op == OP_EQ && br == 0) return 0; /* for OP_NEQ we can be conclusive only if lower 32 bits * differ and thus inequality branch is always taken */ if (op == OP_NE && br == 1) return 1; br = range_branch_taken_op(S32, x->r[S32], y->r[S32], op); if (op == OP_EQ && br == 0) return 0; if (op == OP_NE && br == 1) return 1; } return br_u >= 0 ? br_u : br_s; } return range_branch_taken_op(t, x->r[t], y->r[t], op); } /* ===================================== * BPF PROGS GENERATION AND VERIFICATION * ===================================== */ struct case_spec { /* whether to init full register (r1) or sub-register (w1) */ bool init_subregs; /* whether to establish initial value range on full register (r1) or * sub-register (w1) */ bool setup_subregs; /* whether to establish initial value range using signed or unsigned * comparisons (i.e., initialize umin/umax or smin/smax directly) */ bool setup_signed; /* whether to perform comparison on full registers or sub-registers */ bool compare_subregs; /* whether to perform comparison using signed or unsigned operations */ bool compare_signed; }; /* Generate test BPF program based on provided test ranges, operation, and * specifications about register bitness and signedness. */ static int load_range_cmp_prog(struct range x, struct range y, enum op op, int branch_taken, struct case_spec spec, char *log_buf, size_t log_sz, int *false_pos, int *true_pos) { #define emit(insn) ({ \ struct bpf_insn __insns[] = { insn }; \ int __i; \ for (__i = 0; __i < ARRAY_SIZE(__insns); __i++) \ insns[cur_pos + __i] = __insns[__i]; \ cur_pos += __i; \ }) #define JMP_TO(target) (target - cur_pos - 1) int cur_pos = 0, exit_pos, fd, op_code; struct bpf_insn insns[64]; LIBBPF_OPTS(bpf_prog_load_opts, opts, .log_level = 2, .log_buf = log_buf, .log_size = log_sz, .prog_flags = BPF_F_TEST_REG_INVARIANTS, ); /* ; skip exit block below * goto +2; */ emit(BPF_JMP_A(2)); exit_pos = cur_pos; /* ; exit block for all the preparatory conditionals * out: * r0 = 0; * exit; */ emit(BPF_MOV64_IMM(BPF_REG_0, 0)); emit(BPF_EXIT_INSN()); /* * ; assign r6/w6 and r7/w7 unpredictable u64/u32 value * call bpf_get_current_pid_tgid; * r6 = r0; | w6 = w0; * call bpf_get_current_pid_tgid; * r7 = r0; | w7 = w0; */ emit(BPF_EMIT_CALL(BPF_FUNC_get_current_pid_tgid)); if (spec.init_subregs) emit(BPF_MOV32_REG(BPF_REG_6, BPF_REG_0)); else emit(BPF_MOV64_REG(BPF_REG_6, BPF_REG_0)); emit(BPF_EMIT_CALL(BPF_FUNC_get_current_pid_tgid)); if (spec.init_subregs) emit(BPF_MOV32_REG(BPF_REG_7, BPF_REG_0)); else emit(BPF_MOV64_REG(BPF_REG_7, BPF_REG_0)); /* ; setup initial r6/w6 possible value range ([x.a, x.b]) * r1 = %[x.a] ll; | w1 = %[x.a]; * r2 = %[x.b] ll; | w2 = %[x.b]; * if r6 < r1 goto out; | if w6 < w1 goto out; * if r6 > r2 goto out; | if w6 > w2 goto out; */ if (spec.setup_subregs) { emit(BPF_MOV32_IMM(BPF_REG_1, (s32)x.a)); emit(BPF_MOV32_IMM(BPF_REG_2, (s32)x.b)); emit(BPF_JMP32_REG(spec.setup_signed ? BPF_JSLT : BPF_JLT, BPF_REG_6, BPF_REG_1, JMP_TO(exit_pos))); emit(BPF_JMP32_REG(spec.setup_signed ? BPF_JSGT : BPF_JGT, BPF_REG_6, BPF_REG_2, JMP_TO(exit_pos))); } else { emit(BPF_LD_IMM64(BPF_REG_1, x.a)); emit(BPF_LD_IMM64(BPF_REG_2, x.b)); emit(BPF_JMP_REG(spec.setup_signed ? BPF_JSLT : BPF_JLT, BPF_REG_6, BPF_REG_1, JMP_TO(exit_pos))); emit(BPF_JMP_REG(spec.setup_signed ? BPF_JSGT : BPF_JGT, BPF_REG_6, BPF_REG_2, JMP_TO(exit_pos))); } /* ; setup initial r7/w7 possible value range ([y.a, y.b]) * r1 = %[y.a] ll; | w1 = %[y.a]; * r2 = %[y.b] ll; | w2 = %[y.b]; * if r7 < r1 goto out; | if w7 < w1 goto out; * if r7 > r2 goto out; | if w7 > w2 goto out; */ if (spec.setup_subregs) { emit(BPF_MOV32_IMM(BPF_REG_1, (s32)y.a)); emit(BPF_MOV32_IMM(BPF_REG_2, (s32)y.b)); emit(BPF_JMP32_REG(spec.setup_signed ? BPF_JSLT : BPF_JLT, BPF_REG_7, BPF_REG_1, JMP_TO(exit_pos))); emit(BPF_JMP32_REG(spec.setup_signed ? BPF_JSGT : BPF_JGT, BPF_REG_7, BPF_REG_2, JMP_TO(exit_pos))); } else { emit(BPF_LD_IMM64(BPF_REG_1, y.a)); emit(BPF_LD_IMM64(BPF_REG_2, y.b)); emit(BPF_JMP_REG(spec.setup_signed ? BPF_JSLT : BPF_JLT, BPF_REG_7, BPF_REG_1, JMP_TO(exit_pos))); emit(BPF_JMP_REG(spec.setup_signed ? BPF_JSGT : BPF_JGT, BPF_REG_7, BPF_REG_2, JMP_TO(exit_pos))); } /* ; range test instruction * if r6 r7 goto +3; | if w6 w7 goto +3; */ switch (op) { case OP_LT: op_code = spec.compare_signed ? BPF_JSLT : BPF_JLT; break; case OP_LE: op_code = spec.compare_signed ? BPF_JSLE : BPF_JLE; break; case OP_GT: op_code = spec.compare_signed ? BPF_JSGT : BPF_JGT; break; case OP_GE: op_code = spec.compare_signed ? BPF_JSGE : BPF_JGE; break; case OP_EQ: op_code = BPF_JEQ; break; case OP_NE: op_code = BPF_JNE; break; default: printf("unrecognized op %d\n", op); return -ENOTSUP; } /* ; BEFORE conditional, r0/w0 = {r6/w6,r7/w7} is to extract verifier state reliably * ; this is used for debugging, as verifier doesn't always print * ; registers states as of condition jump instruction (e.g., when * ; precision marking happens) * r0 = r6; | w0 = w6; * r0 = r7; | w0 = w7; */ if (spec.compare_subregs) { emit(BPF_MOV32_REG(BPF_REG_0, BPF_REG_6)); emit(BPF_MOV32_REG(BPF_REG_0, BPF_REG_7)); } else { emit(BPF_MOV64_REG(BPF_REG_0, BPF_REG_6)); emit(BPF_MOV64_REG(BPF_REG_0, BPF_REG_7)); } if (spec.compare_subregs) emit(BPF_JMP32_REG(op_code, BPF_REG_6, BPF_REG_7, 3)); else emit(BPF_JMP_REG(op_code, BPF_REG_6, BPF_REG_7, 3)); /* ; FALSE branch, r0/w0 = {r6/w6,r7/w7} is to extract verifier state reliably * r0 = r6; | w0 = w6; * r0 = r7; | w0 = w7; * exit; */ *false_pos = cur_pos; if (spec.compare_subregs) { emit(BPF_MOV32_REG(BPF_REG_0, BPF_REG_6)); emit(BPF_MOV32_REG(BPF_REG_0, BPF_REG_7)); } else { emit(BPF_MOV64_REG(BPF_REG_0, BPF_REG_6)); emit(BPF_MOV64_REG(BPF_REG_0, BPF_REG_7)); } if (branch_taken == 1) /* false branch is never taken */ emit(BPF_EMIT_CALL(0xDEAD)); /* poison this branch */ else emit(BPF_EXIT_INSN()); /* ; TRUE branch, r0/w0 = {r6/w6,r7/w7} is to extract verifier state reliably * r0 = r6; | w0 = w6; * r0 = r7; | w0 = w7; * exit; */ *true_pos = cur_pos; if (spec.compare_subregs) { emit(BPF_MOV32_REG(BPF_REG_0, BPF_REG_6)); emit(BPF_MOV32_REG(BPF_REG_0, BPF_REG_7)); } else { emit(BPF_MOV64_REG(BPF_REG_0, BPF_REG_6)); emit(BPF_MOV64_REG(BPF_REG_0, BPF_REG_7)); } if (branch_taken == 0) /* true branch is never taken */ emit(BPF_EMIT_CALL(0xDEAD)); /* poison this branch */ emit(BPF_EXIT_INSN()); /* last instruction has to be exit */ fd = bpf_prog_load(BPF_PROG_TYPE_RAW_TRACEPOINT, "reg_bounds_test", "GPL", insns, cur_pos, &opts); if (fd < 0) return fd; close(fd); return 0; #undef emit #undef JMP_TO } #define str_has_pfx(str, pfx) (strncmp(str, pfx, strlen(pfx)) == 0) /* Parse register state from verifier log. * `s` should point to the start of "Rx = ..." substring in the verifier log. */ static int parse_reg_state(const char *s, struct reg_state *reg) { /* There are two generic forms for SCALAR register: * - known constant: R6_rwD=P%lld * - range: R6_rwD=scalar(id=1,...), where "..." is a comma-separated * list of optional range specifiers: * - umin=%llu, if missing, assumed 0; * - umax=%llu, if missing, assumed U64_MAX; * - smin=%lld, if missing, assumed S64_MIN; * - smax=%lld, if missing, assummed S64_MAX; * - umin32=%d, if missing, assumed 0; * - umax32=%d, if missing, assumed U32_MAX; * - smin32=%d, if missing, assumed S32_MIN; * - smax32=%d, if missing, assummed S32_MAX; * - var_off=(%#llx; %#llx), tnum part, we don't care about it. * * If some of the values are equal, they will be grouped (but min/max * are not mixed together, and similarly negative values are not * grouped with non-negative ones). E.g.: * * R6_w=Pscalar(smin=smin32=0, smax=umax=umax32=1000) * * _rwD part is optional (and any of the letters can be missing). * P (precision mark) is optional as well. * * Anything inside scalar() is optional, including id, of course. */ struct { const char *pfx; u64 *dst, def; bool is_32, is_set; } *f, fields[8] = { {"smin=", ®->r[S64].a, S64_MIN}, {"smax=", ®->r[S64].b, S64_MAX}, {"umin=", ®->r[U64].a, 0}, {"umax=", ®->r[U64].b, U64_MAX}, {"smin32=", ®->r[S32].a, (u32)S32_MIN, true}, {"smax32=", ®->r[S32].b, (u32)S32_MAX, true}, {"umin32=", ®->r[U32].a, 0, true}, {"umax32=", ®->r[U32].b, U32_MAX, true}, }; const char *p; int i; p = strchr(s, '='); if (!p) return -EINVAL; p++; if (*p == 'P') p++; if (!str_has_pfx(p, "scalar(")) { long long sval; enum num_t t; if (p[0] == '0' && p[1] == 'x') { if (sscanf(p, "%llx", &sval) != 1) return -EINVAL; } else { if (sscanf(p, "%lld", &sval) != 1) return -EINVAL; } reg->valid = true; for (t = first_t; t <= last_t; t++) { reg->r[t] = range(t, sval, sval); } return 0; } p += sizeof("scalar"); while (p) { int midxs[ARRAY_SIZE(fields)], mcnt = 0; u64 val; for (i = 0; i < ARRAY_SIZE(fields); i++) { f = &fields[i]; if (!str_has_pfx(p, f->pfx)) continue; midxs[mcnt++] = i; p += strlen(f->pfx); } if (mcnt) { /* populate all matched fields */ if (p[0] == '0' && p[1] == 'x') { if (sscanf(p, "%llx", &val) != 1) return -EINVAL; } else { if (sscanf(p, "%lld", &val) != 1) return -EINVAL; } for (i = 0; i < mcnt; i++) { f = &fields[midxs[i]]; f->is_set = true; *f->dst = f->is_32 ? (u64)(u32)val : val; } } else if (str_has_pfx(p, "var_off")) { /* skip "var_off=(0x0; 0x3f)" part completely */ p = strchr(p, ')'); if (!p) return -EINVAL; p++; } p = strpbrk(p, ",)"); if (*p == ')') break; if (p) p++; } reg->valid = true; for (i = 0; i < ARRAY_SIZE(fields); i++) { f = &fields[i]; if (!f->is_set) *f->dst = f->def; } return 0; } /* Parse all register states (TRUE/FALSE branches and DST/SRC registers) * out of the verifier log for a corresponding test case BPF program. */ static int parse_range_cmp_log(const char *log_buf, struct case_spec spec, int false_pos, int true_pos, struct reg_state *false1_reg, struct reg_state *false2_reg, struct reg_state *true1_reg, struct reg_state *true2_reg) { struct { int insn_idx; int reg_idx; const char *reg_upper; struct reg_state *state; } specs[] = { {false_pos, 6, "R6=", false1_reg}, {false_pos + 1, 7, "R7=", false2_reg}, {true_pos, 6, "R6=", true1_reg}, {true_pos + 1, 7, "R7=", true2_reg}, }; char buf[32]; const char *p = log_buf, *q; int i, err; for (i = 0; i < 4; i++) { sprintf(buf, "%d: (%s) %s = %s%d", specs[i].insn_idx, spec.compare_subregs ? "bc" : "bf", spec.compare_subregs ? "w0" : "r0", spec.compare_subregs ? "w" : "r", specs[i].reg_idx); q = strstr(p, buf); if (!q) { *specs[i].state = (struct reg_state){.valid = false}; continue; } p = strstr(q, specs[i].reg_upper); if (!p) return -EINVAL; err = parse_reg_state(p, specs[i].state); if (err) return -EINVAL; } return 0; } /* Validate ranges match, and print details if they don't */ static bool assert_range_eq(enum num_t t, struct range x, struct range y, const char *ctx1, const char *ctx2) { DEFINE_STRBUF(sb, 512); if (range_eq(x, y)) return true; snappendf(sb, "MISMATCH %s.%s: ", ctx1, ctx2); snprintf_range(t, sb, x); snappendf(sb, " != "); snprintf_range(t, sb, y); printf("%s\n", sb->buf); return false; } /* Validate that register states match, and print details if they don't */ static bool assert_reg_state_eq(struct reg_state *r, struct reg_state *e, const char *ctx) { bool ok = true; enum num_t t; if (r->valid != e->valid) { printf("MISMATCH %s: actual %s != expected %s\n", ctx, r->valid ? "" : "", e->valid ? "" : ""); return false; } if (!r->valid) return true; for (t = first_t; t <= last_t; t++) { if (!assert_range_eq(t, r->r[t], e->r[t], ctx, t_str(t))) ok = false; } return ok; } /* Printf verifier log, filtering out irrelevant noise */ static void print_verifier_log(const char *buf) { const char *p; while (buf[0]) { p = strchrnul(buf, '\n'); /* filter out irrelevant precision backtracking logs */ if (str_has_pfx(buf, "mark_precise: ")) goto skip_line; printf("%.*s\n", (int)(p - buf), buf); skip_line: buf = *p == '\0' ? p : p + 1; } } /* Simulate provided test case purely with our own range-based logic. * This is done to set up expectations for verifier's branch_taken logic and * verifier's register states in the verifier log. */ static void sim_case(enum num_t init_t, enum num_t cond_t, struct range x, struct range y, enum op op, struct reg_state *fr1, struct reg_state *fr2, struct reg_state *tr1, struct reg_state *tr2, int *branch_taken) { const u64 A = x.a; const u64 B = x.b; const u64 C = y.a; const u64 D = y.b; struct reg_state rc; enum op rev_op = complement_op(op); enum num_t t; fr1->valid = fr2->valid = true; tr1->valid = tr2->valid = true; for (t = first_t; t <= last_t; t++) { /* if we are initializing using 32-bit subregisters, * full registers get upper 32 bits zeroed automatically */ struct range z = t_is_32(init_t) ? unkn_subreg(t) : unkn[t]; fr1->r[t] = fr2->r[t] = tr1->r[t] = tr2->r[t] = z; } /* step 1: r1 >= A, r2 >= C */ reg_state_set_const(&rc, init_t, A); reg_state_cond(init_t, fr1, &rc, OP_GE, fr1, NULL, "r1>=A"); reg_state_set_const(&rc, init_t, C); reg_state_cond(init_t, fr2, &rc, OP_GE, fr2, NULL, "r2>=C"); *tr1 = *fr1; *tr2 = *fr2; if (env.verbosity >= VERBOSE_VERY) { printf("STEP1 (%s) R1: ", t_str(init_t)); print_reg_state(fr1, "\n"); printf("STEP1 (%s) R2: ", t_str(init_t)); print_reg_state(fr2, "\n"); } /* step 2: r1 <= B, r2 <= D */ reg_state_set_const(&rc, init_t, B); reg_state_cond(init_t, fr1, &rc, OP_LE, fr1, NULL, "r1<=B"); reg_state_set_const(&rc, init_t, D); reg_state_cond(init_t, fr2, &rc, OP_LE, fr2, NULL, "r2<=D"); *tr1 = *fr1; *tr2 = *fr2; if (env.verbosity >= VERBOSE_VERY) { printf("STEP2 (%s) R1: ", t_str(init_t)); print_reg_state(fr1, "\n"); printf("STEP2 (%s) R2: ", t_str(init_t)); print_reg_state(fr2, "\n"); } /* step 3: r1 r2 */ *branch_taken = reg_state_branch_taken_op(cond_t, fr1, fr2, op); fr1->valid = fr2->valid = false; tr1->valid = tr2->valid = false; if (*branch_taken != 1) { /* FALSE is possible */ fr1->valid = fr2->valid = true; reg_state_cond(cond_t, fr1, fr2, rev_op, fr1, fr2, "FALSE"); } if (*branch_taken != 0) { /* TRUE is possible */ tr1->valid = tr2->valid = true; reg_state_cond(cond_t, tr1, tr2, op, tr1, tr2, "TRUE"); } if (env.verbosity >= VERBOSE_VERY) { printf("STEP3 (%s) FALSE R1:", t_str(cond_t)); print_reg_state(fr1, "\n"); printf("STEP3 (%s) FALSE R2:", t_str(cond_t)); print_reg_state(fr2, "\n"); printf("STEP3 (%s) TRUE R1:", t_str(cond_t)); print_reg_state(tr1, "\n"); printf("STEP3 (%s) TRUE R2:", t_str(cond_t)); print_reg_state(tr2, "\n"); } } /* =============================== * HIGH-LEVEL TEST CASE VALIDATION * =============================== */ static u32 upper_seeds[] = { 0, 1, U32_MAX, U32_MAX - 1, S32_MAX, (u32)S32_MIN, }; static u32 lower_seeds[] = { 0, 1, 2, (u32)-2, 255, (u32)-255, UINT_MAX, UINT_MAX - 1, INT_MAX, (u32)INT_MIN, }; struct ctx { int val_cnt, subval_cnt, range_cnt, subrange_cnt; u64 uvals[ARRAY_SIZE(upper_seeds) * ARRAY_SIZE(lower_seeds)]; s64 svals[ARRAY_SIZE(upper_seeds) * ARRAY_SIZE(lower_seeds)]; u32 usubvals[ARRAY_SIZE(lower_seeds)]; s32 ssubvals[ARRAY_SIZE(lower_seeds)]; struct range *uranges, *sranges; struct range *usubranges, *ssubranges; int max_failure_cnt, cur_failure_cnt; int total_case_cnt, case_cnt; int rand_case_cnt; unsigned rand_seed; __u64 start_ns; char progress_ctx[64]; }; static void cleanup_ctx(struct ctx *ctx) { free(ctx->uranges); free(ctx->sranges); free(ctx->usubranges); free(ctx->ssubranges); } struct subtest_case { enum num_t init_t; enum num_t cond_t; struct range x; struct range y; enum op op; }; static void subtest_case_str(struct strbuf *sb, struct subtest_case *t, bool use_op) { snappendf(sb, "(%s)", t_str(t->init_t)); snprintf_range(t->init_t, sb, t->x); snappendf(sb, " (%s)%s ", t_str(t->cond_t), use_op ? op_str(t->op) : ""); snprintf_range(t->init_t, sb, t->y); } /* Generate and validate test case based on specific combination of setup * register ranges (including their expected num_t domain), and conditional * operation to perform (including num_t domain in which it has to be * performed) */ static int verify_case_op(enum num_t init_t, enum num_t cond_t, struct range x, struct range y, enum op op) { char log_buf[256 * 1024]; size_t log_sz = sizeof(log_buf); int err, false_pos = 0, true_pos = 0, branch_taken; struct reg_state fr1, fr2, tr1, tr2; struct reg_state fe1, fe2, te1, te2; bool failed = false; struct case_spec spec = { .init_subregs = (init_t == U32 || init_t == S32), .setup_subregs = (init_t == U32 || init_t == S32), .setup_signed = (init_t == S64 || init_t == S32), .compare_subregs = (cond_t == U32 || cond_t == S32), .compare_signed = (cond_t == S64 || cond_t == S32), }; log_buf[0] = '\0'; sim_case(init_t, cond_t, x, y, op, &fe1, &fe2, &te1, &te2, &branch_taken); err = load_range_cmp_prog(x, y, op, branch_taken, spec, log_buf, log_sz, &false_pos, &true_pos); if (err) { ASSERT_OK(err, "load_range_cmp_prog"); failed = true; } err = parse_range_cmp_log(log_buf, spec, false_pos, true_pos, &fr1, &fr2, &tr1, &tr2); if (err) { ASSERT_OK(err, "parse_range_cmp_log"); failed = true; } if (!assert_reg_state_eq(&fr1, &fe1, "false_reg1") || !assert_reg_state_eq(&fr2, &fe2, "false_reg2") || !assert_reg_state_eq(&tr1, &te1, "true_reg1") || !assert_reg_state_eq(&tr2, &te2, "true_reg2")) { failed = true; } if (failed || env.verbosity >= VERBOSE_NORMAL) { if (failed || env.verbosity >= VERBOSE_VERY) { printf("VERIFIER LOG:\n========================\n"); print_verifier_log(log_buf); printf("=====================\n"); } printf("ACTUAL FALSE1: "); print_reg_state(&fr1, "\n"); printf("EXPECTED FALSE1: "); print_reg_state(&fe1, "\n"); printf("ACTUAL FALSE2: "); print_reg_state(&fr2, "\n"); printf("EXPECTED FALSE2: "); print_reg_state(&fe2, "\n"); printf("ACTUAL TRUE1: "); print_reg_state(&tr1, "\n"); printf("EXPECTED TRUE1: "); print_reg_state(&te1, "\n"); printf("ACTUAL TRUE2: "); print_reg_state(&tr2, "\n"); printf("EXPECTED TRUE2: "); print_reg_state(&te2, "\n"); return failed ? -EINVAL : 0; } return 0; } /* Given setup ranges and number types, go over all supported operations, * generating individual subtest for each allowed combination */ static int verify_case_opt(struct ctx *ctx, enum num_t init_t, enum num_t cond_t, struct range x, struct range y, bool is_subtest) { DEFINE_STRBUF(sb, 256); int err; struct subtest_case sub = { .init_t = init_t, .cond_t = cond_t, .x = x, .y = y, }; sb->pos = 0; /* reset position in strbuf */ subtest_case_str(sb, &sub, false /* ignore op */); if (is_subtest && !test__start_subtest(sb->buf)) return 0; for (sub.op = first_op; sub.op <= last_op; sub.op++) { sb->pos = 0; /* reset position in strbuf */ subtest_case_str(sb, &sub, true /* print op */); if (env.verbosity >= VERBOSE_NORMAL) /* this speeds up debugging */ printf("TEST CASE: %s\n", sb->buf); err = verify_case_op(init_t, cond_t, x, y, sub.op); if (err || env.verbosity >= VERBOSE_NORMAL) ASSERT_OK(err, sb->buf); if (err) { ctx->cur_failure_cnt++; if (ctx->cur_failure_cnt > ctx->max_failure_cnt) return err; return 0; /* keep testing other cases */ } ctx->case_cnt++; if ((ctx->case_cnt % 10000) == 0) { double progress = (ctx->case_cnt + 0.0) / ctx->total_case_cnt; u64 elapsed_ns = get_time_ns() - ctx->start_ns; double remain_ns = elapsed_ns / progress * (1 - progress); fprintf(env.stderr, "PROGRESS (%s): %d/%d (%.2lf%%), " "elapsed %llu mins (%.2lf hrs), " "ETA %.0lf mins (%.2lf hrs)\n", ctx->progress_ctx, ctx->case_cnt, ctx->total_case_cnt, 100.0 * progress, elapsed_ns / 1000000000 / 60, elapsed_ns / 1000000000.0 / 3600, remain_ns / 1000000000.0 / 60, remain_ns / 1000000000.0 / 3600); } } return 0; } static int verify_case(struct ctx *ctx, enum num_t init_t, enum num_t cond_t, struct range x, struct range y) { return verify_case_opt(ctx, init_t, cond_t, x, y, true /* is_subtest */); } /* ================================ * GENERATED CASES FROM SEED VALUES * ================================ */ static int u64_cmp(const void *p1, const void *p2) { u64 x1 = *(const u64 *)p1, x2 = *(const u64 *)p2; return x1 != x2 ? (x1 < x2 ? -1 : 1) : 0; } static int u32_cmp(const void *p1, const void *p2) { u32 x1 = *(const u32 *)p1, x2 = *(const u32 *)p2; return x1 != x2 ? (x1 < x2 ? -1 : 1) : 0; } static int s64_cmp(const void *p1, const void *p2) { s64 x1 = *(const s64 *)p1, x2 = *(const s64 *)p2; return x1 != x2 ? (x1 < x2 ? -1 : 1) : 0; } static int s32_cmp(const void *p1, const void *p2) { s32 x1 = *(const s32 *)p1, x2 = *(const s32 *)p2; return x1 != x2 ? (x1 < x2 ? -1 : 1) : 0; } /* Generate valid unique constants from seeds, both signed and unsigned */ static void gen_vals(struct ctx *ctx) { int i, j, cnt = 0; for (i = 0; i < ARRAY_SIZE(upper_seeds); i++) { for (j = 0; j < ARRAY_SIZE(lower_seeds); j++) { ctx->uvals[cnt++] = (((u64)upper_seeds[i]) << 32) | lower_seeds[j]; } } /* sort and compact uvals (i.e., it's `sort | uniq`) */ qsort(ctx->uvals, cnt, sizeof(*ctx->uvals), u64_cmp); for (i = 1, j = 0; i < cnt; i++) { if (ctx->uvals[j] == ctx->uvals[i]) continue; j++; ctx->uvals[j] = ctx->uvals[i]; } ctx->val_cnt = j + 1; /* we have exactly the same number of s64 values, they are just in * a different order than u64s, so just sort them differently */ for (i = 0; i < ctx->val_cnt; i++) ctx->svals[i] = ctx->uvals[i]; qsort(ctx->svals, ctx->val_cnt, sizeof(*ctx->svals), s64_cmp); if (env.verbosity >= VERBOSE_SUPER) { DEFINE_STRBUF(sb1, 256); DEFINE_STRBUF(sb2, 256); for (i = 0; i < ctx->val_cnt; i++) { sb1->pos = sb2->pos = 0; snprintf_num(U64, sb1, ctx->uvals[i]); snprintf_num(S64, sb2, ctx->svals[i]); printf("SEED #%d: u64=%-20s s64=%-20s\n", i, sb1->buf, sb2->buf); } } /* 32-bit values are generated separately */ cnt = 0; for (i = 0; i < ARRAY_SIZE(lower_seeds); i++) { ctx->usubvals[cnt++] = lower_seeds[i]; } /* sort and compact usubvals (i.e., it's `sort | uniq`) */ qsort(ctx->usubvals, cnt, sizeof(*ctx->usubvals), u32_cmp); for (i = 1, j = 0; i < cnt; i++) { if (ctx->usubvals[j] == ctx->usubvals[i]) continue; j++; ctx->usubvals[j] = ctx->usubvals[i]; } ctx->subval_cnt = j + 1; for (i = 0; i < ctx->subval_cnt; i++) ctx->ssubvals[i] = ctx->usubvals[i]; qsort(ctx->ssubvals, ctx->subval_cnt, sizeof(*ctx->ssubvals), s32_cmp); if (env.verbosity >= VERBOSE_SUPER) { DEFINE_STRBUF(sb1, 256); DEFINE_STRBUF(sb2, 256); for (i = 0; i < ctx->subval_cnt; i++) { sb1->pos = sb2->pos = 0; snprintf_num(U32, sb1, ctx->usubvals[i]); snprintf_num(S32, sb2, ctx->ssubvals[i]); printf("SUBSEED #%d: u32=%-10s s32=%-10s\n", i, sb1->buf, sb2->buf); } } } /* Generate valid ranges from upper/lower seeds */ static int gen_ranges(struct ctx *ctx) { int i, j, cnt = 0; for (i = 0; i < ctx->val_cnt; i++) { for (j = i; j < ctx->val_cnt; j++) { if (env.verbosity >= VERBOSE_SUPER) { DEFINE_STRBUF(sb1, 256); DEFINE_STRBUF(sb2, 256); sb1->pos = sb2->pos = 0; snprintf_range(U64, sb1, range(U64, ctx->uvals[i], ctx->uvals[j])); snprintf_range(S64, sb2, range(S64, ctx->svals[i], ctx->svals[j])); printf("RANGE #%d: u64=%-40s s64=%-40s\n", cnt, sb1->buf, sb2->buf); } cnt++; } } ctx->range_cnt = cnt; ctx->uranges = calloc(ctx->range_cnt, sizeof(*ctx->uranges)); if (!ASSERT_OK_PTR(ctx->uranges, "uranges_calloc")) return -EINVAL; ctx->sranges = calloc(ctx->range_cnt, sizeof(*ctx->sranges)); if (!ASSERT_OK_PTR(ctx->sranges, "sranges_calloc")) return -EINVAL; cnt = 0; for (i = 0; i < ctx->val_cnt; i++) { for (j = i; j < ctx->val_cnt; j++) { ctx->uranges[cnt] = range(U64, ctx->uvals[i], ctx->uvals[j]); ctx->sranges[cnt] = range(S64, ctx->svals[i], ctx->svals[j]); cnt++; } } cnt = 0; for (i = 0; i < ctx->subval_cnt; i++) { for (j = i; j < ctx->subval_cnt; j++) { if (env.verbosity >= VERBOSE_SUPER) { DEFINE_STRBUF(sb1, 256); DEFINE_STRBUF(sb2, 256); sb1->pos = sb2->pos = 0; snprintf_range(U32, sb1, range(U32, ctx->usubvals[i], ctx->usubvals[j])); snprintf_range(S32, sb2, range(S32, ctx->ssubvals[i], ctx->ssubvals[j])); printf("SUBRANGE #%d: u32=%-20s s32=%-20s\n", cnt, sb1->buf, sb2->buf); } cnt++; } } ctx->subrange_cnt = cnt; ctx->usubranges = calloc(ctx->subrange_cnt, sizeof(*ctx->usubranges)); if (!ASSERT_OK_PTR(ctx->usubranges, "usubranges_calloc")) return -EINVAL; ctx->ssubranges = calloc(ctx->subrange_cnt, sizeof(*ctx->ssubranges)); if (!ASSERT_OK_PTR(ctx->ssubranges, "ssubranges_calloc")) return -EINVAL; cnt = 0; for (i = 0; i < ctx->subval_cnt; i++) { for (j = i; j < ctx->subval_cnt; j++) { ctx->usubranges[cnt] = range(U32, ctx->usubvals[i], ctx->usubvals[j]); ctx->ssubranges[cnt] = range(S32, ctx->ssubvals[i], ctx->ssubvals[j]); cnt++; } } return 0; } static int parse_env_vars(struct ctx *ctx) { const char *s; if ((s = getenv("REG_BOUNDS_MAX_FAILURE_CNT"))) { errno = 0; ctx->max_failure_cnt = strtol(s, NULL, 10); if (errno || ctx->max_failure_cnt < 0) { ASSERT_OK(-errno, "REG_BOUNDS_MAX_FAILURE_CNT"); return -EINVAL; } } if ((s = getenv("REG_BOUNDS_RAND_CASE_CNT"))) { errno = 0; ctx->rand_case_cnt = strtol(s, NULL, 10); if (errno || ctx->rand_case_cnt < 0) { ASSERT_OK(-errno, "REG_BOUNDS_RAND_CASE_CNT"); return -EINVAL; } } if ((s = getenv("REG_BOUNDS_RAND_SEED"))) { errno = 0; ctx->rand_seed = strtoul(s, NULL, 10); if (errno) { ASSERT_OK(-errno, "REG_BOUNDS_RAND_SEED"); return -EINVAL; } } return 0; } static int prepare_gen_tests(struct ctx *ctx) { const char *s; int err; if (!(s = getenv("SLOW_TESTS")) || strcmp(s, "1") != 0) { test__skip(); return -ENOTSUP; } err = parse_env_vars(ctx); if (err) return err; gen_vals(ctx); err = gen_ranges(ctx); if (err) { ASSERT_OK(err, "gen_ranges"); return err; } return 0; } /* Go over generated constants and ranges and validate various supported * combinations of them */ static void validate_gen_range_vs_const_64(enum num_t init_t, enum num_t cond_t) { struct ctx ctx; struct range rconst; const struct range *ranges; const u64 *vals; int i, j; memset(&ctx, 0, sizeof(ctx)); if (prepare_gen_tests(&ctx)) goto cleanup; ranges = init_t == U64 ? ctx.uranges : ctx.sranges; vals = init_t == U64 ? ctx.uvals : (const u64 *)ctx.svals; ctx.total_case_cnt = (last_op - first_op + 1) * (2 * ctx.range_cnt * ctx.val_cnt); ctx.start_ns = get_time_ns(); snprintf(ctx.progress_ctx, sizeof(ctx.progress_ctx), "RANGE x CONST, %s -> %s", t_str(init_t), t_str(cond_t)); for (i = 0; i < ctx.val_cnt; i++) { for (j = 0; j < ctx.range_cnt; j++) { rconst = range(init_t, vals[i], vals[i]); /* (u64|s64)( x ) */ if (verify_case(&ctx, init_t, cond_t, ranges[j], rconst)) goto cleanup; /* (u64|s64)( x ) */ if (verify_case(&ctx, init_t, cond_t, rconst, ranges[j])) goto cleanup; } } cleanup: cleanup_ctx(&ctx); } static void validate_gen_range_vs_const_32(enum num_t init_t, enum num_t cond_t) { struct ctx ctx; struct range rconst; const struct range *ranges; const u32 *vals; int i, j; memset(&ctx, 0, sizeof(ctx)); if (prepare_gen_tests(&ctx)) goto cleanup; ranges = init_t == U32 ? ctx.usubranges : ctx.ssubranges; vals = init_t == U32 ? ctx.usubvals : (const u32 *)ctx.ssubvals; ctx.total_case_cnt = (last_op - first_op + 1) * (2 * ctx.subrange_cnt * ctx.subval_cnt); ctx.start_ns = get_time_ns(); snprintf(ctx.progress_ctx, sizeof(ctx.progress_ctx), "RANGE x CONST, %s -> %s", t_str(init_t), t_str(cond_t)); for (i = 0; i < ctx.subval_cnt; i++) { for (j = 0; j < ctx.subrange_cnt; j++) { rconst = range(init_t, vals[i], vals[i]); /* (u32|s32)( x ) */ if (verify_case(&ctx, init_t, cond_t, ranges[j], rconst)) goto cleanup; /* (u32|s32)( x ) */ if (verify_case(&ctx, init_t, cond_t, rconst, ranges[j])) goto cleanup; } } cleanup: cleanup_ctx(&ctx); } static void validate_gen_range_vs_range(enum num_t init_t, enum num_t cond_t) { struct ctx ctx; const struct range *ranges; int i, j, rcnt; memset(&ctx, 0, sizeof(ctx)); if (prepare_gen_tests(&ctx)) goto cleanup; switch (init_t) { case U64: ranges = ctx.uranges; rcnt = ctx.range_cnt; break; case U32: ranges = ctx.usubranges; rcnt = ctx.subrange_cnt; break; case S64: ranges = ctx.sranges; rcnt = ctx.range_cnt; break; case S32: ranges = ctx.ssubranges; rcnt = ctx.subrange_cnt; break; default: printf("validate_gen_range_vs_range!\n"); exit(1); } ctx.total_case_cnt = (last_op - first_op + 1) * (2 * rcnt * (rcnt + 1) / 2); ctx.start_ns = get_time_ns(); snprintf(ctx.progress_ctx, sizeof(ctx.progress_ctx), "RANGE x RANGE, %s -> %s", t_str(init_t), t_str(cond_t)); for (i = 0; i < rcnt; i++) { for (j = i; j < rcnt; j++) { /* ( x ) */ if (verify_case(&ctx, init_t, cond_t, ranges[i], ranges[j])) goto cleanup; if (verify_case(&ctx, init_t, cond_t, ranges[j], ranges[i])) goto cleanup; } } cleanup: cleanup_ctx(&ctx); } /* Go over thousands of test cases generated from initial seed values. * Given this take a long time, guard this begind SLOW_TESTS=1 envvar. If * envvar is not set, this test is skipped during test_progs testing. * * We split this up into smaller subsets based on initialization and * conditiona numeric domains to get an easy parallelization with test_progs' * -j argument. */ /* RANGE x CONST, U64 initial range */ void test_reg_bounds_gen_consts_u64_u64(void) { validate_gen_range_vs_const_64(U64, U64); } void test_reg_bounds_gen_consts_u64_s64(void) { validate_gen_range_vs_const_64(U64, S64); } void test_reg_bounds_gen_consts_u64_u32(void) { validate_gen_range_vs_const_64(U64, U32); } void test_reg_bounds_gen_consts_u64_s32(void) { validate_gen_range_vs_const_64(U64, S32); } /* RANGE x CONST, S64 initial range */ void test_reg_bounds_gen_consts_s64_u64(void) { validate_gen_range_vs_const_64(S64, U64); } void test_reg_bounds_gen_consts_s64_s64(void) { validate_gen_range_vs_const_64(S64, S64); } void test_reg_bounds_gen_consts_s64_u32(void) { validate_gen_range_vs_const_64(S64, U32); } void test_reg_bounds_gen_consts_s64_s32(void) { validate_gen_range_vs_const_64(S64, S32); } /* RANGE x CONST, U32 initial range */ void test_reg_bounds_gen_consts_u32_u64(void) { validate_gen_range_vs_const_32(U32, U64); } void test_reg_bounds_gen_consts_u32_s64(void) { validate_gen_range_vs_const_32(U32, S64); } void test_reg_bounds_gen_consts_u32_u32(void) { validate_gen_range_vs_const_32(U32, U32); } void test_reg_bounds_gen_consts_u32_s32(void) { validate_gen_range_vs_const_32(U32, S32); } /* RANGE x CONST, S32 initial range */ void test_reg_bounds_gen_consts_s32_u64(void) { validate_gen_range_vs_const_32(S32, U64); } void test_reg_bounds_gen_consts_s32_s64(void) { validate_gen_range_vs_const_32(S32, S64); } void test_reg_bounds_gen_consts_s32_u32(void) { validate_gen_range_vs_const_32(S32, U32); } void test_reg_bounds_gen_consts_s32_s32(void) { validate_gen_range_vs_const_32(S32, S32); } /* RANGE x RANGE, U64 initial range */ void test_reg_bounds_gen_ranges_u64_u64(void) { validate_gen_range_vs_range(U64, U64); } void test_reg_bounds_gen_ranges_u64_s64(void) { validate_gen_range_vs_range(U64, S64); } void test_reg_bounds_gen_ranges_u64_u32(void) { validate_gen_range_vs_range(U64, U32); } void test_reg_bounds_gen_ranges_u64_s32(void) { validate_gen_range_vs_range(U64, S32); } /* RANGE x RANGE, S64 initial range */ void test_reg_bounds_gen_ranges_s64_u64(void) { validate_gen_range_vs_range(S64, U64); } void test_reg_bounds_gen_ranges_s64_s64(void) { validate_gen_range_vs_range(S64, S64); } void test_reg_bounds_gen_ranges_s64_u32(void) { validate_gen_range_vs_range(S64, U32); } void test_reg_bounds_gen_ranges_s64_s32(void) { validate_gen_range_vs_range(S64, S32); } /* RANGE x RANGE, U32 initial range */ void test_reg_bounds_gen_ranges_u32_u64(void) { validate_gen_range_vs_range(U32, U64); } void test_reg_bounds_gen_ranges_u32_s64(void) { validate_gen_range_vs_range(U32, S64); } void test_reg_bounds_gen_ranges_u32_u32(void) { validate_gen_range_vs_range(U32, U32); } void test_reg_bounds_gen_ranges_u32_s32(void) { validate_gen_range_vs_range(U32, S32); } /* RANGE x RANGE, S32 initial range */ void test_reg_bounds_gen_ranges_s32_u64(void) { validate_gen_range_vs_range(S32, U64); } void test_reg_bounds_gen_ranges_s32_s64(void) { validate_gen_range_vs_range(S32, S64); } void test_reg_bounds_gen_ranges_s32_u32(void) { validate_gen_range_vs_range(S32, U32); } void test_reg_bounds_gen_ranges_s32_s32(void) { validate_gen_range_vs_range(S32, S32); } #define DEFAULT_RAND_CASE_CNT 100 #define RAND_21BIT_MASK ((1 << 22) - 1) static u64 rand_u64() { /* RAND_MAX is guaranteed to be at least 1<<15, but in practice it * seems to be 1<<31, so we need to call it thrice to get full u64; * we'll use rougly equal split: 22 + 21 + 21 bits */ return ((u64)random() << 42) | (((u64)random() & RAND_21BIT_MASK) << 21) | (random() & RAND_21BIT_MASK); } static u64 rand_const(enum num_t t) { return cast_t(t, rand_u64()); } static struct range rand_range(enum num_t t) { u64 x = rand_const(t), y = rand_const(t); return range(t, min_t(t, x, y), max_t(t, x, y)); } static void validate_rand_ranges(enum num_t init_t, enum num_t cond_t, bool const_range) { struct ctx ctx; struct range range1, range2; int err, i; u64 t; memset(&ctx, 0, sizeof(ctx)); err = parse_env_vars(&ctx); if (err) { ASSERT_OK(err, "parse_env_vars"); return; } if (ctx.rand_case_cnt == 0) ctx.rand_case_cnt = DEFAULT_RAND_CASE_CNT; if (ctx.rand_seed == 0) ctx.rand_seed = (unsigned)get_time_ns(); srandom(ctx.rand_seed); ctx.total_case_cnt = (last_op - first_op + 1) * (2 * ctx.rand_case_cnt); ctx.start_ns = get_time_ns(); snprintf(ctx.progress_ctx, sizeof(ctx.progress_ctx), "[RANDOM SEED %u] RANGE x %s, %s -> %s", ctx.rand_seed, const_range ? "CONST" : "RANGE", t_str(init_t), t_str(cond_t)); for (i = 0; i < ctx.rand_case_cnt; i++) { range1 = rand_range(init_t); if (const_range) { t = rand_const(init_t); range2 = range(init_t, t, t); } else { range2 = rand_range(init_t); } /* x */ if (verify_case_opt(&ctx, init_t, cond_t, range1, range2, false /* !is_subtest */)) goto cleanup; /* x */ if (verify_case_opt(&ctx, init_t, cond_t, range2, range1, false /* !is_subtest */)) goto cleanup; } cleanup: /* make sure we report random seed for reproducing */ ASSERT_TRUE(true, ctx.progress_ctx); cleanup_ctx(&ctx); } /* [RANDOM] RANGE x CONST, U64 initial range */ void test_reg_bounds_rand_consts_u64_u64(void) { validate_rand_ranges(U64, U64, true /* const */); } void test_reg_bounds_rand_consts_u64_s64(void) { validate_rand_ranges(U64, S64, true /* const */); } void test_reg_bounds_rand_consts_u64_u32(void) { validate_rand_ranges(U64, U32, true /* const */); } void test_reg_bounds_rand_consts_u64_s32(void) { validate_rand_ranges(U64, S32, true /* const */); } /* [RANDOM] RANGE x CONST, S64 initial range */ void test_reg_bounds_rand_consts_s64_u64(void) { validate_rand_ranges(S64, U64, true /* const */); } void test_reg_bounds_rand_consts_s64_s64(void) { validate_rand_ranges(S64, S64, true /* const */); } void test_reg_bounds_rand_consts_s64_u32(void) { validate_rand_ranges(S64, U32, true /* const */); } void test_reg_bounds_rand_consts_s64_s32(void) { validate_rand_ranges(S64, S32, true /* const */); } /* [RANDOM] RANGE x CONST, U32 initial range */ void test_reg_bounds_rand_consts_u32_u64(void) { validate_rand_ranges(U32, U64, true /* const */); } void test_reg_bounds_rand_consts_u32_s64(void) { validate_rand_ranges(U32, S64, true /* const */); } void test_reg_bounds_rand_consts_u32_u32(void) { validate_rand_ranges(U32, U32, true /* const */); } void test_reg_bounds_rand_consts_u32_s32(void) { validate_rand_ranges(U32, S32, true /* const */); } /* [RANDOM] RANGE x CONST, S32 initial range */ void test_reg_bounds_rand_consts_s32_u64(void) { validate_rand_ranges(S32, U64, true /* const */); } void test_reg_bounds_rand_consts_s32_s64(void) { validate_rand_ranges(S32, S64, true /* const */); } void test_reg_bounds_rand_consts_s32_u32(void) { validate_rand_ranges(S32, U32, true /* const */); } void test_reg_bounds_rand_consts_s32_s32(void) { validate_rand_ranges(S32, S32, true /* const */); } /* [RANDOM] RANGE x RANGE, U64 initial range */ void test_reg_bounds_rand_ranges_u64_u64(void) { validate_rand_ranges(U64, U64, false /* range */); } void test_reg_bounds_rand_ranges_u64_s64(void) { validate_rand_ranges(U64, S64, false /* range */); } void test_reg_bounds_rand_ranges_u64_u32(void) { validate_rand_ranges(U64, U32, false /* range */); } void test_reg_bounds_rand_ranges_u64_s32(void) { validate_rand_ranges(U64, S32, false /* range */); } /* [RANDOM] RANGE x RANGE, S64 initial range */ void test_reg_bounds_rand_ranges_s64_u64(void) { validate_rand_ranges(S64, U64, false /* range */); } void test_reg_bounds_rand_ranges_s64_s64(void) { validate_rand_ranges(S64, S64, false /* range */); } void test_reg_bounds_rand_ranges_s64_u32(void) { validate_rand_ranges(S64, U32, false /* range */); } void test_reg_bounds_rand_ranges_s64_s32(void) { validate_rand_ranges(S64, S32, false /* range */); } /* [RANDOM] RANGE x RANGE, U32 initial range */ void test_reg_bounds_rand_ranges_u32_u64(void) { validate_rand_ranges(U32, U64, false /* range */); } void test_reg_bounds_rand_ranges_u32_s64(void) { validate_rand_ranges(U32, S64, false /* range */); } void test_reg_bounds_rand_ranges_u32_u32(void) { validate_rand_ranges(U32, U32, false /* range */); } void test_reg_bounds_rand_ranges_u32_s32(void) { validate_rand_ranges(U32, S32, false /* range */); } /* [RANDOM] RANGE x RANGE, S32 initial range */ void test_reg_bounds_rand_ranges_s32_u64(void) { validate_rand_ranges(S32, U64, false /* range */); } void test_reg_bounds_rand_ranges_s32_s64(void) { validate_rand_ranges(S32, S64, false /* range */); } void test_reg_bounds_rand_ranges_s32_u32(void) { validate_rand_ranges(S32, U32, false /* range */); } void test_reg_bounds_rand_ranges_s32_s32(void) { validate_rand_ranges(S32, S32, false /* range */); } /* A set of hard-coded "interesting" cases to validate as part of normal * test_progs test runs */ static struct subtest_case crafted_cases[] = { {U64, U64, {0, 0xffffffff}, {0, 0}}, {U64, U64, {0, 0x80000000}, {0, 0}}, {U64, U64, {0x100000000ULL, 0x100000100ULL}, {0, 0}}, {U64, U64, {0x100000000ULL, 0x180000000ULL}, {0, 0}}, {U64, U64, {0x100000000ULL, 0x1ffffff00ULL}, {0, 0}}, {U64, U64, {0x100000000ULL, 0x1ffffff01ULL}, {0, 0}}, {U64, U64, {0x100000000ULL, 0x1fffffffeULL}, {0, 0}}, {U64, U64, {0x100000001ULL, 0x1000000ffULL}, {0, 0}}, /* single point overlap, interesting BPF_EQ and BPF_NE interactions */ {U64, U64, {0, 1}, {1, 0x80000000}}, {U64, S64, {0, 1}, {1, 0x80000000}}, {U64, U32, {0, 1}, {1, 0x80000000}}, {U64, S32, {0, 1}, {1, 0x80000000}}, {U64, S64, {0, 0xffffffff00000000ULL}, {0, 0}}, {U64, S64, {0x7fffffffffffffffULL, 0xffffffff00000000ULL}, {0, 0}}, {U64, S64, {0x7fffffff00000001ULL, 0xffffffff00000000ULL}, {0, 0}}, {U64, S64, {0, 0xffffffffULL}, {1, 1}}, {U64, S64, {0, 0xffffffffULL}, {0x7fffffff, 0x7fffffff}}, {U64, U32, {0, 0x100000000}, {0, 0}}, {U64, U32, {0xfffffffe, 0x100000000}, {0x80000000, 0x80000000}}, {U64, S32, {0, 0xffffffff00000000ULL}, {0, 0}}, /* these are tricky cases where lower 32 bits allow to tighten 64 * bit boundaries based on tightened lower 32 bit boundaries */ {U64, S32, {0, 0x0ffffffffULL}, {0, 0}}, {U64, S32, {0, 0x100000000ULL}, {0, 0}}, {U64, S32, {0, 0x100000001ULL}, {0, 0}}, {U64, S32, {0, 0x180000000ULL}, {0, 0}}, {U64, S32, {0, 0x17fffffffULL}, {0, 0}}, {U64, S32, {0, 0x180000001ULL}, {0, 0}}, /* verifier knows about [-1, 0] range for s32 for this case already */ {S64, S64, {0xffffffffffffffffULL, 0}, {0xffffffff00000000ULL, 0xffffffff00000000ULL}}, /* but didn't know about these cases initially */ {U64, U64, {0xffffffff, 0x100000000ULL}, {0, 0}}, /* s32: [-1, 0] */ {U64, U64, {0xffffffff, 0x100000001ULL}, {0, 0}}, /* s32: [-1, 1] */ /* longer convergence case: learning from u64 -> s64 -> u64 -> u32, * arriving at u32: [1, U32_MAX] (instead of more pessimistic [0, U32_MAX]) */ {S64, U64, {0xffffffff00000001ULL, 0}, {0xffffffff00000000ULL, 0xffffffff00000000ULL}}, {U32, U32, {1, U32_MAX}, {0, 0}}, {U32, S32, {0, U32_MAX}, {U32_MAX, U32_MAX}}, {S32, U64, {(u32)S32_MIN, (u32)S32_MIN}, {(u32)(s32)-255, 0}}, {S32, S64, {(u32)S32_MIN, (u32)(s32)-255}, {(u32)(s32)-2, 0}}, {S32, S64, {0, 1}, {(u32)S32_MIN, (u32)S32_MIN}}, {S32, U32, {(u32)S32_MIN, (u32)S32_MIN}, {(u32)S32_MIN, (u32)S32_MIN}}, /* edge overlap testings for BPF_NE */ {U64, U64, {0, U64_MAX}, {U64_MAX, U64_MAX}}, {U64, U64, {0, U64_MAX}, {0, 0}}, {S64, U64, {S64_MIN, 0}, {S64_MIN, S64_MIN}}, {S64, U64, {S64_MIN, 0}, {0, 0}}, {S64, U64, {S64_MIN, S64_MAX}, {S64_MAX, S64_MAX}}, {U32, U32, {0, U32_MAX}, {0, 0}}, {U32, U32, {0, U32_MAX}, {U32_MAX, U32_MAX}}, {S32, U32, {(u32)S32_MIN, 0}, {0, 0}}, {S32, U32, {(u32)S32_MIN, 0}, {(u32)S32_MIN, (u32)S32_MIN}}, {S32, U32, {(u32)S32_MIN, S32_MAX}, {S32_MAX, S32_MAX}}, }; /* Go over crafted hard-coded cases. This is fast, so we do it as part of * normal test_progs run. */ void test_reg_bounds_crafted(void) { struct ctx ctx; int i; memset(&ctx, 0, sizeof(ctx)); for (i = 0; i < ARRAY_SIZE(crafted_cases); i++) { struct subtest_case *c = &crafted_cases[i]; verify_case(&ctx, c->init_t, c->cond_t, c->x, c->y); verify_case(&ctx, c->init_t, c->cond_t, c->y, c->x); } cleanup_ctx(&ctx); }