summaryrefslogtreecommitdiff
path: root/arch/arm64/kvm/hyp/nvhe/mem_protect.c
blob: c1a90dd022b8c151bf30152e7ddbfccf12676d19 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright (C) 2020 Google LLC
 * Author: Quentin Perret <qperret@google.com>
 */

#include <linux/kvm_host.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_hyp.h>
#include <asm/kvm_mmu.h>
#include <asm/kvm_pgtable.h>
#include <asm/stage2_pgtable.h>

#include <hyp/fault.h>

#include <nvhe/gfp.h>
#include <nvhe/memory.h>
#include <nvhe/mem_protect.h>
#include <nvhe/mm.h>

#define KVM_HOST_S2_FLAGS (KVM_PGTABLE_S2_NOFWB | KVM_PGTABLE_S2_IDMAP)

extern unsigned long hyp_nr_cpus;
struct host_kvm host_kvm;

static struct hyp_pool host_s2_pool;

const u8 pkvm_hyp_id = 1;

static void *host_s2_zalloc_pages_exact(size_t size)
{
	void *addr = hyp_alloc_pages(&host_s2_pool, get_order(size));

	hyp_split_page(hyp_virt_to_page(addr));

	/*
	 * The size of concatenated PGDs is always a power of two of PAGE_SIZE,
	 * so there should be no need to free any of the tail pages to make the
	 * allocation exact.
	 */
	WARN_ON(size != (PAGE_SIZE << get_order(size)));

	return addr;
}

static void *host_s2_zalloc_page(void *pool)
{
	return hyp_alloc_pages(pool, 0);
}

static void host_s2_get_page(void *addr)
{
	hyp_get_page(&host_s2_pool, addr);
}

static void host_s2_put_page(void *addr)
{
	hyp_put_page(&host_s2_pool, addr);
}

static int prepare_s2_pool(void *pgt_pool_base)
{
	unsigned long nr_pages, pfn;
	int ret;

	pfn = hyp_virt_to_pfn(pgt_pool_base);
	nr_pages = host_s2_pgtable_pages();
	ret = hyp_pool_init(&host_s2_pool, pfn, nr_pages, 0);
	if (ret)
		return ret;

	host_kvm.mm_ops = (struct kvm_pgtable_mm_ops) {
		.zalloc_pages_exact = host_s2_zalloc_pages_exact,
		.zalloc_page = host_s2_zalloc_page,
		.phys_to_virt = hyp_phys_to_virt,
		.virt_to_phys = hyp_virt_to_phys,
		.page_count = hyp_page_count,
		.get_page = host_s2_get_page,
		.put_page = host_s2_put_page,
	};

	return 0;
}

static void prepare_host_vtcr(void)
{
	u32 parange, phys_shift;

	/* The host stage 2 is id-mapped, so use parange for T0SZ */
	parange = kvm_get_parange(id_aa64mmfr0_el1_sys_val);
	phys_shift = id_aa64mmfr0_parange_to_phys_shift(parange);

	host_kvm.arch.vtcr = kvm_get_vtcr(id_aa64mmfr0_el1_sys_val,
					  id_aa64mmfr1_el1_sys_val, phys_shift);
}

static bool host_stage2_force_pte_cb(u64 addr, u64 end, enum kvm_pgtable_prot prot);

int kvm_host_prepare_stage2(void *pgt_pool_base)
{
	struct kvm_s2_mmu *mmu = &host_kvm.arch.mmu;
	int ret;

	prepare_host_vtcr();
	hyp_spin_lock_init(&host_kvm.lock);

	ret = prepare_s2_pool(pgt_pool_base);
	if (ret)
		return ret;

	ret = __kvm_pgtable_stage2_init(&host_kvm.pgt, &host_kvm.arch,
					&host_kvm.mm_ops, KVM_HOST_S2_FLAGS,
					host_stage2_force_pte_cb);
	if (ret)
		return ret;

	mmu->pgd_phys = __hyp_pa(host_kvm.pgt.pgd);
	mmu->arch = &host_kvm.arch;
	mmu->pgt = &host_kvm.pgt;
	WRITE_ONCE(mmu->vmid.vmid_gen, 0);
	WRITE_ONCE(mmu->vmid.vmid, 0);

	return 0;
}

int __pkvm_prot_finalize(void)
{
	struct kvm_s2_mmu *mmu = &host_kvm.arch.mmu;
	struct kvm_nvhe_init_params *params = this_cpu_ptr(&kvm_init_params);

	if (params->hcr_el2 & HCR_VM)
		return -EPERM;

	params->vttbr = kvm_get_vttbr(mmu);
	params->vtcr = host_kvm.arch.vtcr;
	params->hcr_el2 |= HCR_VM;
	kvm_flush_dcache_to_poc(params, sizeof(*params));

	write_sysreg(params->hcr_el2, hcr_el2);
	__load_stage2(&host_kvm.arch.mmu, &host_kvm.arch);

	/*
	 * Make sure to have an ISB before the TLB maintenance below but only
	 * when __load_stage2() doesn't include one already.
	 */
	asm(ALTERNATIVE("isb", "nop", ARM64_WORKAROUND_SPECULATIVE_AT));

	/* Invalidate stale HCR bits that may be cached in TLBs */
	__tlbi(vmalls12e1);
	dsb(nsh);
	isb();

	return 0;
}

static int host_stage2_unmap_dev_all(void)
{
	struct kvm_pgtable *pgt = &host_kvm.pgt;
	struct memblock_region *reg;
	u64 addr = 0;
	int i, ret;

	/* Unmap all non-memory regions to recycle the pages */
	for (i = 0; i < hyp_memblock_nr; i++, addr = reg->base + reg->size) {
		reg = &hyp_memory[i];
		ret = kvm_pgtable_stage2_unmap(pgt, addr, reg->base - addr);
		if (ret)
			return ret;
	}
	return kvm_pgtable_stage2_unmap(pgt, addr, BIT(pgt->ia_bits) - addr);
}

struct kvm_mem_range {
	u64 start;
	u64 end;
};

static bool find_mem_range(phys_addr_t addr, struct kvm_mem_range *range)
{
	int cur, left = 0, right = hyp_memblock_nr;
	struct memblock_region *reg;
	phys_addr_t end;

	range->start = 0;
	range->end = ULONG_MAX;

	/* The list of memblock regions is sorted, binary search it */
	while (left < right) {
		cur = (left + right) >> 1;
		reg = &hyp_memory[cur];
		end = reg->base + reg->size;
		if (addr < reg->base) {
			right = cur;
			range->end = reg->base;
		} else if (addr >= end) {
			left = cur + 1;
			range->start = end;
		} else {
			range->start = reg->base;
			range->end = end;
			return true;
		}
	}

	return false;
}

bool addr_is_memory(phys_addr_t phys)
{
	struct kvm_mem_range range;

	return find_mem_range(phys, &range);
}

static bool is_in_mem_range(u64 addr, struct kvm_mem_range *range)
{
	return range->start <= addr && addr < range->end;
}

static bool range_is_memory(u64 start, u64 end)
{
	struct kvm_mem_range r;

	if (!find_mem_range(start, &r))
		return false;

	return is_in_mem_range(end - 1, &r);
}

static inline int __host_stage2_idmap(u64 start, u64 end,
				      enum kvm_pgtable_prot prot)
{
	return kvm_pgtable_stage2_map(&host_kvm.pgt, start, end - start, start,
				      prot, &host_s2_pool);
}

/*
 * The pool has been provided with enough pages to cover all of memory with
 * page granularity, but it is difficult to know how much of the MMIO range
 * we will need to cover upfront, so we may need to 'recycle' the pages if we
 * run out.
 */
#define host_stage2_try(fn, ...)					\
	({								\
		int __ret;						\
		hyp_assert_lock_held(&host_kvm.lock);			\
		__ret = fn(__VA_ARGS__);				\
		if (__ret == -ENOMEM) {					\
			__ret = host_stage2_unmap_dev_all();		\
			if (!__ret)					\
				__ret = fn(__VA_ARGS__);		\
		}							\
		__ret;							\
	 })

static inline bool range_included(struct kvm_mem_range *child,
				  struct kvm_mem_range *parent)
{
	return parent->start <= child->start && child->end <= parent->end;
}

static int host_stage2_adjust_range(u64 addr, struct kvm_mem_range *range)
{
	struct kvm_mem_range cur;
	kvm_pte_t pte;
	u32 level;
	int ret;

	hyp_assert_lock_held(&host_kvm.lock);
	ret = kvm_pgtable_get_leaf(&host_kvm.pgt, addr, &pte, &level);
	if (ret)
		return ret;

	if (kvm_pte_valid(pte))
		return -EAGAIN;

	if (pte)
		return -EPERM;

	do {
		u64 granule = kvm_granule_size(level);
		cur.start = ALIGN_DOWN(addr, granule);
		cur.end = cur.start + granule;
		level++;
	} while ((level < KVM_PGTABLE_MAX_LEVELS) &&
			!(kvm_level_supports_block_mapping(level) &&
			  range_included(&cur, range)));

	*range = cur;

	return 0;
}

int host_stage2_idmap_locked(phys_addr_t addr, u64 size,
			     enum kvm_pgtable_prot prot)
{
	hyp_assert_lock_held(&host_kvm.lock);

	return host_stage2_try(__host_stage2_idmap, addr, addr + size, prot);
}

int host_stage2_set_owner_locked(phys_addr_t addr, u64 size, u8 owner_id)
{
	hyp_assert_lock_held(&host_kvm.lock);

	return host_stage2_try(kvm_pgtable_stage2_set_owner, &host_kvm.pgt,
			       addr, size, &host_s2_pool, owner_id);
}

static bool host_stage2_force_pte_cb(u64 addr, u64 end, enum kvm_pgtable_prot prot)
{
	/*
	 * Block mappings must be used with care in the host stage-2 as a
	 * kvm_pgtable_stage2_map() operation targeting a page in the range of
	 * an existing block will delete the block under the assumption that
	 * mappings in the rest of the block range can always be rebuilt lazily.
	 * That assumption is correct for the host stage-2 with RWX mappings
	 * targeting memory or RW mappings targeting MMIO ranges (see
	 * host_stage2_idmap() below which implements some of the host memory
	 * abort logic). However, this is not safe for any other mappings where
	 * the host stage-2 page-table is in fact the only place where this
	 * state is stored. In all those cases, it is safer to use page-level
	 * mappings, hence avoiding to lose the state because of side-effects in
	 * kvm_pgtable_stage2_map().
	 */
	if (range_is_memory(addr, end))
		return prot != PKVM_HOST_MEM_PROT;
	else
		return prot != PKVM_HOST_MMIO_PROT;
}

static int host_stage2_idmap(u64 addr)
{
	struct kvm_mem_range range;
	bool is_memory = find_mem_range(addr, &range);
	enum kvm_pgtable_prot prot;
	int ret;

	prot = is_memory ? PKVM_HOST_MEM_PROT : PKVM_HOST_MMIO_PROT;

	hyp_spin_lock(&host_kvm.lock);
	ret = host_stage2_adjust_range(addr, &range);
	if (ret)
		goto unlock;

	ret = host_stage2_idmap_locked(range.start, range.end - range.start, prot);
unlock:
	hyp_spin_unlock(&host_kvm.lock);

	return ret;
}

static inline bool check_prot(enum kvm_pgtable_prot prot,
			      enum kvm_pgtable_prot required,
			      enum kvm_pgtable_prot denied)
{
	return (prot & (required | denied)) == required;
}

int __pkvm_host_share_hyp(u64 pfn)
{
	phys_addr_t addr = hyp_pfn_to_phys(pfn);
	enum kvm_pgtable_prot prot, cur;
	void *virt = __hyp_va(addr);
	enum pkvm_page_state state;
	kvm_pte_t pte;
	int ret;

	if (!addr_is_memory(addr))
		return -EINVAL;

	hyp_spin_lock(&host_kvm.lock);
	hyp_spin_lock(&pkvm_pgd_lock);

	ret = kvm_pgtable_get_leaf(&host_kvm.pgt, addr, &pte, NULL);
	if (ret)
		goto unlock;
	if (!pte)
		goto map_shared;

	/*
	 * Check attributes in the host stage-2 PTE. We need the page to be:
	 *  - mapped RWX as we're sharing memory;
	 *  - not borrowed, as that implies absence of ownership.
	 * Otherwise, we can't let it got through
	 */
	cur = kvm_pgtable_stage2_pte_prot(pte);
	prot = pkvm_mkstate(0, PKVM_PAGE_SHARED_BORROWED);
	if (!check_prot(cur, PKVM_HOST_MEM_PROT, prot)) {
		ret = -EPERM;
		goto unlock;
	}

	state = pkvm_getstate(cur);
	if (state == PKVM_PAGE_OWNED)
		goto map_shared;

	/*
	 * Tolerate double-sharing the same page, but this requires
	 * cross-checking the hypervisor stage-1.
	 */
	if (state != PKVM_PAGE_SHARED_OWNED) {
		ret = -EPERM;
		goto unlock;
	}

	ret = kvm_pgtable_get_leaf(&pkvm_pgtable, (u64)virt, &pte, NULL);
	if (ret)
		goto unlock;

	/*
	 * If the page has been shared with the hypervisor, it must be
	 * already mapped as SHARED_BORROWED in its stage-1.
	 */
	cur = kvm_pgtable_hyp_pte_prot(pte);
	prot = pkvm_mkstate(PAGE_HYP, PKVM_PAGE_SHARED_BORROWED);
	if (!check_prot(cur, prot, ~prot))
		ret = -EPERM;
	goto unlock;

map_shared:
	/*
	 * If the page is not yet shared, adjust mappings in both page-tables
	 * while both locks are held.
	 */
	prot = pkvm_mkstate(PAGE_HYP, PKVM_PAGE_SHARED_BORROWED);
	ret = pkvm_create_mappings_locked(virt, virt + PAGE_SIZE, prot);
	BUG_ON(ret);

	prot = pkvm_mkstate(PKVM_HOST_MEM_PROT, PKVM_PAGE_SHARED_OWNED);
	ret = host_stage2_idmap_locked(addr, PAGE_SIZE, prot);
	BUG_ON(ret);

unlock:
	hyp_spin_unlock(&pkvm_pgd_lock);
	hyp_spin_unlock(&host_kvm.lock);

	return ret;
}

void handle_host_mem_abort(struct kvm_cpu_context *host_ctxt)
{
	struct kvm_vcpu_fault_info fault;
	u64 esr, addr;
	int ret = 0;

	esr = read_sysreg_el2(SYS_ESR);
	BUG_ON(!__get_fault_info(esr, &fault));

	addr = (fault.hpfar_el2 & HPFAR_MASK) << 8;
	ret = host_stage2_idmap(addr);
	BUG_ON(ret && ret != -EAGAIN);
}