// SPDX-License-Identifier: GPL-2.0-or-later /* * Test for s390x CPU resets * * Copyright (C) 2020, IBM */ #include #include #include #include #include "test_util.h" #include "kvm_util.h" #include "kselftest.h" #define LOCAL_IRQS 32 #define ARBITRARY_NON_ZERO_VCPU_ID 3 struct kvm_s390_irq buf[ARBITRARY_NON_ZERO_VCPU_ID + LOCAL_IRQS]; static uint8_t regs_null[512]; static void guest_code_initial(void) { /* set several CRs to "safe" value */ unsigned long cr2_59 = 0x10; /* enable guarded storage */ unsigned long cr8_63 = 0x1; /* monitor mask = 1 */ unsigned long cr10 = 1; /* PER START */ unsigned long cr11 = -1; /* PER END */ /* Dirty registers */ asm volatile ( " lghi 2,0x11\n" /* Round toward 0 */ " sfpc 2\n" /* set fpc to !=0 */ " lctlg 2,2,%0\n" " lctlg 8,8,%1\n" " lctlg 10,10,%2\n" " lctlg 11,11,%3\n" /* now clobber some general purpose regs */ " llihh 0,0xffff\n" " llihl 1,0x5555\n" " llilh 2,0xaaaa\n" " llill 3,0x0000\n" /* now clobber a floating point reg */ " lghi 4,0x1\n" " cdgbr 0,4\n" /* now clobber an access reg */ " sar 9,4\n" /* We embed diag 501 here to control register content */ " diag 0,0,0x501\n" : : "m" (cr2_59), "m" (cr8_63), "m" (cr10), "m" (cr11) /* no clobber list as this should not return */ ); } static void test_one_reg(struct kvm_vcpu *vcpu, uint64_t id, uint64_t value) { uint64_t eval_reg; vcpu_get_reg(vcpu, id, &eval_reg); TEST_ASSERT(eval_reg == value, "value == 0x%lx", value); } static void assert_noirq(struct kvm_vcpu *vcpu) { struct kvm_s390_irq_state irq_state; int irqs; irq_state.len = sizeof(buf); irq_state.buf = (unsigned long)buf; irqs = __vcpu_ioctl(vcpu, KVM_S390_GET_IRQ_STATE, &irq_state); /* * irqs contains the number of retrieved interrupts. Any interrupt * (notably, the emergency call interrupt we have injected) should * be cleared by the resets, so this should be 0. */ TEST_ASSERT(irqs >= 0, "Could not fetch IRQs: errno %d", errno); TEST_ASSERT(!irqs, "IRQ pending"); } static void assert_clear(struct kvm_vcpu *vcpu) { struct kvm_sync_regs *sync_regs = &vcpu->run->s.regs; struct kvm_sregs sregs; struct kvm_regs regs; struct kvm_fpu fpu; vcpu_regs_get(vcpu, ®s); TEST_ASSERT(!memcmp(®s.gprs, regs_null, sizeof(regs.gprs)), "grs == 0"); vcpu_sregs_get(vcpu, &sregs); TEST_ASSERT(!memcmp(&sregs.acrs, regs_null, sizeof(sregs.acrs)), "acrs == 0"); vcpu_fpu_get(vcpu, &fpu); TEST_ASSERT(!memcmp(&fpu.fprs, regs_null, sizeof(fpu.fprs)), "fprs == 0"); /* sync regs */ TEST_ASSERT(!memcmp(sync_regs->gprs, regs_null, sizeof(sync_regs->gprs)), "gprs0-15 == 0 (sync_regs)"); TEST_ASSERT(!memcmp(sync_regs->acrs, regs_null, sizeof(sync_regs->acrs)), "acrs0-15 == 0 (sync_regs)"); TEST_ASSERT(!memcmp(sync_regs->vrs, regs_null, sizeof(sync_regs->vrs)), "vrs0-15 == 0 (sync_regs)"); } static void assert_initial_noclear(struct kvm_vcpu *vcpu) { struct kvm_sync_regs *sync_regs = &vcpu->run->s.regs; TEST_ASSERT(sync_regs->gprs[0] == 0xffff000000000000UL, "gpr0 == 0xffff000000000000 (sync_regs)"); TEST_ASSERT(sync_regs->gprs[1] == 0x0000555500000000UL, "gpr1 == 0x0000555500000000 (sync_regs)"); TEST_ASSERT(sync_regs->gprs[2] == 0x00000000aaaa0000UL, "gpr2 == 0x00000000aaaa0000 (sync_regs)"); TEST_ASSERT(sync_regs->gprs[3] == 0x0000000000000000UL, "gpr3 == 0x0000000000000000 (sync_regs)"); TEST_ASSERT(sync_regs->fprs[0] == 0x3ff0000000000000UL, "fpr0 == 0f1 (sync_regs)"); TEST_ASSERT(sync_regs->acrs[9] == 1, "ar9 == 1 (sync_regs)"); } static void assert_initial(struct kvm_vcpu *vcpu) { struct kvm_sync_regs *sync_regs = &vcpu->run->s.regs; struct kvm_sregs sregs; struct kvm_fpu fpu; /* KVM_GET_SREGS */ vcpu_sregs_get(vcpu, &sregs); TEST_ASSERT(sregs.crs[0] == 0xE0UL, "cr0 == 0xE0 (KVM_GET_SREGS)"); TEST_ASSERT(sregs.crs[14] == 0xC2000000UL, "cr14 == 0xC2000000 (KVM_GET_SREGS)"); TEST_ASSERT(!memcmp(&sregs.crs[1], regs_null, sizeof(sregs.crs[1]) * 12), "cr1-13 == 0 (KVM_GET_SREGS)"); TEST_ASSERT(sregs.crs[15] == 0, "cr15 == 0 (KVM_GET_SREGS)"); /* sync regs */ TEST_ASSERT(sync_regs->crs[0] == 0xE0UL, "cr0 == 0xE0 (sync_regs)"); TEST_ASSERT(sync_regs->crs[14] == 0xC2000000UL, "cr14 == 0xC2000000 (sync_regs)"); TEST_ASSERT(!memcmp(&sync_regs->crs[1], regs_null, 8 * 12), "cr1-13 == 0 (sync_regs)"); TEST_ASSERT(sync_regs->crs[15] == 0, "cr15 == 0 (sync_regs)"); TEST_ASSERT(sync_regs->fpc == 0, "fpc == 0 (sync_regs)"); TEST_ASSERT(sync_regs->todpr == 0, "todpr == 0 (sync_regs)"); TEST_ASSERT(sync_regs->cputm == 0, "cputm == 0 (sync_regs)"); TEST_ASSERT(sync_regs->ckc == 0, "ckc == 0 (sync_regs)"); TEST_ASSERT(sync_regs->pp == 0, "pp == 0 (sync_regs)"); TEST_ASSERT(sync_regs->gbea == 1, "gbea == 1 (sync_regs)"); /* kvm_run */ TEST_ASSERT(vcpu->run->psw_addr == 0, "psw_addr == 0 (kvm_run)"); TEST_ASSERT(vcpu->run->psw_mask == 0, "psw_mask == 0 (kvm_run)"); vcpu_fpu_get(vcpu, &fpu); TEST_ASSERT(!fpu.fpc, "fpc == 0"); test_one_reg(vcpu, KVM_REG_S390_GBEA, 1); test_one_reg(vcpu, KVM_REG_S390_PP, 0); test_one_reg(vcpu, KVM_REG_S390_TODPR, 0); test_one_reg(vcpu, KVM_REG_S390_CPU_TIMER, 0); test_one_reg(vcpu, KVM_REG_S390_CLOCK_COMP, 0); } static void assert_normal_noclear(struct kvm_vcpu *vcpu) { struct kvm_sync_regs *sync_regs = &vcpu->run->s.regs; TEST_ASSERT(sync_regs->crs[2] == 0x10, "cr2 == 10 (sync_regs)"); TEST_ASSERT(sync_regs->crs[8] == 1, "cr10 == 1 (sync_regs)"); TEST_ASSERT(sync_regs->crs[10] == 1, "cr10 == 1 (sync_regs)"); TEST_ASSERT(sync_regs->crs[11] == -1, "cr11 == -1 (sync_regs)"); } static void assert_normal(struct kvm_vcpu *vcpu) { test_one_reg(vcpu, KVM_REG_S390_PFTOKEN, KVM_S390_PFAULT_TOKEN_INVALID); TEST_ASSERT(vcpu->run->s.regs.pft == KVM_S390_PFAULT_TOKEN_INVALID, "pft == 0xff..... (sync_regs)"); assert_noirq(vcpu); } static void inject_irq(struct kvm_vcpu *vcpu) { struct kvm_s390_irq_state irq_state; struct kvm_s390_irq *irq = &buf[0]; int irqs; /* Inject IRQ */ irq_state.len = sizeof(struct kvm_s390_irq); irq_state.buf = (unsigned long)buf; irq->type = KVM_S390_INT_EMERGENCY; irq->u.emerg.code = vcpu->id; irqs = __vcpu_ioctl(vcpu, KVM_S390_SET_IRQ_STATE, &irq_state); TEST_ASSERT(irqs >= 0, "Error injecting EMERGENCY IRQ errno %d", errno); } static struct kvm_vm *create_vm(struct kvm_vcpu **vcpu) { struct kvm_vm *vm; vm = vm_create(1); *vcpu = vm_vcpu_add(vm, ARBITRARY_NON_ZERO_VCPU_ID, guest_code_initial); return vm; } static void test_normal(void) { struct kvm_vcpu *vcpu; struct kvm_vm *vm; ksft_print_msg("Testing normal reset\n"); vm = create_vm(&vcpu); vcpu_run(vcpu); inject_irq(vcpu); vcpu_ioctl(vcpu, KVM_S390_NORMAL_RESET, NULL); /* must clears */ assert_normal(vcpu); /* must not clears */ assert_normal_noclear(vcpu); assert_initial_noclear(vcpu); kvm_vm_free(vm); } static void test_initial(void) { struct kvm_vcpu *vcpu; struct kvm_vm *vm; ksft_print_msg("Testing initial reset\n"); vm = create_vm(&vcpu); vcpu_run(vcpu); inject_irq(vcpu); vcpu_ioctl(vcpu, KVM_S390_INITIAL_RESET, NULL); /* must clears */ assert_normal(vcpu); assert_initial(vcpu); /* must not clears */ assert_initial_noclear(vcpu); kvm_vm_free(vm); } static void test_clear(void) { struct kvm_vcpu *vcpu; struct kvm_vm *vm; ksft_print_msg("Testing clear reset\n"); vm = create_vm(&vcpu); vcpu_run(vcpu); inject_irq(vcpu); vcpu_ioctl(vcpu, KVM_S390_CLEAR_RESET, NULL); /* must clears */ assert_normal(vcpu); assert_initial(vcpu); assert_clear(vcpu); kvm_vm_free(vm); } struct testdef { const char *name; void (*test)(void); bool needs_cap; } testlist[] = { { "initial", test_initial, false }, { "normal", test_normal, true }, { "clear", test_clear, true }, }; int main(int argc, char *argv[]) { bool has_s390_vcpu_resets = kvm_check_cap(KVM_CAP_S390_VCPU_RESETS); int idx; ksft_print_header(); ksft_set_plan(ARRAY_SIZE(testlist)); for (idx = 0; idx < ARRAY_SIZE(testlist); idx++) { if (!testlist[idx].needs_cap || has_s390_vcpu_resets) { testlist[idx].test(); ksft_test_result_pass("%s\n", testlist[idx].name); } else { ksft_test_result_skip("%s - no VCPU_RESETS capability\n", testlist[idx].name); } } ksft_finished(); /* Print results and exit() accordingly */ }