summaryrefslogtreecommitdiff
path: root/drivers/clocksource/timer-stm32.c
blob: 928ac281f937a8cac7811df9376d40912fed0728 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
/*
 * Copyright (C) Maxime Coquelin 2015
 * Author:  Maxime Coquelin <mcoquelin.stm32@gmail.com>
 * License terms:  GNU General Public License (GPL), version 2
 *
 * Inspired by time-efm32.c from Uwe Kleine-Koenig
 */

#include <linux/kernel.h>
#include <linux/clocksource.h>
#include <linux/clockchips.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/clk.h>
#include <linux/reset.h>
#include <linux/slab.h>

#include "timer-of.h"

#define TIM_CR1		0x00
#define TIM_DIER	0x0c
#define TIM_SR		0x10
#define TIM_EGR		0x14
#define TIM_PSC		0x28
#define TIM_ARR		0x2c

#define TIM_CR1_CEN	BIT(0)
#define TIM_CR1_OPM	BIT(3)
#define TIM_CR1_ARPE	BIT(7)

#define TIM_DIER_UIE	BIT(0)

#define TIM_SR_UIF	BIT(0)

#define TIM_EGR_UG	BIT(0)

#define TIM_PSC_MAX	USHRT_MAX
#define TIM_PSC_CLKRATE	10000

static int stm32_clock_event_shutdown(struct clock_event_device *clkevt)
{
	struct timer_of *to = to_timer_of(clkevt);

	writel_relaxed(0, timer_of_base(to) + TIM_CR1);

	return 0;
}

static int stm32_clock_event_set_periodic(struct clock_event_device *clkevt)
{
	struct timer_of *to = to_timer_of(clkevt);

	writel_relaxed(timer_of_period(to), timer_of_base(to) + TIM_ARR);
	writel_relaxed(TIM_CR1_ARPE | TIM_CR1_CEN, timer_of_base(to) + TIM_CR1);

	return 0;
}

static int stm32_clock_event_set_next_event(unsigned long evt,
					    struct clock_event_device *clkevt)
{
	struct timer_of *to = to_timer_of(clkevt);

	writel_relaxed(evt, timer_of_base(to) + TIM_ARR);
	writel_relaxed(TIM_CR1_ARPE | TIM_CR1_OPM | TIM_CR1_CEN,
		       timer_of_base(to) + TIM_CR1);

	return 0;
}

static irqreturn_t stm32_clock_event_handler(int irq, void *dev_id)
{
	struct clock_event_device *clkevt = (struct clock_event_device *)dev_id;
	struct timer_of *to = to_timer_of(clkevt);

	writel_relaxed(0, timer_of_base(to) + TIM_SR);

	clkevt->event_handler(clkevt);

	return IRQ_HANDLED;
}

/**
 * stm32_timer_width - Sort out the timer width (32/16)
 * @to: a pointer to a timer-of structure
 *
 * Write the 32-bit max value and read/return the result. If the timer
 * is 32 bits wide, the result will be UINT_MAX, otherwise it will
 * be truncated by the 16-bit register to USHRT_MAX.
 *
 * Returns UINT_MAX if the timer is 32 bits wide, USHRT_MAX if it is a
 * 16 bits wide.
 */
static u32 __init stm32_timer_width(struct timer_of *to)
{
	writel_relaxed(UINT_MAX, timer_of_base(to) + TIM_ARR);

	return readl_relaxed(timer_of_base(to) + TIM_ARR);
}

static void __init stm32_clockevent_init(struct timer_of *to)
{
	u32 width = 0;
	int prescaler;

	to->clkevt.name = to->np->full_name;
	to->clkevt.features = CLOCK_EVT_FEAT_PERIODIC;
	to->clkevt.set_state_shutdown = stm32_clock_event_shutdown;
	to->clkevt.set_state_periodic = stm32_clock_event_set_periodic;
	to->clkevt.set_state_oneshot = stm32_clock_event_shutdown;
	to->clkevt.tick_resume = stm32_clock_event_shutdown;
	to->clkevt.set_next_event = stm32_clock_event_set_next_event;

	width = stm32_timer_width(to);
	if (width == UINT_MAX) {
		prescaler = 1;
		to->clkevt.rating = 250;
	} else {
		prescaler = DIV_ROUND_CLOSEST(timer_of_rate(to),
					      TIM_PSC_CLKRATE);
		/*
		 * The prescaler register is an u16, the variable
		 * can't be greater than TIM_PSC_MAX, let's cap it in
		 * this case.
		 */
		prescaler = prescaler < TIM_PSC_MAX ? prescaler : TIM_PSC_MAX;
		to->clkevt.rating = 100;
	}
	writel_relaxed(0, timer_of_base(to) + TIM_ARR);

	writel_relaxed(prescaler - 1, timer_of_base(to) + TIM_PSC);
	writel_relaxed(TIM_EGR_UG, timer_of_base(to) + TIM_EGR);
	writel_relaxed(0, timer_of_base(to) + TIM_SR);
	writel_relaxed(TIM_DIER_UIE, timer_of_base(to) + TIM_DIER);

	/* Adjust rate and period given the prescaler value */
	to->of_clk.rate = DIV_ROUND_CLOSEST(to->of_clk.rate, prescaler);
	to->of_clk.period = DIV_ROUND_UP(to->of_clk.rate, HZ);

	clockevents_config_and_register(&to->clkevt,
					timer_of_rate(to), 0x1, width);

	pr_info("%pOF: STM32 clockevent driver initialized (%d bits)\n",
		to->np, width == UINT_MAX ? 32 : 16);
}

static int __init stm32_timer_init(struct device_node *node)
{
	struct reset_control *rstc;
	struct timer_of *to;
	int ret;

	to = kzalloc(sizeof(*to), GFP_KERNEL);
	if (!to)
		return -ENOMEM;

	to->flags = TIMER_OF_IRQ | TIMER_OF_CLOCK | TIMER_OF_BASE;
	to->of_irq.handler = stm32_clock_event_handler;

	ret = timer_of_init(node, to);
	if (ret)
		goto err;

	rstc = of_reset_control_get(node, NULL);
	if (!IS_ERR(rstc)) {
		reset_control_assert(rstc);
		reset_control_deassert(rstc);
	}

	stm32_clockevent_init(to);
	return 0;
err:
	kfree(to);
	return ret;
}

TIMER_OF_DECLARE(stm32, "st,stm32-timer", stm32_timer_init);