summaryrefslogtreecommitdiff
path: root/Documentation/bpf/btf.rst
blob: 8820360d00dafb5b7485a73af1b87bdc06257a14 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
=====================
BPF Type Format (BTF)
=====================

1. Introduction
***************

BTF (BPF Type Format) is the metadata format which encodes the debug info
related to BPF program/map. The name BTF was used initially to describe data
types. The BTF was later extended to include function info for defined
subroutines, and line info for source/line information.

The debug info is used for map pretty print, function signature, etc. The
function signature enables better bpf program/function kernel symbol. The line
info helps generate source annotated translated byte code, jited code and
verifier log.

The BTF specification contains two parts,
  * BTF kernel API
  * BTF ELF file format

The kernel API is the contract between user space and kernel. The kernel
verifies the BTF info before using it. The ELF file format is a user space
contract between ELF file and libbpf loader.

The type and string sections are part of the BTF kernel API, describing the
debug info (mostly types related) referenced by the bpf program. These two
sections are discussed in details in :ref:`BTF_Type_String`.

.. _BTF_Type_String:

2. BTF Type and String Encoding
*******************************

The file ``include/uapi/linux/btf.h`` provides high-level definition of how
types/strings are encoded.

The beginning of data blob must be::

    struct btf_header {
        __u16   magic;
        __u8    version;
        __u8    flags;
        __u32   hdr_len;

        /* All offsets are in bytes relative to the end of this header */
        __u32   type_off;       /* offset of type section       */
        __u32   type_len;       /* length of type section       */
        __u32   str_off;        /* offset of string section     */
        __u32   str_len;        /* length of string section     */
    };

The magic is ``0xeB9F``, which has different encoding for big and little
endian systems, and can be used to test whether BTF is generated for big- or
little-endian target. The ``btf_header`` is designed to be extensible with
``hdr_len`` equal to ``sizeof(struct btf_header)`` when a data blob is
generated.

2.1 String Encoding
===================

The first string in the string section must be a null string. The rest of
string table is a concatenation of other null-terminated strings.

2.2 Type Encoding
=================

The type id ``0`` is reserved for ``void`` type. The type section is parsed
sequentially and type id is assigned to each recognized type starting from id
``1``. Currently, the following types are supported::

    #define BTF_KIND_INT            1       /* Integer      */
    #define BTF_KIND_PTR            2       /* Pointer      */
    #define BTF_KIND_ARRAY          3       /* Array        */
    #define BTF_KIND_STRUCT         4       /* Struct       */
    #define BTF_KIND_UNION          5       /* Union        */
    #define BTF_KIND_ENUM           6       /* Enumeration  */
    #define BTF_KIND_FWD            7       /* Forward      */
    #define BTF_KIND_TYPEDEF        8       /* Typedef      */
    #define BTF_KIND_VOLATILE       9       /* Volatile     */
    #define BTF_KIND_CONST          10      /* Const        */
    #define BTF_KIND_RESTRICT       11      /* Restrict     */
    #define BTF_KIND_FUNC           12      /* Function     */
    #define BTF_KIND_FUNC_PROTO     13      /* Function Proto       */
    #define BTF_KIND_VAR            14      /* Variable     */
    #define BTF_KIND_DATASEC        15      /* Section      */

Note that the type section encodes debug info, not just pure types.
``BTF_KIND_FUNC`` is not a type, and it represents a defined subprogram.

Each type contains the following common data::

    struct btf_type {
        __u32 name_off;
        /* "info" bits arrangement
         * bits  0-15: vlen (e.g. # of struct's members)
         * bits 16-23: unused
         * bits 24-27: kind (e.g. int, ptr, array...etc)
         * bits 28-30: unused
         * bit     31: kind_flag, currently used by
         *             struct, union and fwd
         */
        __u32 info;
        /* "size" is used by INT, ENUM, STRUCT and UNION.
         * "size" tells the size of the type it is describing.
         *
         * "type" is used by PTR, TYPEDEF, VOLATILE, CONST, RESTRICT,
         * FUNC and FUNC_PROTO.
         * "type" is a type_id referring to another type.
         */
        union {
                __u32 size;
                __u32 type;
        };
    };

For certain kinds, the common data are followed by kind-specific data. The
``name_off`` in ``struct btf_type`` specifies the offset in the string table.
The following sections detail encoding of each kind.

2.2.1 BTF_KIND_INT
~~~~~~~~~~~~~~~~~~

``struct btf_type`` encoding requirement:
 * ``name_off``: any valid offset
 * ``info.kind_flag``: 0
 * ``info.kind``: BTF_KIND_INT
 * ``info.vlen``: 0
 * ``size``: the size of the int type in bytes.

``btf_type`` is followed by a ``u32`` with the following bits arrangement::

  #define BTF_INT_ENCODING(VAL)   (((VAL) & 0x0f000000) >> 24)
  #define BTF_INT_OFFSET(VAL)     (((VAL  & 0x00ff0000)) >> 16)
  #define BTF_INT_BITS(VAL)       ((VAL)  & 0x000000ff)

The ``BTF_INT_ENCODING`` has the following attributes::

  #define BTF_INT_SIGNED  (1 << 0)
  #define BTF_INT_CHAR    (1 << 1)
  #define BTF_INT_BOOL    (1 << 2)

The ``BTF_INT_ENCODING()`` provides extra information: signedness, char, or
bool, for the int type. The char and bool encoding are mostly useful for
pretty print. At most one encoding can be specified for the int type.

The ``BTF_INT_BITS()`` specifies the number of actual bits held by this int
type. For example, a 4-bit bitfield encodes ``BTF_INT_BITS()`` equals to 4.
The ``btf_type.size * 8`` must be equal to or greater than ``BTF_INT_BITS()``
for the type. The maximum value of ``BTF_INT_BITS()`` is 128.

The ``BTF_INT_OFFSET()`` specifies the starting bit offset to calculate values
for this int. For example, a bitfield struct member has:
 * btf member bit offset 100 from the start of the structure,
 * btf member pointing to an int type,
 * the int type has ``BTF_INT_OFFSET() = 2`` and ``BTF_INT_BITS() = 4``

Then in the struct memory layout, this member will occupy ``4`` bits starting
from bits ``100 + 2 = 102``.

Alternatively, the bitfield struct member can be the following to access the
same bits as the above:
 * btf member bit offset 102,
 * btf member pointing to an int type,
 * the int type has ``BTF_INT_OFFSET() = 0`` and ``BTF_INT_BITS() = 4``

The original intention of ``BTF_INT_OFFSET()`` is to provide flexibility of
bitfield encoding. Currently, both llvm and pahole generate
``BTF_INT_OFFSET() = 0`` for all int types.

2.2.2 BTF_KIND_PTR
~~~~~~~~~~~~~~~~~~

``struct btf_type`` encoding requirement:
  * ``name_off``: 0
  * ``info.kind_flag``: 0
  * ``info.kind``: BTF_KIND_PTR
  * ``info.vlen``: 0
  * ``type``: the pointee type of the pointer

No additional type data follow ``btf_type``.

2.2.3 BTF_KIND_ARRAY
~~~~~~~~~~~~~~~~~~~~

``struct btf_type`` encoding requirement:
  * ``name_off``: 0
  * ``info.kind_flag``: 0
  * ``info.kind``: BTF_KIND_ARRAY
  * ``info.vlen``: 0
  * ``size/type``: 0, not used

``btf_type`` is followed by one ``struct btf_array``::

    struct btf_array {
        __u32   type;
        __u32   index_type;
        __u32   nelems;
    };

The ``struct btf_array`` encoding:
  * ``type``: the element type
  * ``index_type``: the index type
  * ``nelems``: the number of elements for this array (``0`` is also allowed).

The ``index_type`` can be any regular int type (``u8``, ``u16``, ``u32``,
``u64``, ``unsigned __int128``). The original design of including
``index_type`` follows DWARF, which has an ``index_type`` for its array type.
Currently in BTF, beyond type verification, the ``index_type`` is not used.

The ``struct btf_array`` allows chaining through element type to represent
multidimensional arrays. For example, for ``int a[5][6]``, the following type
information illustrates the chaining:

  * [1]: int
  * [2]: array, ``btf_array.type = [1]``, ``btf_array.nelems = 6``
  * [3]: array, ``btf_array.type = [2]``, ``btf_array.nelems = 5``

Currently, both pahole and llvm collapse multidimensional array into
one-dimensional array, e.g., for ``a[5][6]``, the ``btf_array.nelems`` is
equal to ``30``. This is because the original use case is map pretty print
where the whole array is dumped out so one-dimensional array is enough. As
more BTF usage is explored, pahole and llvm can be changed to generate proper
chained representation for multidimensional arrays.

2.2.4 BTF_KIND_STRUCT
~~~~~~~~~~~~~~~~~~~~~
2.2.5 BTF_KIND_UNION
~~~~~~~~~~~~~~~~~~~~

``struct btf_type`` encoding requirement:
  * ``name_off``: 0 or offset to a valid C identifier
  * ``info.kind_flag``: 0 or 1
  * ``info.kind``: BTF_KIND_STRUCT or BTF_KIND_UNION
  * ``info.vlen``: the number of struct/union members
  * ``info.size``: the size of the struct/union in bytes

``btf_type`` is followed by ``info.vlen`` number of ``struct btf_member``.::

    struct btf_member {
        __u32   name_off;
        __u32   type;
        __u32   offset;
    };

``struct btf_member`` encoding:
  * ``name_off``: offset to a valid C identifier
  * ``type``: the member type
  * ``offset``: <see below>

If the type info ``kind_flag`` is not set, the offset contains only bit offset
of the member. Note that the base type of the bitfield can only be int or enum
type. If the bitfield size is 32, the base type can be either int or enum
type. If the bitfield size is not 32, the base type must be int, and int type
``BTF_INT_BITS()`` encodes the bitfield size.

If the ``kind_flag`` is set, the ``btf_member.offset`` contains both member
bitfield size and bit offset. The bitfield size and bit offset are calculated
as below.::

  #define BTF_MEMBER_BITFIELD_SIZE(val)   ((val) >> 24)
  #define BTF_MEMBER_BIT_OFFSET(val)      ((val) & 0xffffff)

In this case, if the base type is an int type, it must be a regular int type:

  * ``BTF_INT_OFFSET()`` must be 0.
  * ``BTF_INT_BITS()`` must be equal to ``{1,2,4,8,16} * 8``.

The following kernel patch introduced ``kind_flag`` and explained why both
modes exist:

  https://github.com/torvalds/linux/commit/9d5f9f701b1891466fb3dbb1806ad97716f95cc3#diff-fa650a64fdd3968396883d2fe8215ff3

2.2.6 BTF_KIND_ENUM
~~~~~~~~~~~~~~~~~~~

``struct btf_type`` encoding requirement:
  * ``name_off``: 0 or offset to a valid C identifier
  * ``info.kind_flag``: 0
  * ``info.kind``: BTF_KIND_ENUM
  * ``info.vlen``: number of enum values
  * ``size``: 4

``btf_type`` is followed by ``info.vlen`` number of ``struct btf_enum``.::

    struct btf_enum {
        __u32   name_off;
        __s32   val;
    };

The ``btf_enum`` encoding:
  * ``name_off``: offset to a valid C identifier
  * ``val``: any value

2.2.7 BTF_KIND_FWD
~~~~~~~~~~~~~~~~~~

``struct btf_type`` encoding requirement:
  * ``name_off``: offset to a valid C identifier
  * ``info.kind_flag``: 0 for struct, 1 for union
  * ``info.kind``: BTF_KIND_FWD
  * ``info.vlen``: 0
  * ``type``: 0

No additional type data follow ``btf_type``.

2.2.8 BTF_KIND_TYPEDEF
~~~~~~~~~~~~~~~~~~~~~~

``struct btf_type`` encoding requirement:
  * ``name_off``: offset to a valid C identifier
  * ``info.kind_flag``: 0
  * ``info.kind``: BTF_KIND_TYPEDEF
  * ``info.vlen``: 0
  * ``type``: the type which can be referred by name at ``name_off``

No additional type data follow ``btf_type``.

2.2.9 BTF_KIND_VOLATILE
~~~~~~~~~~~~~~~~~~~~~~~

``struct btf_type`` encoding requirement:
  * ``name_off``: 0
  * ``info.kind_flag``: 0
  * ``info.kind``: BTF_KIND_VOLATILE
  * ``info.vlen``: 0
  * ``type``: the type with ``volatile`` qualifier

No additional type data follow ``btf_type``.

2.2.10 BTF_KIND_CONST
~~~~~~~~~~~~~~~~~~~~~

``struct btf_type`` encoding requirement:
  * ``name_off``: 0
  * ``info.kind_flag``: 0
  * ``info.kind``: BTF_KIND_CONST
  * ``info.vlen``: 0
  * ``type``: the type with ``const`` qualifier

No additional type data follow ``btf_type``.

2.2.11 BTF_KIND_RESTRICT
~~~~~~~~~~~~~~~~~~~~~~~~

``struct btf_type`` encoding requirement:
  * ``name_off``: 0
  * ``info.kind_flag``: 0
  * ``info.kind``: BTF_KIND_RESTRICT
  * ``info.vlen``: 0
  * ``type``: the type with ``restrict`` qualifier

No additional type data follow ``btf_type``.

2.2.12 BTF_KIND_FUNC
~~~~~~~~~~~~~~~~~~~~

``struct btf_type`` encoding requirement:
  * ``name_off``: offset to a valid C identifier
  * ``info.kind_flag``: 0
  * ``info.kind``: BTF_KIND_FUNC
  * ``info.vlen``: 0
  * ``type``: a BTF_KIND_FUNC_PROTO type

No additional type data follow ``btf_type``.

A BTF_KIND_FUNC defines not a type, but a subprogram (function) whose
signature is defined by ``type``. The subprogram is thus an instance of that
type. The BTF_KIND_FUNC may in turn be referenced by a func_info in the
:ref:`BTF_Ext_Section` (ELF) or in the arguments to :ref:`BPF_Prog_Load`
(ABI).

2.2.13 BTF_KIND_FUNC_PROTO
~~~~~~~~~~~~~~~~~~~~~~~~~~

``struct btf_type`` encoding requirement:
  * ``name_off``: 0
  * ``info.kind_flag``: 0
  * ``info.kind``: BTF_KIND_FUNC_PROTO
  * ``info.vlen``: # of parameters
  * ``type``: the return type

``btf_type`` is followed by ``info.vlen`` number of ``struct btf_param``.::

    struct btf_param {
        __u32   name_off;
        __u32   type;
    };

If a BTF_KIND_FUNC_PROTO type is referred by a BTF_KIND_FUNC type, then
``btf_param.name_off`` must point to a valid C identifier except for the
possible last argument representing the variable argument. The btf_param.type
refers to parameter type.

If the function has variable arguments, the last parameter is encoded with
``name_off = 0`` and ``type = 0``.

2.2.14 BTF_KIND_VAR
~~~~~~~~~~~~~~~~~~~

``struct btf_type`` encoding requirement:
  * ``name_off``: offset to a valid C identifier
  * ``info.kind_flag``: 0
  * ``info.kind``: BTF_KIND_VAR
  * ``info.vlen``: 0
  * ``type``: the type of the variable

``btf_type`` is followed by a single ``struct btf_variable`` with the
following data::

    struct btf_var {
        __u32   linkage;
    };

``struct btf_var`` encoding:
  * ``linkage``: currently only static variable 0, or globally allocated
                 variable in ELF sections 1

Not all type of global variables are supported by LLVM at this point.
The following is currently available:

  * static variables with or without section attributes
  * global variables with section attributes

The latter is for future extraction of map key/value type id's from a
map definition.

2.2.15 BTF_KIND_DATASEC
~~~~~~~~~~~~~~~~~~~~~~~

``struct btf_type`` encoding requirement:
  * ``name_off``: offset to a valid name associated with a variable or
                  one of .data/.bss/.rodata
  * ``info.kind_flag``: 0
  * ``info.kind``: BTF_KIND_DATASEC
  * ``info.vlen``: # of variables
  * ``size``: total section size in bytes (0 at compilation time, patched
              to actual size by BPF loaders such as libbpf)

``btf_type`` is followed by ``info.vlen`` number of ``struct btf_var_secinfo``.::

    struct btf_var_secinfo {
        __u32   type;
        __u32   offset;
        __u32   size;
    };

``struct btf_var_secinfo`` encoding:
  * ``type``: the type of the BTF_KIND_VAR variable
  * ``offset``: the in-section offset of the variable
  * ``size``: the size of the variable in bytes

3. BTF Kernel API
*****************

The following bpf syscall command involves BTF:
   * BPF_BTF_LOAD: load a blob of BTF data into kernel
   * BPF_MAP_CREATE: map creation with btf key and value type info.
   * BPF_PROG_LOAD: prog load with btf function and line info.
   * BPF_BTF_GET_FD_BY_ID: get a btf fd
   * BPF_OBJ_GET_INFO_BY_FD: btf, func_info, line_info
     and other btf related info are returned.

The workflow typically looks like:
::

  Application:
      BPF_BTF_LOAD
          |
          v
      BPF_MAP_CREATE and BPF_PROG_LOAD
          |
          V
      ......

  Introspection tool:
      ......
      BPF_{PROG,MAP}_GET_NEXT_ID (get prog/map id's)
          |
          V
      BPF_{PROG,MAP}_GET_FD_BY_ID (get a prog/map fd)
          |
          V
      BPF_OBJ_GET_INFO_BY_FD (get bpf_prog_info/bpf_map_info with btf_id)
          |                                     |
          V                                     |
      BPF_BTF_GET_FD_BY_ID (get btf_fd)         |
          |                                     |
          V                                     |
      BPF_OBJ_GET_INFO_BY_FD (get btf)          |
          |                                     |
          V                                     V
      pretty print types, dump func signatures and line info, etc.


3.1 BPF_BTF_LOAD
================

Load a blob of BTF data into kernel. A blob of data, described in
:ref:`BTF_Type_String`, can be directly loaded into the kernel. A ``btf_fd``
is returned to a userspace.

3.2 BPF_MAP_CREATE
==================

A map can be created with ``btf_fd`` and specified key/value type id.::

    __u32   btf_fd;         /* fd pointing to a BTF type data */
    __u32   btf_key_type_id;        /* BTF type_id of the key */
    __u32   btf_value_type_id;      /* BTF type_id of the value */

In libbpf, the map can be defined with extra annotation like below:
::

    struct bpf_map_def SEC("maps") btf_map = {
        .type = BPF_MAP_TYPE_ARRAY,
        .key_size = sizeof(int),
        .value_size = sizeof(struct ipv_counts),
        .max_entries = 4,
    };
    BPF_ANNOTATE_KV_PAIR(btf_map, int, struct ipv_counts);

Here, the parameters for macro BPF_ANNOTATE_KV_PAIR are map name, key and
value types for the map. During ELF parsing, libbpf is able to extract
key/value type_id's and assign them to BPF_MAP_CREATE attributes
automatically.

.. _BPF_Prog_Load:

3.3 BPF_PROG_LOAD
=================

During prog_load, func_info and line_info can be passed to kernel with proper
values for the following attributes:
::

    __u32           insn_cnt;
    __aligned_u64   insns;
    ......
    __u32           prog_btf_fd;    /* fd pointing to BTF type data */
    __u32           func_info_rec_size;     /* userspace bpf_func_info size */
    __aligned_u64   func_info;      /* func info */
    __u32           func_info_cnt;  /* number of bpf_func_info records */
    __u32           line_info_rec_size;     /* userspace bpf_line_info size */
    __aligned_u64   line_info;      /* line info */
    __u32           line_info_cnt;  /* number of bpf_line_info records */

The func_info and line_info are an array of below, respectively.::

    struct bpf_func_info {
        __u32   insn_off; /* [0, insn_cnt - 1] */
        __u32   type_id;  /* pointing to a BTF_KIND_FUNC type */
    };
    struct bpf_line_info {
        __u32   insn_off; /* [0, insn_cnt - 1] */
        __u32   file_name_off; /* offset to string table for the filename */
        __u32   line_off; /* offset to string table for the source line */
        __u32   line_col; /* line number and column number */
    };

func_info_rec_size is the size of each func_info record, and
line_info_rec_size is the size of each line_info record. Passing the record
size to kernel make it possible to extend the record itself in the future.

Below are requirements for func_info:
  * func_info[0].insn_off must be 0.
  * the func_info insn_off is in strictly increasing order and matches
    bpf func boundaries.

Below are requirements for line_info:
  * the first insn in each func must have a line_info record pointing to it.
  * the line_info insn_off is in strictly increasing order.

For line_info, the line number and column number are defined as below:
::

    #define BPF_LINE_INFO_LINE_NUM(line_col)        ((line_col) >> 10)
    #define BPF_LINE_INFO_LINE_COL(line_col)        ((line_col) & 0x3ff)

3.4 BPF_{PROG,MAP}_GET_NEXT_ID
==============================

In kernel, every loaded program, map or btf has a unique id. The id won't
change during the lifetime of a program, map, or btf.

The bpf syscall command BPF_{PROG,MAP}_GET_NEXT_ID returns all id's, one for
each command, to user space, for bpf program or maps, respectively, so an
inspection tool can inspect all programs and maps.

3.5 BPF_{PROG,MAP}_GET_FD_BY_ID
===============================

An introspection tool cannot use id to get details about program or maps.
A file descriptor needs to be obtained first for reference-counting purpose.

3.6 BPF_OBJ_GET_INFO_BY_FD
==========================

Once a program/map fd is acquired, an introspection tool can get the detailed
information from kernel about this fd, some of which are BTF-related. For
example, ``bpf_map_info`` returns ``btf_id`` and key/value type ids.
``bpf_prog_info`` returns ``btf_id``, func_info, and line info for translated
bpf byte codes, and jited_line_info.

3.7 BPF_BTF_GET_FD_BY_ID
========================

With ``btf_id`` obtained in ``bpf_map_info`` and ``bpf_prog_info``, bpf
syscall command BPF_BTF_GET_FD_BY_ID can retrieve a btf fd. Then, with
command BPF_OBJ_GET_INFO_BY_FD, the btf blob, originally loaded into the
kernel with BPF_BTF_LOAD, can be retrieved.

With the btf blob, ``bpf_map_info``, and ``bpf_prog_info``, an introspection
tool has full btf knowledge and is able to pretty print map key/values, dump
func signatures and line info, along with byte/jit codes.

4. ELF File Format Interface
****************************

4.1 .BTF section
================

The .BTF section contains type and string data. The format of this section is
same as the one describe in :ref:`BTF_Type_String`.

.. _BTF_Ext_Section:

4.2 .BTF.ext section
====================

The .BTF.ext section encodes func_info and line_info which needs loader
manipulation before loading into the kernel.

The specification for .BTF.ext section is defined at ``tools/lib/bpf/btf.h``
and ``tools/lib/bpf/btf.c``.

The current header of .BTF.ext section::

    struct btf_ext_header {
        __u16   magic;
        __u8    version;
        __u8    flags;
        __u32   hdr_len;

        /* All offsets are in bytes relative to the end of this header */
        __u32   func_info_off;
        __u32   func_info_len;
        __u32   line_info_off;
        __u32   line_info_len;
    };

It is very similar to .BTF section. Instead of type/string section, it
contains func_info and line_info section. See :ref:`BPF_Prog_Load` for details
about func_info and line_info record format.

The func_info is organized as below.::

     func_info_rec_size
     btf_ext_info_sec for section #1 /* func_info for section #1 */
     btf_ext_info_sec for section #2 /* func_info for section #2 */
     ...

``func_info_rec_size`` specifies the size of ``bpf_func_info`` structure when
.BTF.ext is generated. ``btf_ext_info_sec``, defined below, is a collection of
func_info for each specific ELF section.::

     struct btf_ext_info_sec {
        __u32   sec_name_off; /* offset to section name */
        __u32   num_info;
        /* Followed by num_info * record_size number of bytes */
        __u8    data[0];
     };

Here, num_info must be greater than 0.

The line_info is organized as below.::

     line_info_rec_size
     btf_ext_info_sec for section #1 /* line_info for section #1 */
     btf_ext_info_sec for section #2 /* line_info for section #2 */
     ...

``line_info_rec_size`` specifies the size of ``bpf_line_info`` structure when
.BTF.ext is generated.

The interpretation of ``bpf_func_info->insn_off`` and
``bpf_line_info->insn_off`` is different between kernel API and ELF API. For
kernel API, the ``insn_off`` is the instruction offset in the unit of ``struct
bpf_insn``. For ELF API, the ``insn_off`` is the byte offset from the
beginning of section (``btf_ext_info_sec->sec_name_off``).

5. Using BTF
************

5.1 bpftool map pretty print
============================

With BTF, the map key/value can be printed based on fields rather than simply
raw bytes. This is especially valuable for large structure or if your data
structure has bitfields. For example, for the following map,::

      enum A { A1, A2, A3, A4, A5 };
      typedef enum A ___A;
      struct tmp_t {
           char a1:4;
           int  a2:4;
           int  :4;
           __u32 a3:4;
           int b;
           ___A b1:4;
           enum A b2:4;
      };
      struct bpf_map_def SEC("maps") tmpmap = {
           .type = BPF_MAP_TYPE_ARRAY,
           .key_size = sizeof(__u32),
           .value_size = sizeof(struct tmp_t),
           .max_entries = 1,
      };
      BPF_ANNOTATE_KV_PAIR(tmpmap, int, struct tmp_t);

bpftool is able to pretty print like below:
::

      [{
            "key": 0,
            "value": {
                "a1": 0x2,
                "a2": 0x4,
                "a3": 0x6,
                "b": 7,
                "b1": 0x8,
                "b2": 0xa
            }
        }
      ]

5.2 bpftool prog dump
=====================

The following is an example showing how func_info and line_info can help prog
dump with better kernel symbol names, function prototypes and line
information.::

    $ bpftool prog dump jited pinned /sys/fs/bpf/test_btf_haskv
    [...]
    int test_long_fname_2(struct dummy_tracepoint_args * arg):
    bpf_prog_44a040bf25481309_test_long_fname_2:
    ; static int test_long_fname_2(struct dummy_tracepoint_args *arg)
       0:   push   %rbp
       1:   mov    %rsp,%rbp
       4:   sub    $0x30,%rsp
       b:   sub    $0x28,%rbp
       f:   mov    %rbx,0x0(%rbp)
      13:   mov    %r13,0x8(%rbp)
      17:   mov    %r14,0x10(%rbp)
      1b:   mov    %r15,0x18(%rbp)
      1f:   xor    %eax,%eax
      21:   mov    %rax,0x20(%rbp)
      25:   xor    %esi,%esi
    ; int key = 0;
      27:   mov    %esi,-0x4(%rbp)
    ; if (!arg->sock)
      2a:   mov    0x8(%rdi),%rdi
    ; if (!arg->sock)
      2e:   cmp    $0x0,%rdi
      32:   je     0x0000000000000070
      34:   mov    %rbp,%rsi
    ; counts = bpf_map_lookup_elem(&btf_map, &key);
    [...]

5.3 Verifier Log
================

The following is an example of how line_info can help debugging verification
failure.::

       /* The code at tools/testing/selftests/bpf/test_xdp_noinline.c
        * is modified as below.
        */
       data = (void *)(long)xdp->data;
       data_end = (void *)(long)xdp->data_end;
       /*
       if (data + 4 > data_end)
               return XDP_DROP;
       */
       *(u32 *)data = dst->dst;

    $ bpftool prog load ./test_xdp_noinline.o /sys/fs/bpf/test_xdp_noinline type xdp
        ; data = (void *)(long)xdp->data;
        224: (79) r2 = *(u64 *)(r10 -112)
        225: (61) r2 = *(u32 *)(r2 +0)
        ; *(u32 *)data = dst->dst;
        226: (63) *(u32 *)(r2 +0) = r1
        invalid access to packet, off=0 size=4, R2(id=0,off=0,r=0)
        R2 offset is outside of the packet

6. BTF Generation
*****************

You need latest pahole

  https://git.kernel.org/pub/scm/devel/pahole/pahole.git/

or llvm (8.0 or later). The pahole acts as a dwarf2btf converter. It doesn't
support .BTF.ext and btf BTF_KIND_FUNC type yet. For example,::

      -bash-4.4$ cat t.c
      struct t {
        int a:2;
        int b:3;
        int c:2;
      } g;
      -bash-4.4$ gcc -c -O2 -g t.c
      -bash-4.4$ pahole -JV t.o
      File t.o:
      [1] STRUCT t kind_flag=1 size=4 vlen=3
              a type_id=2 bitfield_size=2 bits_offset=0
              b type_id=2 bitfield_size=3 bits_offset=2
              c type_id=2 bitfield_size=2 bits_offset=5
      [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED

The llvm is able to generate .BTF and .BTF.ext directly with -g for bpf target
only. The assembly code (-S) is able to show the BTF encoding in assembly
format.::

    -bash-4.4$ cat t2.c
    typedef int __int32;
    struct t2 {
      int a2;
      int (*f2)(char q1, __int32 q2, ...);
      int (*f3)();
    } g2;
    int main() { return 0; }
    int test() { return 0; }
    -bash-4.4$ clang -c -g -O2 -target bpf t2.c
    -bash-4.4$ readelf -S t2.o
      ......
      [ 8] .BTF              PROGBITS         0000000000000000  00000247
           000000000000016e  0000000000000000           0     0     1
      [ 9] .BTF.ext          PROGBITS         0000000000000000  000003b5
           0000000000000060  0000000000000000           0     0     1
      [10] .rel.BTF.ext      REL              0000000000000000  000007e0
           0000000000000040  0000000000000010          16     9     8
      ......
    -bash-4.4$ clang -S -g -O2 -target bpf t2.c
    -bash-4.4$ cat t2.s
      ......
            .section        .BTF,"",@progbits
            .short  60319                   # 0xeb9f
            .byte   1
            .byte   0
            .long   24
            .long   0
            .long   220
            .long   220
            .long   122
            .long   0                       # BTF_KIND_FUNC_PROTO(id = 1)
            .long   218103808               # 0xd000000
            .long   2
            .long   83                      # BTF_KIND_INT(id = 2)
            .long   16777216                # 0x1000000
            .long   4
            .long   16777248                # 0x1000020
      ......
            .byte   0                       # string offset=0
            .ascii  ".text"                 # string offset=1
            .byte   0
            .ascii  "/home/yhs/tmp-pahole/t2.c" # string offset=7
            .byte   0
            .ascii  "int main() { return 0; }" # string offset=33
            .byte   0
            .ascii  "int test() { return 0; }" # string offset=58
            .byte   0
            .ascii  "int"                   # string offset=83
      ......
            .section        .BTF.ext,"",@progbits
            .short  60319                   # 0xeb9f
            .byte   1
            .byte   0
            .long   24
            .long   0
            .long   28
            .long   28
            .long   44
            .long   8                       # FuncInfo
            .long   1                       # FuncInfo section string offset=1
            .long   2
            .long   .Lfunc_begin0
            .long   3
            .long   .Lfunc_begin1
            .long   5
            .long   16                      # LineInfo
            .long   1                       # LineInfo section string offset=1
            .long   2
            .long   .Ltmp0
            .long   7
            .long   33
            .long   7182                    # Line 7 Col 14
            .long   .Ltmp3
            .long   7
            .long   58
            .long   8206                    # Line 8 Col 14

7. Testing
**********

Kernel bpf selftest `test_btf.c` provides extensive set of BTF-related tests.