#define _GNU_SOURCE #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "linux/magic.h" #include "vm_util.h" #ifndef MADV_PAGEOUT #define MADV_PAGEOUT 21 #endif #ifndef MADV_POPULATE_READ #define MADV_POPULATE_READ 22 #endif #ifndef MADV_COLLAPSE #define MADV_COLLAPSE 25 #endif #define BASE_ADDR ((void *)(1UL << 30)) static unsigned long hpage_pmd_size; static unsigned long page_size; static int hpage_pmd_nr; #define THP_SYSFS "/sys/kernel/mm/transparent_hugepage/" #define PID_SMAPS "/proc/self/smaps" #define TEST_FILE "collapse_test_file" #define MAX_LINE_LENGTH 500 enum vma_type { VMA_ANON, VMA_FILE, VMA_SHMEM, }; struct mem_ops { void *(*setup_area)(int nr_hpages); void (*cleanup_area)(void *p, unsigned long size); void (*fault)(void *p, unsigned long start, unsigned long end); bool (*check_huge)(void *addr, int nr_hpages); const char *name; }; static struct mem_ops *file_ops; static struct mem_ops *anon_ops; static struct mem_ops *shmem_ops; struct collapse_context { void (*collapse)(const char *msg, char *p, int nr_hpages, struct mem_ops *ops, bool expect); bool enforce_pte_scan_limits; const char *name; }; static struct collapse_context *khugepaged_context; static struct collapse_context *madvise_context; struct file_info { const char *dir; char path[PATH_MAX]; enum vma_type type; int fd; char dev_queue_read_ahead_path[PATH_MAX]; }; static struct file_info finfo; enum thp_enabled { THP_ALWAYS, THP_MADVISE, THP_NEVER, }; static const char *thp_enabled_strings[] = { "always", "madvise", "never", NULL }; enum thp_defrag { THP_DEFRAG_ALWAYS, THP_DEFRAG_DEFER, THP_DEFRAG_DEFER_MADVISE, THP_DEFRAG_MADVISE, THP_DEFRAG_NEVER, }; static const char *thp_defrag_strings[] = { "always", "defer", "defer+madvise", "madvise", "never", NULL }; enum shmem_enabled { SHMEM_ALWAYS, SHMEM_WITHIN_SIZE, SHMEM_ADVISE, SHMEM_NEVER, SHMEM_DENY, SHMEM_FORCE, }; static const char *shmem_enabled_strings[] = { "always", "within_size", "advise", "never", "deny", "force", NULL }; struct khugepaged_settings { bool defrag; unsigned int alloc_sleep_millisecs; unsigned int scan_sleep_millisecs; unsigned int max_ptes_none; unsigned int max_ptes_swap; unsigned int max_ptes_shared; unsigned long pages_to_scan; }; struct settings { enum thp_enabled thp_enabled; enum thp_defrag thp_defrag; enum shmem_enabled shmem_enabled; bool use_zero_page; struct khugepaged_settings khugepaged; unsigned long read_ahead_kb; }; static struct settings saved_settings; static bool skip_settings_restore; static int exit_status; static void success(const char *msg) { printf(" \e[32m%s\e[0m\n", msg); } static void fail(const char *msg) { printf(" \e[31m%s\e[0m\n", msg); exit_status++; } static void skip(const char *msg) { printf(" \e[33m%s\e[0m\n", msg); } static int read_file(const char *path, char *buf, size_t buflen) { int fd; ssize_t numread; fd = open(path, O_RDONLY); if (fd == -1) return 0; numread = read(fd, buf, buflen - 1); if (numread < 1) { close(fd); return 0; } buf[numread] = '\0'; close(fd); return (unsigned int) numread; } static int write_file(const char *path, const char *buf, size_t buflen) { int fd; ssize_t numwritten; fd = open(path, O_WRONLY); if (fd == -1) { printf("open(%s)\n", path); exit(EXIT_FAILURE); return 0; } numwritten = write(fd, buf, buflen - 1); close(fd); if (numwritten < 1) { printf("write(%s)\n", buf); exit(EXIT_FAILURE); return 0; } return (unsigned int) numwritten; } static int read_string(const char *name, const char *strings[]) { char path[PATH_MAX]; char buf[256]; char *c; int ret; ret = snprintf(path, PATH_MAX, THP_SYSFS "%s", name); if (ret >= PATH_MAX) { printf("%s: Pathname is too long\n", __func__); exit(EXIT_FAILURE); } if (!read_file(path, buf, sizeof(buf))) { perror(path); exit(EXIT_FAILURE); } c = strchr(buf, '['); if (!c) { printf("%s: Parse failure\n", __func__); exit(EXIT_FAILURE); } c++; memmove(buf, c, sizeof(buf) - (c - buf)); c = strchr(buf, ']'); if (!c) { printf("%s: Parse failure\n", __func__); exit(EXIT_FAILURE); } *c = '\0'; ret = 0; while (strings[ret]) { if (!strcmp(strings[ret], buf)) return ret; ret++; } printf("Failed to parse %s\n", name); exit(EXIT_FAILURE); } static void write_string(const char *name, const char *val) { char path[PATH_MAX]; int ret; ret = snprintf(path, PATH_MAX, THP_SYSFS "%s", name); if (ret >= PATH_MAX) { printf("%s: Pathname is too long\n", __func__); exit(EXIT_FAILURE); } if (!write_file(path, val, strlen(val) + 1)) { perror(path); exit(EXIT_FAILURE); } } static const unsigned long _read_num(const char *path) { char buf[21]; if (read_file(path, buf, sizeof(buf)) < 0) { perror("read_file(read_num)"); exit(EXIT_FAILURE); } return strtoul(buf, NULL, 10); } static const unsigned long read_num(const char *name) { char path[PATH_MAX]; int ret; ret = snprintf(path, PATH_MAX, THP_SYSFS "%s", name); if (ret >= PATH_MAX) { printf("%s: Pathname is too long\n", __func__); exit(EXIT_FAILURE); } return _read_num(path); } static void _write_num(const char *path, unsigned long num) { char buf[21]; sprintf(buf, "%ld", num); if (!write_file(path, buf, strlen(buf) + 1)) { perror(path); exit(EXIT_FAILURE); } } static void write_num(const char *name, unsigned long num) { char path[PATH_MAX]; int ret; ret = snprintf(path, PATH_MAX, THP_SYSFS "%s", name); if (ret >= PATH_MAX) { printf("%s: Pathname is too long\n", __func__); exit(EXIT_FAILURE); } _write_num(path, num); } static void write_settings(struct settings *settings) { struct khugepaged_settings *khugepaged = &settings->khugepaged; write_string("enabled", thp_enabled_strings[settings->thp_enabled]); write_string("defrag", thp_defrag_strings[settings->thp_defrag]); write_string("shmem_enabled", shmem_enabled_strings[settings->shmem_enabled]); write_num("use_zero_page", settings->use_zero_page); write_num("khugepaged/defrag", khugepaged->defrag); write_num("khugepaged/alloc_sleep_millisecs", khugepaged->alloc_sleep_millisecs); write_num("khugepaged/scan_sleep_millisecs", khugepaged->scan_sleep_millisecs); write_num("khugepaged/max_ptes_none", khugepaged->max_ptes_none); write_num("khugepaged/max_ptes_swap", khugepaged->max_ptes_swap); write_num("khugepaged/max_ptes_shared", khugepaged->max_ptes_shared); write_num("khugepaged/pages_to_scan", khugepaged->pages_to_scan); if (file_ops && finfo.type == VMA_FILE) _write_num(finfo.dev_queue_read_ahead_path, settings->read_ahead_kb); } #define MAX_SETTINGS_DEPTH 4 static struct settings settings_stack[MAX_SETTINGS_DEPTH]; static int settings_index; static struct settings *current_settings(void) { if (!settings_index) { printf("Fail: No settings set"); exit(EXIT_FAILURE); } return settings_stack + settings_index - 1; } static void push_settings(struct settings *settings) { if (settings_index >= MAX_SETTINGS_DEPTH) { printf("Fail: Settings stack exceeded"); exit(EXIT_FAILURE); } settings_stack[settings_index++] = *settings; write_settings(current_settings()); } static void pop_settings(void) { if (settings_index <= 0) { printf("Fail: Settings stack empty"); exit(EXIT_FAILURE); } --settings_index; write_settings(current_settings()); } static void restore_settings(int sig) { if (skip_settings_restore) goto out; printf("Restore THP and khugepaged settings..."); write_settings(&saved_settings); success("OK"); if (sig) exit(EXIT_FAILURE); out: exit(exit_status); } static void save_settings(void) { printf("Save THP and khugepaged settings..."); saved_settings = (struct settings) { .thp_enabled = read_string("enabled", thp_enabled_strings), .thp_defrag = read_string("defrag", thp_defrag_strings), .shmem_enabled = read_string("shmem_enabled", shmem_enabled_strings), .use_zero_page = read_num("use_zero_page"), }; saved_settings.khugepaged = (struct khugepaged_settings) { .defrag = read_num("khugepaged/defrag"), .alloc_sleep_millisecs = read_num("khugepaged/alloc_sleep_millisecs"), .scan_sleep_millisecs = read_num("khugepaged/scan_sleep_millisecs"), .max_ptes_none = read_num("khugepaged/max_ptes_none"), .max_ptes_swap = read_num("khugepaged/max_ptes_swap"), .max_ptes_shared = read_num("khugepaged/max_ptes_shared"), .pages_to_scan = read_num("khugepaged/pages_to_scan"), }; if (file_ops && finfo.type == VMA_FILE) saved_settings.read_ahead_kb = _read_num(finfo.dev_queue_read_ahead_path); success("OK"); signal(SIGTERM, restore_settings); signal(SIGINT, restore_settings); signal(SIGHUP, restore_settings); signal(SIGQUIT, restore_settings); } static void get_finfo(const char *dir) { struct stat path_stat; struct statfs fs; char buf[1 << 10]; char path[PATH_MAX]; char *str, *end; finfo.dir = dir; stat(finfo.dir, &path_stat); if (!S_ISDIR(path_stat.st_mode)) { printf("%s: Not a directory (%s)\n", __func__, finfo.dir); exit(EXIT_FAILURE); } if (snprintf(finfo.path, sizeof(finfo.path), "%s/" TEST_FILE, finfo.dir) >= sizeof(finfo.path)) { printf("%s: Pathname is too long\n", __func__); exit(EXIT_FAILURE); } if (statfs(finfo.dir, &fs)) { perror("statfs()"); exit(EXIT_FAILURE); } finfo.type = fs.f_type == TMPFS_MAGIC ? VMA_SHMEM : VMA_FILE; if (finfo.type == VMA_SHMEM) return; /* Find owning device's queue/read_ahead_kb control */ if (snprintf(path, sizeof(path), "/sys/dev/block/%d:%d/uevent", major(path_stat.st_dev), minor(path_stat.st_dev)) >= sizeof(path)) { printf("%s: Pathname is too long\n", __func__); exit(EXIT_FAILURE); } if (read_file(path, buf, sizeof(buf)) < 0) { perror("read_file(read_num)"); exit(EXIT_FAILURE); } if (strstr(buf, "DEVTYPE=disk")) { /* Found it */ if (snprintf(finfo.dev_queue_read_ahead_path, sizeof(finfo.dev_queue_read_ahead_path), "/sys/dev/block/%d:%d/queue/read_ahead_kb", major(path_stat.st_dev), minor(path_stat.st_dev)) >= sizeof(finfo.dev_queue_read_ahead_path)) { printf("%s: Pathname is too long\n", __func__); exit(EXIT_FAILURE); } return; } if (!strstr(buf, "DEVTYPE=partition")) { printf("%s: Unknown device type: %s\n", __func__, path); exit(EXIT_FAILURE); } /* * Partition of block device - need to find actual device. * Using naming convention that devnameN is partition of * device devname. */ str = strstr(buf, "DEVNAME="); if (!str) { printf("%s: Could not read: %s", __func__, path); exit(EXIT_FAILURE); } str += 8; end = str; while (*end) { if (isdigit(*end)) { *end = '\0'; if (snprintf(finfo.dev_queue_read_ahead_path, sizeof(finfo.dev_queue_read_ahead_path), "/sys/block/%s/queue/read_ahead_kb", str) >= sizeof(finfo.dev_queue_read_ahead_path)) { printf("%s: Pathname is too long\n", __func__); exit(EXIT_FAILURE); } return; } ++end; } printf("%s: Could not read: %s\n", __func__, path); exit(EXIT_FAILURE); } static bool check_swap(void *addr, unsigned long size) { bool swap = false; int ret; FILE *fp; char buffer[MAX_LINE_LENGTH]; char addr_pattern[MAX_LINE_LENGTH]; ret = snprintf(addr_pattern, MAX_LINE_LENGTH, "%08lx-", (unsigned long) addr); if (ret >= MAX_LINE_LENGTH) { printf("%s: Pattern is too long\n", __func__); exit(EXIT_FAILURE); } fp = fopen(PID_SMAPS, "r"); if (!fp) { printf("%s: Failed to open file %s\n", __func__, PID_SMAPS); exit(EXIT_FAILURE); } if (!check_for_pattern(fp, addr_pattern, buffer, sizeof(buffer))) goto err_out; ret = snprintf(addr_pattern, MAX_LINE_LENGTH, "Swap:%19ld kB", size >> 10); if (ret >= MAX_LINE_LENGTH) { printf("%s: Pattern is too long\n", __func__); exit(EXIT_FAILURE); } /* * Fetch the Swap: in the same block and check whether it got * the expected number of hugeepages next. */ if (!check_for_pattern(fp, "Swap:", buffer, sizeof(buffer))) goto err_out; if (strncmp(buffer, addr_pattern, strlen(addr_pattern))) goto err_out; swap = true; err_out: fclose(fp); return swap; } static void *alloc_mapping(int nr) { void *p; p = mmap(BASE_ADDR, nr * hpage_pmd_size, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0); if (p != BASE_ADDR) { printf("Failed to allocate VMA at %p\n", BASE_ADDR); exit(EXIT_FAILURE); } return p; } static void fill_memory(int *p, unsigned long start, unsigned long end) { int i; for (i = start / page_size; i < end / page_size; i++) p[i * page_size / sizeof(*p)] = i + 0xdead0000; } /* * MADV_COLLAPSE is a best-effort request and may fail if an internal * resource is temporarily unavailable, in which case it will set errno to * EAGAIN. In such a case, immediately reattempt the operation one more * time. */ static int madvise_collapse_retry(void *p, unsigned long size) { bool retry = true; int ret; retry: ret = madvise(p, size, MADV_COLLAPSE); if (ret && errno == EAGAIN && retry) { retry = false; goto retry; } return ret; } /* * Returns pmd-mapped hugepage in VMA marked VM_HUGEPAGE, filled with * validate_memory()'able contents. */ static void *alloc_hpage(struct mem_ops *ops) { void *p = ops->setup_area(1); ops->fault(p, 0, hpage_pmd_size); /* * VMA should be neither VM_HUGEPAGE nor VM_NOHUGEPAGE. * The latter is ineligible for collapse by MADV_COLLAPSE * while the former might cause MADV_COLLAPSE to race with * khugepaged on low-load system (like a test machine), which * would cause MADV_COLLAPSE to fail with EAGAIN. */ printf("Allocate huge page..."); if (madvise_collapse_retry(p, hpage_pmd_size)) { perror("madvise(MADV_COLLAPSE)"); exit(EXIT_FAILURE); } if (!ops->check_huge(p, 1)) { perror("madvise(MADV_COLLAPSE)"); exit(EXIT_FAILURE); } if (madvise(p, hpage_pmd_size, MADV_HUGEPAGE)) { perror("madvise(MADV_HUGEPAGE)"); exit(EXIT_FAILURE); } success("OK"); return p; } static void validate_memory(int *p, unsigned long start, unsigned long end) { int i; for (i = start / page_size; i < end / page_size; i++) { if (p[i * page_size / sizeof(*p)] != i + 0xdead0000) { printf("Page %d is corrupted: %#x\n", i, p[i * page_size / sizeof(*p)]); exit(EXIT_FAILURE); } } } static void *anon_setup_area(int nr_hpages) { return alloc_mapping(nr_hpages); } static void anon_cleanup_area(void *p, unsigned long size) { munmap(p, size); } static void anon_fault(void *p, unsigned long start, unsigned long end) { fill_memory(p, start, end); } static bool anon_check_huge(void *addr, int nr_hpages) { return check_huge_anon(addr, nr_hpages, hpage_pmd_size); } static void *file_setup_area(int nr_hpages) { int fd; void *p; unsigned long size; unlink(finfo.path); /* Cleanup from previous failed tests */ printf("Creating %s for collapse%s...", finfo.path, finfo.type == VMA_SHMEM ? " (tmpfs)" : ""); fd = open(finfo.path, O_DSYNC | O_CREAT | O_RDWR | O_TRUNC | O_EXCL, 777); if (fd < 0) { perror("open()"); exit(EXIT_FAILURE); } size = nr_hpages * hpage_pmd_size; p = alloc_mapping(nr_hpages); fill_memory(p, 0, size); write(fd, p, size); close(fd); munmap(p, size); success("OK"); printf("Opening %s read only for collapse...", finfo.path); finfo.fd = open(finfo.path, O_RDONLY, 777); if (finfo.fd < 0) { perror("open()"); exit(EXIT_FAILURE); } p = mmap(BASE_ADDR, size, PROT_READ | PROT_EXEC, MAP_PRIVATE, finfo.fd, 0); if (p == MAP_FAILED || p != BASE_ADDR) { perror("mmap()"); exit(EXIT_FAILURE); } /* Drop page cache */ write_file("/proc/sys/vm/drop_caches", "3", 2); success("OK"); return p; } static void file_cleanup_area(void *p, unsigned long size) { munmap(p, size); close(finfo.fd); unlink(finfo.path); } static void file_fault(void *p, unsigned long start, unsigned long end) { if (madvise(((char *)p) + start, end - start, MADV_POPULATE_READ)) { perror("madvise(MADV_POPULATE_READ"); exit(EXIT_FAILURE); } } static bool file_check_huge(void *addr, int nr_hpages) { switch (finfo.type) { case VMA_FILE: return check_huge_file(addr, nr_hpages, hpage_pmd_size); case VMA_SHMEM: return check_huge_shmem(addr, nr_hpages, hpage_pmd_size); default: exit(EXIT_FAILURE); return false; } } static void *shmem_setup_area(int nr_hpages) { void *p; unsigned long size = nr_hpages * hpage_pmd_size; finfo.fd = memfd_create("khugepaged-selftest-collapse-shmem", 0); if (finfo.fd < 0) { perror("memfd_create()"); exit(EXIT_FAILURE); } if (ftruncate(finfo.fd, size)) { perror("ftruncate()"); exit(EXIT_FAILURE); } p = mmap(BASE_ADDR, size, PROT_READ | PROT_WRITE, MAP_SHARED, finfo.fd, 0); if (p != BASE_ADDR) { perror("mmap()"); exit(EXIT_FAILURE); } return p; } static void shmem_cleanup_area(void *p, unsigned long size) { munmap(p, size); close(finfo.fd); } static bool shmem_check_huge(void *addr, int nr_hpages) { return check_huge_shmem(addr, nr_hpages, hpage_pmd_size); } static struct mem_ops __anon_ops = { .setup_area = &anon_setup_area, .cleanup_area = &anon_cleanup_area, .fault = &anon_fault, .check_huge = &anon_check_huge, .name = "anon", }; static struct mem_ops __file_ops = { .setup_area = &file_setup_area, .cleanup_area = &file_cleanup_area, .fault = &file_fault, .check_huge = &file_check_huge, .name = "file", }; static struct mem_ops __shmem_ops = { .setup_area = &shmem_setup_area, .cleanup_area = &shmem_cleanup_area, .fault = &anon_fault, .check_huge = &shmem_check_huge, .name = "shmem", }; static void __madvise_collapse(const char *msg, char *p, int nr_hpages, struct mem_ops *ops, bool expect) { int ret; struct settings settings = *current_settings(); printf("%s...", msg); /* * Prevent khugepaged interference and tests that MADV_COLLAPSE * ignores /sys/kernel/mm/transparent_hugepage/enabled */ settings.thp_enabled = THP_NEVER; settings.shmem_enabled = SHMEM_NEVER; push_settings(&settings); /* Clear VM_NOHUGEPAGE */ madvise(p, nr_hpages * hpage_pmd_size, MADV_HUGEPAGE); ret = madvise_collapse_retry(p, nr_hpages * hpage_pmd_size); if (((bool)ret) == expect) fail("Fail: Bad return value"); else if (!ops->check_huge(p, expect ? nr_hpages : 0)) fail("Fail: check_huge()"); else success("OK"); pop_settings(); } static void madvise_collapse(const char *msg, char *p, int nr_hpages, struct mem_ops *ops, bool expect) { /* Sanity check */ if (!ops->check_huge(p, 0)) { printf("Unexpected huge page\n"); exit(EXIT_FAILURE); } __madvise_collapse(msg, p, nr_hpages, ops, expect); } #define TICK 500000 static bool wait_for_scan(const char *msg, char *p, int nr_hpages, struct mem_ops *ops) { int full_scans; int timeout = 6; /* 3 seconds */ /* Sanity check */ if (!ops->check_huge(p, 0)) { printf("Unexpected huge page\n"); exit(EXIT_FAILURE); } madvise(p, nr_hpages * hpage_pmd_size, MADV_HUGEPAGE); /* Wait until the second full_scan completed */ full_scans = read_num("khugepaged/full_scans") + 2; printf("%s...", msg); while (timeout--) { if (ops->check_huge(p, nr_hpages)) break; if (read_num("khugepaged/full_scans") >= full_scans) break; printf("."); usleep(TICK); } madvise(p, nr_hpages * hpage_pmd_size, MADV_NOHUGEPAGE); return timeout == -1; } static void khugepaged_collapse(const char *msg, char *p, int nr_hpages, struct mem_ops *ops, bool expect) { if (wait_for_scan(msg, p, nr_hpages, ops)) { if (expect) fail("Timeout"); else success("OK"); return; } /* * For file and shmem memory, khugepaged only retracts pte entries after * putting the new hugepage in the page cache. The hugepage must be * subsequently refaulted to install the pmd mapping for the mm. */ if (ops != &__anon_ops) ops->fault(p, 0, nr_hpages * hpage_pmd_size); if (ops->check_huge(p, expect ? nr_hpages : 0)) success("OK"); else fail("Fail"); } static struct collapse_context __khugepaged_context = { .collapse = &khugepaged_collapse, .enforce_pte_scan_limits = true, .name = "khugepaged", }; static struct collapse_context __madvise_context = { .collapse = &madvise_collapse, .enforce_pte_scan_limits = false, .name = "madvise", }; static bool is_tmpfs(struct mem_ops *ops) { return ops == &__file_ops && finfo.type == VMA_SHMEM; } static void alloc_at_fault(void) { struct settings settings = *current_settings(); char *p; settings.thp_enabled = THP_ALWAYS; push_settings(&settings); p = alloc_mapping(1); *p = 1; printf("Allocate huge page on fault..."); if (check_huge_anon(p, 1, hpage_pmd_size)) success("OK"); else fail("Fail"); pop_settings(); madvise(p, page_size, MADV_DONTNEED); printf("Split huge PMD on MADV_DONTNEED..."); if (check_huge_anon(p, 0, hpage_pmd_size)) success("OK"); else fail("Fail"); munmap(p, hpage_pmd_size); } static void collapse_full(struct collapse_context *c, struct mem_ops *ops) { void *p; int nr_hpages = 4; unsigned long size = nr_hpages * hpage_pmd_size; p = ops->setup_area(nr_hpages); ops->fault(p, 0, size); c->collapse("Collapse multiple fully populated PTE table", p, nr_hpages, ops, true); validate_memory(p, 0, size); ops->cleanup_area(p, size); } static void collapse_empty(struct collapse_context *c, struct mem_ops *ops) { void *p; p = ops->setup_area(1); c->collapse("Do not collapse empty PTE table", p, 1, ops, false); ops->cleanup_area(p, hpage_pmd_size); } static void collapse_single_pte_entry(struct collapse_context *c, struct mem_ops *ops) { void *p; p = ops->setup_area(1); ops->fault(p, 0, page_size); c->collapse("Collapse PTE table with single PTE entry present", p, 1, ops, true); ops->cleanup_area(p, hpage_pmd_size); } static void collapse_max_ptes_none(struct collapse_context *c, struct mem_ops *ops) { int max_ptes_none = hpage_pmd_nr / 2; struct settings settings = *current_settings(); void *p; settings.khugepaged.max_ptes_none = max_ptes_none; push_settings(&settings); p = ops->setup_area(1); if (is_tmpfs(ops)) { /* shmem pages always in the page cache */ printf("tmpfs..."); skip("Skip"); goto skip; } ops->fault(p, 0, (hpage_pmd_nr - max_ptes_none - 1) * page_size); c->collapse("Maybe collapse with max_ptes_none exceeded", p, 1, ops, !c->enforce_pte_scan_limits); validate_memory(p, 0, (hpage_pmd_nr - max_ptes_none - 1) * page_size); if (c->enforce_pte_scan_limits) { ops->fault(p, 0, (hpage_pmd_nr - max_ptes_none) * page_size); c->collapse("Collapse with max_ptes_none PTEs empty", p, 1, ops, true); validate_memory(p, 0, (hpage_pmd_nr - max_ptes_none) * page_size); } skip: ops->cleanup_area(p, hpage_pmd_size); pop_settings(); } static void collapse_swapin_single_pte(struct collapse_context *c, struct mem_ops *ops) { void *p; p = ops->setup_area(1); ops->fault(p, 0, hpage_pmd_size); printf("Swapout one page..."); if (madvise(p, page_size, MADV_PAGEOUT)) { perror("madvise(MADV_PAGEOUT)"); exit(EXIT_FAILURE); } if (check_swap(p, page_size)) { success("OK"); } else { fail("Fail"); goto out; } c->collapse("Collapse with swapping in single PTE entry", p, 1, ops, true); validate_memory(p, 0, hpage_pmd_size); out: ops->cleanup_area(p, hpage_pmd_size); } static void collapse_max_ptes_swap(struct collapse_context *c, struct mem_ops *ops) { int max_ptes_swap = read_num("khugepaged/max_ptes_swap"); void *p; p = ops->setup_area(1); ops->fault(p, 0, hpage_pmd_size); printf("Swapout %d of %d pages...", max_ptes_swap + 1, hpage_pmd_nr); if (madvise(p, (max_ptes_swap + 1) * page_size, MADV_PAGEOUT)) { perror("madvise(MADV_PAGEOUT)"); exit(EXIT_FAILURE); } if (check_swap(p, (max_ptes_swap + 1) * page_size)) { success("OK"); } else { fail("Fail"); goto out; } c->collapse("Maybe collapse with max_ptes_swap exceeded", p, 1, ops, !c->enforce_pte_scan_limits); validate_memory(p, 0, hpage_pmd_size); if (c->enforce_pte_scan_limits) { ops->fault(p, 0, hpage_pmd_size); printf("Swapout %d of %d pages...", max_ptes_swap, hpage_pmd_nr); if (madvise(p, max_ptes_swap * page_size, MADV_PAGEOUT)) { perror("madvise(MADV_PAGEOUT)"); exit(EXIT_FAILURE); } if (check_swap(p, max_ptes_swap * page_size)) { success("OK"); } else { fail("Fail"); goto out; } c->collapse("Collapse with max_ptes_swap pages swapped out", p, 1, ops, true); validate_memory(p, 0, hpage_pmd_size); } out: ops->cleanup_area(p, hpage_pmd_size); } static void collapse_single_pte_entry_compound(struct collapse_context *c, struct mem_ops *ops) { void *p; p = alloc_hpage(ops); if (is_tmpfs(ops)) { /* MADV_DONTNEED won't evict tmpfs pages */ printf("tmpfs..."); skip("Skip"); goto skip; } madvise(p, hpage_pmd_size, MADV_NOHUGEPAGE); printf("Split huge page leaving single PTE mapping compound page..."); madvise(p + page_size, hpage_pmd_size - page_size, MADV_DONTNEED); if (ops->check_huge(p, 0)) success("OK"); else fail("Fail"); c->collapse("Collapse PTE table with single PTE mapping compound page", p, 1, ops, true); validate_memory(p, 0, page_size); skip: ops->cleanup_area(p, hpage_pmd_size); } static void collapse_full_of_compound(struct collapse_context *c, struct mem_ops *ops) { void *p; p = alloc_hpage(ops); printf("Split huge page leaving single PTE page table full of compound pages..."); madvise(p, page_size, MADV_NOHUGEPAGE); madvise(p, hpage_pmd_size, MADV_NOHUGEPAGE); if (ops->check_huge(p, 0)) success("OK"); else fail("Fail"); c->collapse("Collapse PTE table full of compound pages", p, 1, ops, true); validate_memory(p, 0, hpage_pmd_size); ops->cleanup_area(p, hpage_pmd_size); } static void collapse_compound_extreme(struct collapse_context *c, struct mem_ops *ops) { void *p; int i; p = ops->setup_area(1); for (i = 0; i < hpage_pmd_nr; i++) { printf("\rConstruct PTE page table full of different PTE-mapped compound pages %3d/%d...", i + 1, hpage_pmd_nr); madvise(BASE_ADDR, hpage_pmd_size, MADV_HUGEPAGE); ops->fault(BASE_ADDR, 0, hpage_pmd_size); if (!ops->check_huge(BASE_ADDR, 1)) { printf("Failed to allocate huge page\n"); exit(EXIT_FAILURE); } madvise(BASE_ADDR, hpage_pmd_size, MADV_NOHUGEPAGE); p = mremap(BASE_ADDR - i * page_size, i * page_size + hpage_pmd_size, (i + 1) * page_size, MREMAP_MAYMOVE | MREMAP_FIXED, BASE_ADDR + 2 * hpage_pmd_size); if (p == MAP_FAILED) { perror("mremap+unmap"); exit(EXIT_FAILURE); } p = mremap(BASE_ADDR + 2 * hpage_pmd_size, (i + 1) * page_size, (i + 1) * page_size + hpage_pmd_size, MREMAP_MAYMOVE | MREMAP_FIXED, BASE_ADDR - (i + 1) * page_size); if (p == MAP_FAILED) { perror("mremap+alloc"); exit(EXIT_FAILURE); } } ops->cleanup_area(BASE_ADDR, hpage_pmd_size); ops->fault(p, 0, hpage_pmd_size); if (!ops->check_huge(p, 1)) success("OK"); else fail("Fail"); c->collapse("Collapse PTE table full of different compound pages", p, 1, ops, true); validate_memory(p, 0, hpage_pmd_size); ops->cleanup_area(p, hpage_pmd_size); } static void collapse_fork(struct collapse_context *c, struct mem_ops *ops) { int wstatus; void *p; p = ops->setup_area(1); printf("Allocate small page..."); ops->fault(p, 0, page_size); if (ops->check_huge(p, 0)) success("OK"); else fail("Fail"); printf("Share small page over fork()..."); if (!fork()) { /* Do not touch settings on child exit */ skip_settings_restore = true; exit_status = 0; if (ops->check_huge(p, 0)) success("OK"); else fail("Fail"); ops->fault(p, page_size, 2 * page_size); c->collapse("Collapse PTE table with single page shared with parent process", p, 1, ops, true); validate_memory(p, 0, page_size); ops->cleanup_area(p, hpage_pmd_size); exit(exit_status); } wait(&wstatus); exit_status += WEXITSTATUS(wstatus); printf("Check if parent still has small page..."); if (ops->check_huge(p, 0)) success("OK"); else fail("Fail"); validate_memory(p, 0, page_size); ops->cleanup_area(p, hpage_pmd_size); } static void collapse_fork_compound(struct collapse_context *c, struct mem_ops *ops) { int wstatus; void *p; p = alloc_hpage(ops); printf("Share huge page over fork()..."); if (!fork()) { /* Do not touch settings on child exit */ skip_settings_restore = true; exit_status = 0; if (ops->check_huge(p, 1)) success("OK"); else fail("Fail"); printf("Split huge page PMD in child process..."); madvise(p, page_size, MADV_NOHUGEPAGE); madvise(p, hpage_pmd_size, MADV_NOHUGEPAGE); if (ops->check_huge(p, 0)) success("OK"); else fail("Fail"); ops->fault(p, 0, page_size); write_num("khugepaged/max_ptes_shared", hpage_pmd_nr - 1); c->collapse("Collapse PTE table full of compound pages in child", p, 1, ops, true); write_num("khugepaged/max_ptes_shared", current_settings()->khugepaged.max_ptes_shared); validate_memory(p, 0, hpage_pmd_size); ops->cleanup_area(p, hpage_pmd_size); exit(exit_status); } wait(&wstatus); exit_status += WEXITSTATUS(wstatus); printf("Check if parent still has huge page..."); if (ops->check_huge(p, 1)) success("OK"); else fail("Fail"); validate_memory(p, 0, hpage_pmd_size); ops->cleanup_area(p, hpage_pmd_size); } static void collapse_max_ptes_shared(struct collapse_context *c, struct mem_ops *ops) { int max_ptes_shared = read_num("khugepaged/max_ptes_shared"); int wstatus; void *p; p = alloc_hpage(ops); printf("Share huge page over fork()..."); if (!fork()) { /* Do not touch settings on child exit */ skip_settings_restore = true; exit_status = 0; if (ops->check_huge(p, 1)) success("OK"); else fail("Fail"); printf("Trigger CoW on page %d of %d...", hpage_pmd_nr - max_ptes_shared - 1, hpage_pmd_nr); ops->fault(p, 0, (hpage_pmd_nr - max_ptes_shared - 1) * page_size); if (ops->check_huge(p, 0)) success("OK"); else fail("Fail"); c->collapse("Maybe collapse with max_ptes_shared exceeded", p, 1, ops, !c->enforce_pte_scan_limits); if (c->enforce_pte_scan_limits) { printf("Trigger CoW on page %d of %d...", hpage_pmd_nr - max_ptes_shared, hpage_pmd_nr); ops->fault(p, 0, (hpage_pmd_nr - max_ptes_shared) * page_size); if (ops->check_huge(p, 0)) success("OK"); else fail("Fail"); c->collapse("Collapse with max_ptes_shared PTEs shared", p, 1, ops, true); } validate_memory(p, 0, hpage_pmd_size); ops->cleanup_area(p, hpage_pmd_size); exit(exit_status); } wait(&wstatus); exit_status += WEXITSTATUS(wstatus); printf("Check if parent still has huge page..."); if (ops->check_huge(p, 1)) success("OK"); else fail("Fail"); validate_memory(p, 0, hpage_pmd_size); ops->cleanup_area(p, hpage_pmd_size); } static void madvise_collapse_existing_thps(struct collapse_context *c, struct mem_ops *ops) { void *p; p = ops->setup_area(1); ops->fault(p, 0, hpage_pmd_size); c->collapse("Collapse fully populated PTE table...", p, 1, ops, true); validate_memory(p, 0, hpage_pmd_size); /* c->collapse() will find a hugepage and complain - call directly. */ __madvise_collapse("Re-collapse PMD-mapped hugepage", p, 1, ops, true); validate_memory(p, 0, hpage_pmd_size); ops->cleanup_area(p, hpage_pmd_size); } /* * Test race with khugepaged where page tables have been retracted and * pmd cleared. */ static void madvise_retracted_page_tables(struct collapse_context *c, struct mem_ops *ops) { void *p; int nr_hpages = 1; unsigned long size = nr_hpages * hpage_pmd_size; p = ops->setup_area(nr_hpages); ops->fault(p, 0, size); /* Let khugepaged collapse and leave pmd cleared */ if (wait_for_scan("Collapse and leave PMD cleared", p, nr_hpages, ops)) { fail("Timeout"); return; } success("OK"); c->collapse("Install huge PMD from page cache", p, nr_hpages, ops, true); validate_memory(p, 0, size); ops->cleanup_area(p, size); } static void usage(void) { fprintf(stderr, "\nUsage: ./khugepaged [dir]\n\n"); fprintf(stderr, "\t\t: :\n"); fprintf(stderr, "\t\t: [all|khugepaged|madvise]\n"); fprintf(stderr, "\t\t: [all|anon|file|shmem]\n"); fprintf(stderr, "\n\t\"file,all\" mem_type requires [dir] argument\n"); fprintf(stderr, "\n\t\"file,all\" mem_type requires kernel built with\n"); fprintf(stderr, "\tCONFIG_READ_ONLY_THP_FOR_FS=y\n"); fprintf(stderr, "\n\tif [dir] is a (sub)directory of a tmpfs mount, tmpfs must be\n"); fprintf(stderr, "\tmounted with huge=madvise option for khugepaged tests to work\n"); exit(1); } static void parse_test_type(int argc, const char **argv) { char *buf; const char *token; if (argc == 1) { /* Backwards compatibility */ khugepaged_context = &__khugepaged_context; madvise_context = &__madvise_context; anon_ops = &__anon_ops; return; } buf = strdup(argv[1]); token = strsep(&buf, ":"); if (!strcmp(token, "all")) { khugepaged_context = &__khugepaged_context; madvise_context = &__madvise_context; } else if (!strcmp(token, "khugepaged")) { khugepaged_context = &__khugepaged_context; } else if (!strcmp(token, "madvise")) { madvise_context = &__madvise_context; } else { usage(); } if (!buf) usage(); if (!strcmp(buf, "all")) { file_ops = &__file_ops; anon_ops = &__anon_ops; shmem_ops = &__shmem_ops; } else if (!strcmp(buf, "anon")) { anon_ops = &__anon_ops; } else if (!strcmp(buf, "file")) { file_ops = &__file_ops; } else if (!strcmp(buf, "shmem")) { shmem_ops = &__shmem_ops; } else { usage(); } if (!file_ops) return; if (argc != 3) usage(); } int main(int argc, const char **argv) { struct settings default_settings = { .thp_enabled = THP_MADVISE, .thp_defrag = THP_DEFRAG_ALWAYS, .shmem_enabled = SHMEM_ADVISE, .use_zero_page = 0, .khugepaged = { .defrag = 1, .alloc_sleep_millisecs = 10, .scan_sleep_millisecs = 10, }, /* * When testing file-backed memory, the collapse path * looks at how many pages are found in the page cache, not * what pages are mapped. Disable read ahead optimization so * pages don't find their way into the page cache unless * we mem_ops->fault() them in. */ .read_ahead_kb = 0, }; parse_test_type(argc, argv); if (file_ops) get_finfo(argv[2]); setbuf(stdout, NULL); page_size = getpagesize(); hpage_pmd_size = read_pmd_pagesize(); hpage_pmd_nr = hpage_pmd_size / page_size; default_settings.khugepaged.max_ptes_none = hpage_pmd_nr - 1; default_settings.khugepaged.max_ptes_swap = hpage_pmd_nr / 8; default_settings.khugepaged.max_ptes_shared = hpage_pmd_nr / 2; default_settings.khugepaged.pages_to_scan = hpage_pmd_nr * 8; save_settings(); push_settings(&default_settings); alloc_at_fault(); #define TEST(t, c, o) do { \ if (c && o) { \ printf("\nRun test: " #t " (%s:%s)\n", c->name, o->name); \ t(c, o); \ } \ } while (0) TEST(collapse_full, khugepaged_context, anon_ops); TEST(collapse_full, khugepaged_context, file_ops); TEST(collapse_full, khugepaged_context, shmem_ops); TEST(collapse_full, madvise_context, anon_ops); TEST(collapse_full, madvise_context, file_ops); TEST(collapse_full, madvise_context, shmem_ops); TEST(collapse_empty, khugepaged_context, anon_ops); TEST(collapse_empty, madvise_context, anon_ops); TEST(collapse_single_pte_entry, khugepaged_context, anon_ops); TEST(collapse_single_pte_entry, khugepaged_context, file_ops); TEST(collapse_single_pte_entry, khugepaged_context, shmem_ops); TEST(collapse_single_pte_entry, madvise_context, anon_ops); TEST(collapse_single_pte_entry, madvise_context, file_ops); TEST(collapse_single_pte_entry, madvise_context, shmem_ops); TEST(collapse_max_ptes_none, khugepaged_context, anon_ops); TEST(collapse_max_ptes_none, khugepaged_context, file_ops); TEST(collapse_max_ptes_none, madvise_context, anon_ops); TEST(collapse_max_ptes_none, madvise_context, file_ops); TEST(collapse_single_pte_entry_compound, khugepaged_context, anon_ops); TEST(collapse_single_pte_entry_compound, khugepaged_context, file_ops); TEST(collapse_single_pte_entry_compound, madvise_context, anon_ops); TEST(collapse_single_pte_entry_compound, madvise_context, file_ops); TEST(collapse_full_of_compound, khugepaged_context, anon_ops); TEST(collapse_full_of_compound, khugepaged_context, file_ops); TEST(collapse_full_of_compound, khugepaged_context, shmem_ops); TEST(collapse_full_of_compound, madvise_context, anon_ops); TEST(collapse_full_of_compound, madvise_context, file_ops); TEST(collapse_full_of_compound, madvise_context, shmem_ops); TEST(collapse_compound_extreme, khugepaged_context, anon_ops); TEST(collapse_compound_extreme, madvise_context, anon_ops); TEST(collapse_swapin_single_pte, khugepaged_context, anon_ops); TEST(collapse_swapin_single_pte, madvise_context, anon_ops); TEST(collapse_max_ptes_swap, khugepaged_context, anon_ops); TEST(collapse_max_ptes_swap, madvise_context, anon_ops); TEST(collapse_fork, khugepaged_context, anon_ops); TEST(collapse_fork, madvise_context, anon_ops); TEST(collapse_fork_compound, khugepaged_context, anon_ops); TEST(collapse_fork_compound, madvise_context, anon_ops); TEST(collapse_max_ptes_shared, khugepaged_context, anon_ops); TEST(collapse_max_ptes_shared, madvise_context, anon_ops); TEST(madvise_collapse_existing_thps, madvise_context, anon_ops); TEST(madvise_collapse_existing_thps, madvise_context, file_ops); TEST(madvise_collapse_existing_thps, madvise_context, shmem_ops); TEST(madvise_retracted_page_tables, madvise_context, file_ops); TEST(madvise_retracted_page_tables, madvise_context, shmem_ops); restore_settings(0); }