summaryrefslogtreecommitdiff
path: root/drivers/net/ethernet/sfc/nic.c
blob: a33ed473cc8af87ca950a719d1b918c38c9ab0d0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
// SPDX-License-Identifier: GPL-2.0-only
/****************************************************************************
 * Driver for Solarflare network controllers and boards
 * Copyright 2005-2006 Fen Systems Ltd.
 * Copyright 2006-2013 Solarflare Communications Inc.
 */

#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/module.h>
#include <linux/seq_file.h>
#include <linux/cpu_rmap.h>
#include "net_driver.h"
#include "bitfield.h"
#include "efx.h"
#include "nic.h"
#include "ef10_regs.h"
#include "io.h"
#include "workarounds.h"
#include "mcdi_pcol.h"

/**************************************************************************
 *
 * Generic buffer handling
 * These buffers are used for interrupt status, MAC stats, etc.
 *
 **************************************************************************/

int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
			 unsigned int len, gfp_t gfp_flags)
{
	buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
					  &buffer->dma_addr, gfp_flags);
	if (!buffer->addr)
		return -ENOMEM;
	buffer->len = len;
	return 0;
}

void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
{
	if (buffer->addr) {
		dma_free_coherent(&efx->pci_dev->dev, buffer->len,
				  buffer->addr, buffer->dma_addr);
		buffer->addr = NULL;
	}
}

/* Check whether an event is present in the eventq at the current
 * read pointer.  Only useful for self-test.
 */
bool efx_nic_event_present(struct efx_channel *channel)
{
	return efx_event_present(efx_event(channel, channel->eventq_read_ptr));
}

void efx_nic_event_test_start(struct efx_channel *channel)
{
	channel->event_test_cpu = -1;
	smp_wmb();
	channel->efx->type->ev_test_generate(channel);
}

int efx_nic_irq_test_start(struct efx_nic *efx)
{
	efx->last_irq_cpu = -1;
	smp_wmb();
	return efx->type->irq_test_generate(efx);
}

/* Hook interrupt handler(s)
 * Try MSI and then legacy interrupts.
 */
int efx_nic_init_interrupt(struct efx_nic *efx)
{
	struct efx_channel *channel;
	unsigned int n_irqs;
	int rc;

	if (!EFX_INT_MODE_USE_MSI(efx)) {
		rc = request_irq(efx->legacy_irq,
				 efx->type->irq_handle_legacy, IRQF_SHARED,
				 efx->name, efx);
		if (rc) {
			netif_err(efx, drv, efx->net_dev,
				  "failed to hook legacy IRQ %d\n",
				  efx->pci_dev->irq);
			goto fail1;
		}
		efx->irqs_hooked = true;
		return 0;
	}

#ifdef CONFIG_RFS_ACCEL
	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
		efx->net_dev->rx_cpu_rmap =
			alloc_irq_cpu_rmap(efx->n_rx_channels);
		if (!efx->net_dev->rx_cpu_rmap) {
			rc = -ENOMEM;
			goto fail1;
		}
	}
#endif

	/* Hook MSI or MSI-X interrupt */
	n_irqs = 0;
	efx_for_each_channel(channel, efx) {
		rc = request_irq(channel->irq, efx->type->irq_handle_msi,
				 IRQF_PROBE_SHARED, /* Not shared */
				 efx->msi_context[channel->channel].name,
				 &efx->msi_context[channel->channel]);
		if (rc) {
			netif_err(efx, drv, efx->net_dev,
				  "failed to hook IRQ %d\n", channel->irq);
			goto fail2;
		}
		++n_irqs;

#ifdef CONFIG_RFS_ACCEL
		if (efx->interrupt_mode == EFX_INT_MODE_MSIX &&
		    channel->channel < efx->n_rx_channels) {
			rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap,
					      channel->irq);
			if (rc)
				goto fail2;
		}
#endif
	}

	efx->irqs_hooked = true;
	return 0;

 fail2:
#ifdef CONFIG_RFS_ACCEL
	free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
	efx->net_dev->rx_cpu_rmap = NULL;
#endif
	efx_for_each_channel(channel, efx) {
		if (n_irqs-- == 0)
			break;
		free_irq(channel->irq, &efx->msi_context[channel->channel]);
	}
 fail1:
	return rc;
}

void efx_nic_fini_interrupt(struct efx_nic *efx)
{
	struct efx_channel *channel;

#ifdef CONFIG_RFS_ACCEL
	free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
	efx->net_dev->rx_cpu_rmap = NULL;
#endif

	if (!efx->irqs_hooked)
		return;
	if (EFX_INT_MODE_USE_MSI(efx)) {
		/* Disable MSI/MSI-X interrupts */
		efx_for_each_channel(channel, efx)
			free_irq(channel->irq,
				 &efx->msi_context[channel->channel]);
	} else {
		/* Disable legacy interrupt */
		free_irq(efx->legacy_irq, efx);
	}
	efx->irqs_hooked = false;
}

/* Register dump */

#define REGISTER_REVISION_ED	4
#define REGISTER_REVISION_EZ	4	/* latest EF10 revision */

struct efx_nic_reg {
	u32 offset:24;
	u32 min_revision:3, max_revision:3;
};

#define REGISTER(name, arch, min_rev, max_rev) {			\
	arch ## R_ ## min_rev ## max_rev ## _ ## name,			\
	REGISTER_REVISION_ ## arch ## min_rev,				\
	REGISTER_REVISION_ ## arch ## max_rev				\
}
#define REGISTER_DZ(name) REGISTER(name, E, D, Z)

static const struct efx_nic_reg efx_nic_regs[] = {
	/* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
	/* XX_CORE_STAT is partly RC */
	REGISTER_DZ(BIU_HW_REV_ID),
	REGISTER_DZ(MC_DB_LWRD),
	REGISTER_DZ(MC_DB_HWRD),
};

struct efx_nic_reg_table {
	u32 offset:24;
	u32 min_revision:3, max_revision:3;
	u32 step:6, rows:21;
};

#define REGISTER_TABLE_DIMENSIONS(_, offset, arch, min_rev, max_rev, step, rows) { \
	offset,								\
	REGISTER_REVISION_ ## arch ## min_rev,				\
	REGISTER_REVISION_ ## arch ## max_rev,				\
	step, rows							\
}
#define REGISTER_TABLE(name, arch, min_rev, max_rev)			\
	REGISTER_TABLE_DIMENSIONS(					\
		name, arch ## R_ ## min_rev ## max_rev ## _ ## name,	\
		arch, min_rev, max_rev,					\
		arch ## R_ ## min_rev ## max_rev ## _ ## name ## _STEP,	\
		arch ## R_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
#define REGISTER_TABLE_DZ(name) REGISTER_TABLE(name, E, D, Z)

static const struct efx_nic_reg_table efx_nic_reg_tables[] = {
	REGISTER_TABLE_DZ(BIU_MC_SFT_STATUS),
};

size_t efx_nic_get_regs_len(struct efx_nic *efx)
{
	const struct efx_nic_reg *reg;
	const struct efx_nic_reg_table *table;
	size_t len = 0;

	for (reg = efx_nic_regs;
	     reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
	     reg++)
		if (efx->type->revision >= reg->min_revision &&
		    efx->type->revision <= reg->max_revision)
			len += sizeof(efx_oword_t);

	for (table = efx_nic_reg_tables;
	     table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
	     table++)
		if (efx->type->revision >= table->min_revision &&
		    efx->type->revision <= table->max_revision)
			len += table->rows * min_t(size_t, table->step, 16);

	return len;
}

void efx_nic_get_regs(struct efx_nic *efx, void *buf)
{
	const struct efx_nic_reg *reg;
	const struct efx_nic_reg_table *table;

	for (reg = efx_nic_regs;
	     reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
	     reg++) {
		if (efx->type->revision >= reg->min_revision &&
		    efx->type->revision <= reg->max_revision) {
			efx_reado(efx, (efx_oword_t *)buf, reg->offset);
			buf += sizeof(efx_oword_t);
		}
	}

	for (table = efx_nic_reg_tables;
	     table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
	     table++) {
		size_t size, i;

		if (!(efx->type->revision >= table->min_revision &&
		      efx->type->revision <= table->max_revision))
			continue;

		size = min_t(size_t, table->step, 16);

		for (i = 0; i < table->rows; i++) {
			switch (table->step) {
			case 4: /* 32-bit SRAM */
				efx_readd(efx, buf, table->offset + 4 * i);
				break;
			case 16: /* 128-bit-readable register */
				efx_reado_table(efx, buf, table->offset, i);
				break;
			case 32: /* 128-bit register, interleaved */
				efx_reado_table(efx, buf, table->offset, 2 * i);
				break;
			default:
				WARN_ON(1);
				return;
			}
			buf += size;
		}
	}
}

/**
 * efx_nic_describe_stats - Describe supported statistics for ethtool
 * @desc: Array of &struct efx_hw_stat_desc describing the statistics
 * @count: Length of the @desc array
 * @mask: Bitmask of which elements of @desc are enabled
 * @names: Buffer to copy names to, or %NULL.  The names are copied
 *	starting at intervals of %ETH_GSTRING_LEN bytes.
 *
 * Returns the number of visible statistics, i.e. the number of set
 * bits in the first @count bits of @mask for which a name is defined.
 */
size_t efx_nic_describe_stats(const struct efx_hw_stat_desc *desc, size_t count,
			      const unsigned long *mask, u8 *names)
{
	size_t visible = 0;
	size_t index;

	for_each_set_bit(index, mask, count) {
		if (desc[index].name) {
			if (names) {
				strscpy(names, desc[index].name,
					ETH_GSTRING_LEN);
				names += ETH_GSTRING_LEN;
			}
			++visible;
		}
	}

	return visible;
}

/**
 * efx_nic_copy_stats - Copy stats from the DMA buffer in to an
 *	intermediate buffer. This is used to get a consistent
 *	set of stats while the DMA buffer can be written at any time
 *	by the NIC.
 * @efx: The associated NIC.
 * @dest: Destination buffer. Must be the same size as the DMA buffer.
 */
int efx_nic_copy_stats(struct efx_nic *efx, __le64 *dest)
{
	__le64 *dma_stats = efx->stats_buffer.addr;
	__le64 generation_start, generation_end;
	int rc = 0, retry;

	if (!dest)
		return 0;

	if (!dma_stats)
		goto return_zeroes;

	/* If we're unlucky enough to read statistics during the DMA, wait
	 * up to 10ms for it to finish (typically takes <500us)
	 */
	for (retry = 0; retry < 100; ++retry) {
		generation_end = dma_stats[efx->num_mac_stats - 1];
		if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
			goto return_zeroes;
		rmb();
		memcpy(dest, dma_stats, efx->num_mac_stats * sizeof(__le64));
		rmb();
		generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
		if (generation_end == generation_start)
			return 0; /* return good data */
		udelay(100);
	}

	rc = -EIO;

return_zeroes:
	memset(dest, 0, efx->num_mac_stats * sizeof(u64));
	return rc;
}

/**
 * efx_nic_update_stats - Convert statistics DMA buffer to array of u64
 * @desc: Array of &struct efx_hw_stat_desc describing the DMA buffer
 *	layout.  DMA widths of 0, 16, 32 and 64 are supported; where
 *	the width is specified as 0 the corresponding element of
 *	@stats is not updated.
 * @count: Length of the @desc array
 * @mask: Bitmask of which elements of @desc are enabled
 * @stats: Buffer to update with the converted statistics.  The length
 *	of this array must be at least @count.
 * @dma_buf: DMA buffer containing hardware statistics
 * @accumulate: If set, the converted values will be added rather than
 *	directly stored to the corresponding elements of @stats
 */
void efx_nic_update_stats(const struct efx_hw_stat_desc *desc, size_t count,
			  const unsigned long *mask,
			  u64 *stats, const void *dma_buf, bool accumulate)
{
	size_t index;

	for_each_set_bit(index, mask, count) {
		if (desc[index].dma_width) {
			const void *addr = dma_buf + desc[index].offset;
			u64 val;

			switch (desc[index].dma_width) {
			case 16:
				val = le16_to_cpup((__le16 *)addr);
				break;
			case 32:
				val = le32_to_cpup((__le32 *)addr);
				break;
			case 64:
				val = le64_to_cpup((__le64 *)addr);
				break;
			default:
				WARN_ON(1);
				val = 0;
				break;
			}

			if (accumulate)
				stats[index] += val;
			else
				stats[index] = val;
		}
	}
}

void efx_nic_fix_nodesc_drop_stat(struct efx_nic *efx, u64 *rx_nodesc_drops)
{
	/* if down, or this is the first update after coming up */
	if (!(efx->net_dev->flags & IFF_UP) || !efx->rx_nodesc_drops_prev_state)
		efx->rx_nodesc_drops_while_down +=
			*rx_nodesc_drops - efx->rx_nodesc_drops_total;
	efx->rx_nodesc_drops_total = *rx_nodesc_drops;
	efx->rx_nodesc_drops_prev_state = !!(efx->net_dev->flags & IFF_UP);
	*rx_nodesc_drops -= efx->rx_nodesc_drops_while_down;
}