summaryrefslogtreecommitdiff
path: root/arch/x86/kernel/umip.c
blob: 1f1f2d54dab5aae4d76d9592038dea5128a42826 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
/*
 * umip.c Emulation for instruction protected by the Intel User-Mode
 * Instruction Prevention feature
 *
 * Copyright (c) 2017, Intel Corporation.
 * Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
 */

#include <linux/uaccess.h>
#include <asm/umip.h>
#include <asm/traps.h>
#include <asm/insn.h>
#include <asm/insn-eval.h>
#include <linux/ratelimit.h>

#undef pr_fmt
#define pr_fmt(fmt) "umip: " fmt

/** DOC: Emulation for User-Mode Instruction Prevention (UMIP)
 *
 * The feature User-Mode Instruction Prevention present in recent Intel
 * processor prevents a group of instructions (sgdt, sidt, sldt, smsw, and str)
 * from being executed with CPL > 0. Otherwise, a general protection fault is
 * issued.
 *
 * Rather than relaying to the user space the general protection fault caused by
 * the UMIP-protected instructions (in the form of a SIGSEGV signal), it can be
 * trapped and emulate the result of such instructions to provide dummy values.
 * This allows to both conserve the current kernel behavior and not reveal the
 * system resources that UMIP intends to protect (i.e., the locations of the
 * global descriptor and interrupt descriptor tables, the segment selectors of
 * the local descriptor table, the value of the task state register and the
 * contents of the CR0 register).
 *
 * This emulation is needed because certain applications (e.g., WineHQ and
 * DOSEMU2) rely on this subset of instructions to function.
 *
 * The instructions protected by UMIP can be split in two groups. Those which
 * return a kernel memory address (sgdt and sidt) and those which return a
 * value (sldt, str and smsw).
 *
 * For the instructions that return a kernel memory address, applications
 * such as WineHQ rely on the result being located in the kernel memory space,
 * not the actual location of the table. The result is emulated as a hard-coded
 * value that, lies close to the top of the kernel memory. The limit for the GDT
 * and the IDT are set to zero.
 *
 * Given that sldt and str are not commonly used in programs that run on WineHQ
 * or DOSEMU2, they are not emulated.
 *
 * The instruction smsw is emulated to return the value that the register CR0
 * has at boot time as set in the head_32.
 *
 * Also, emulation is provided only for 32-bit processes; 64-bit processes
 * that attempt to use the instructions that UMIP protects will receive the
 * SIGSEGV signal issued as a consequence of the general protection fault.
 *
 * Care is taken to appropriately emulate the results when segmentation is
 * used. That is, rather than relying on USER_DS and USER_CS, the function
 * insn_get_addr_ref() inspects the segment descriptor pointed by the
 * registers in pt_regs. This ensures that we correctly obtain the segment
 * base address and the address and operand sizes even if the user space
 * application uses a local descriptor table.
 */

#define UMIP_DUMMY_GDT_BASE 0xfffe0000
#define UMIP_DUMMY_IDT_BASE 0xffff0000

/*
 * The SGDT and SIDT instructions store the contents of the global descriptor
 * table and interrupt table registers, respectively. The destination is a
 * memory operand of X+2 bytes. X bytes are used to store the base address of
 * the table and 2 bytes are used to store the limit. In 32-bit processes, the
 * only processes for which emulation is provided, X has a value of 4.
 */
#define UMIP_GDT_IDT_BASE_SIZE 4
#define UMIP_GDT_IDT_LIMIT_SIZE 2

#define	UMIP_INST_SGDT	0	/* 0F 01 /0 */
#define	UMIP_INST_SIDT	1	/* 0F 01 /1 */
#define	UMIP_INST_SMSW	2	/* 0F 01 /4 */
#define	UMIP_INST_SLDT  3       /* 0F 00 /0 */
#define	UMIP_INST_STR   4       /* 0F 00 /1 */

/**
 * identify_insn() - Identify a UMIP-protected instruction
 * @insn:	Instruction structure with opcode and ModRM byte.
 *
 * From the opcode and ModRM.reg in @insn identify, if any, a UMIP-protected
 * instruction that can be emulated.
 *
 * Returns:
 *
 * On success, a constant identifying a specific UMIP-protected instruction that
 * can be emulated.
 *
 * -EINVAL on error or when not an UMIP-protected instruction that can be
 * emulated.
 */
static int identify_insn(struct insn *insn)
{
	/* By getting modrm we also get the opcode. */
	insn_get_modrm(insn);

	if (!insn->modrm.nbytes)
		return -EINVAL;

	/* All the instructions of interest start with 0x0f. */
	if (insn->opcode.bytes[0] != 0xf)
		return -EINVAL;

	if (insn->opcode.bytes[1] == 0x1) {
		switch (X86_MODRM_REG(insn->modrm.value)) {
		case 0:
			return UMIP_INST_SGDT;
		case 1:
			return UMIP_INST_SIDT;
		case 4:
			return UMIP_INST_SMSW;
		default:
			return -EINVAL;
		}
	} else if (insn->opcode.bytes[1] == 0x0) {
		if (X86_MODRM_REG(insn->modrm.value) == 0)
			return UMIP_INST_SLDT;
		else if (X86_MODRM_REG(insn->modrm.value) == 1)
			return UMIP_INST_STR;
		else
			return -EINVAL;
	} else {
		return -EINVAL;
	}
}

/**
 * emulate_umip_insn() - Emulate UMIP instructions and return dummy values
 * @insn:	Instruction structure with operands
 * @umip_inst:	A constant indicating the instruction to emulate
 * @data:	Buffer into which the dummy result is stored
 * @data_size:	Size of the emulated result
 *
 * Emulate an instruction protected by UMIP and provide a dummy result. The
 * result of the emulation is saved in @data. The size of the results depends
 * on both the instruction and type of operand (register vs memory address).
 * The size of the result is updated in @data_size. Caller is responsible
 * of providing a @data buffer of at least UMIP_GDT_IDT_BASE_SIZE +
 * UMIP_GDT_IDT_LIMIT_SIZE bytes.
 *
 * Returns:
 *
 * 0 on success, -EINVAL on error while emulating.
 */
static int emulate_umip_insn(struct insn *insn, int umip_inst,
			     unsigned char *data, int *data_size)
{
	unsigned long dummy_base_addr, dummy_value;
	unsigned short dummy_limit = 0;

	if (!data || !data_size || !insn)
		return -EINVAL;
	/*
	 * These two instructions return the base address and limit of the
	 * global and interrupt descriptor table, respectively. According to the
	 * Intel Software Development manual, the base address can be 24-bit,
	 * 32-bit or 64-bit. Limit is always 16-bit. If the operand size is
	 * 16-bit, the returned value of the base address is supposed to be a
	 * zero-extended 24-byte number. However, it seems that a 32-byte number
	 * is always returned irrespective of the operand size.
	 */
	if (umip_inst == UMIP_INST_SGDT || umip_inst == UMIP_INST_SIDT) {
		/* SGDT and SIDT do not use registers operands. */
		if (X86_MODRM_MOD(insn->modrm.value) == 3)
			return -EINVAL;

		if (umip_inst == UMIP_INST_SGDT)
			dummy_base_addr = UMIP_DUMMY_GDT_BASE;
		else
			dummy_base_addr = UMIP_DUMMY_IDT_BASE;

		*data_size = UMIP_GDT_IDT_LIMIT_SIZE + UMIP_GDT_IDT_BASE_SIZE;

		memcpy(data + 2, &dummy_base_addr, UMIP_GDT_IDT_BASE_SIZE);
		memcpy(data, &dummy_limit, UMIP_GDT_IDT_LIMIT_SIZE);

	} else if (umip_inst == UMIP_INST_SMSW) {
		dummy_value = CR0_STATE;

		/*
		 * Even though the CR0 register has 4 bytes, the number
		 * of bytes to be copied in the result buffer is determined
		 * by whether the operand is a register or a memory location.
		 * If operand is a register, return as many bytes as the operand
		 * size. If operand is memory, return only the two least
		 * siginificant bytes of CR0.
		 */
		if (X86_MODRM_MOD(insn->modrm.value) == 3)
			*data_size = insn->opnd_bytes;
		else
			*data_size = 2;

		memcpy(data, &dummy_value, *data_size);
	/* STR and SLDT  are not emulated */
	} else {
		return -EINVAL;
	}

	return 0;
}

/**
 * force_sig_info_umip_fault() - Force a SIGSEGV with SEGV_MAPERR
 * @addr:	Address that caused the signal
 * @regs:	Register set containing the instruction pointer
 *
 * Force a SIGSEGV signal with SEGV_MAPERR as the error code. This function is
 * intended to be used to provide a segmentation fault when the result of the
 * UMIP emulation could not be copied to the user space memory.
 *
 * Returns: none
 */
static void force_sig_info_umip_fault(void __user *addr, struct pt_regs *regs)
{
	siginfo_t info;
	struct task_struct *tsk = current;

	tsk->thread.cr2		= (unsigned long)addr;
	tsk->thread.error_code	= X86_PF_USER | X86_PF_WRITE;
	tsk->thread.trap_nr	= X86_TRAP_PF;

	info.si_signo	= SIGSEGV;
	info.si_errno	= 0;
	info.si_code	= SEGV_MAPERR;
	info.si_addr	= addr;
	force_sig_info(SIGSEGV, &info, tsk);

	if (!(show_unhandled_signals && unhandled_signal(tsk, SIGSEGV)))
		return;

	pr_err_ratelimited("%s[%d] umip emulation segfault ip:%lx sp:%lx error:%x in %lx\n",
			   tsk->comm, task_pid_nr(tsk), regs->ip,
			   regs->sp, X86_PF_USER | X86_PF_WRITE,
			   regs->ip);
}

/**
 * fixup_umip_exception() - Fixup a general protection fault caused by UMIP
 * @regs:	Registers as saved when entering the #GP handler
 *
 * The instructions sgdt, sidt, str, smsw, sldt cause a general protection
 * fault if executed with CPL > 0 (i.e., from user space). If the offending
 * user-space process is not in long mode, this function fixes the exception
 * up and provides dummy results for sgdt, sidt and smsw; str and sldt are not
 * fixed up. Also long mode user-space processes are not fixed up.
 *
 * If operands are memory addresses, results are copied to user-space memory as
 * indicated by the instruction pointed by eIP using the registers indicated in
 * the instruction operands. If operands are registers, results are copied into
 * the context that was saved when entering kernel mode.
 *
 * Returns:
 *
 * True if emulation was successful; false if not.
 */
bool fixup_umip_exception(struct pt_regs *regs)
{
	int not_copied, nr_copied, reg_offset, dummy_data_size, umip_inst;
	unsigned long seg_base = 0, *reg_addr;
	/* 10 bytes is the maximum size of the result of UMIP instructions */
	unsigned char dummy_data[10] = { 0 };
	unsigned char buf[MAX_INSN_SIZE];
	void __user *uaddr;
	struct insn insn;
	char seg_defs;

	if (!regs)
		return false;

	/*
	 * If not in user-space long mode, a custom code segment could be in
	 * use. This is true in protected mode (if the process defined a local
	 * descriptor table), or virtual-8086 mode. In most of the cases
	 * seg_base will be zero as in USER_CS.
	 */
	if (!user_64bit_mode(regs))
		seg_base = insn_get_seg_base(regs, INAT_SEG_REG_CS);

	if (seg_base == -1L)
		return false;

	not_copied = copy_from_user(buf, (void __user *)(seg_base + regs->ip),
				    sizeof(buf));
	nr_copied = sizeof(buf) - not_copied;

	/*
	 * The copy_from_user above could have failed if user code is protected
	 * by a memory protection key. Give up on emulation in such a case.
	 * Should we issue a page fault?
	 */
	if (!nr_copied)
		return false;

	insn_init(&insn, buf, nr_copied, user_64bit_mode(regs));

	/*
	 * Override the default operand and address sizes with what is specified
	 * in the code segment descriptor. The instruction decoder only sets
	 * the address size it to either 4 or 8 address bytes and does nothing
	 * for the operand bytes. This OK for most of the cases, but we could
	 * have special cases where, for instance, a 16-bit code segment
	 * descriptor is used.
	 * If there is an address override prefix, the instruction decoder
	 * correctly updates these values, even for 16-bit defaults.
	 */
	seg_defs = insn_get_code_seg_params(regs);
	if (seg_defs == -EINVAL)
		return false;

	insn.addr_bytes = INSN_CODE_SEG_ADDR_SZ(seg_defs);
	insn.opnd_bytes = INSN_CODE_SEG_OPND_SZ(seg_defs);

	insn_get_length(&insn);
	if (nr_copied < insn.length)
		return false;

	umip_inst = identify_insn(&insn);
	if (umip_inst < 0)
		return false;

	/* Do not emulate SLDT, STR or user long mode processes. */
	if (umip_inst == UMIP_INST_STR || umip_inst == UMIP_INST_SLDT || user_64bit_mode(regs))
		return false;

	if (emulate_umip_insn(&insn, umip_inst, dummy_data, &dummy_data_size))
		return false;

	/*
	 * If operand is a register, write result to the copy of the register
	 * value that was pushed to the stack when entering into kernel mode.
	 * Upon exit, the value we write will be restored to the actual hardware
	 * register.
	 */
	if (X86_MODRM_MOD(insn.modrm.value) == 3) {
		reg_offset = insn_get_modrm_rm_off(&insn, regs);

		/*
		 * Negative values are usually errors. In memory addressing,
		 * the exception is -EDOM. Since we expect a register operand,
		 * all negative values are errors.
		 */
		if (reg_offset < 0)
			return false;

		reg_addr = (unsigned long *)((unsigned long)regs + reg_offset);
		memcpy(reg_addr, dummy_data, dummy_data_size);
	} else {
		uaddr = insn_get_addr_ref(&insn, regs);
		if ((unsigned long)uaddr == -1L)
			return false;

		nr_copied = copy_to_user(uaddr, dummy_data, dummy_data_size);
		if (nr_copied  > 0) {
			/*
			 * If copy fails, send a signal and tell caller that
			 * fault was fixed up.
			 */
			force_sig_info_umip_fault(uaddr, regs);
			return true;
		}
	}

	/* increase IP to let the program keep going */
	regs->ip += insn.length;
	return true;
}