summaryrefslogtreecommitdiff
path: root/drivers/platform/x86/intel/uncore-frequency/uncore-frequency.c
blob: c61f804dd44e820ac65563517b5f1a1a2d02a685 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
// SPDX-License-Identifier: GPL-2.0
/*
 * Intel Uncore Frequency Setting
 * Copyright (c) 2022, Intel Corporation.
 * All rights reserved.
 *
 * Provide interface to set MSR 620 at a granularity of per die. On CPU online,
 * one control CPU is identified per die to read/write limit. This control CPU
 * is changed, if the CPU state is changed to offline. When the last CPU is
 * offline in a die then remove the sysfs object for that die.
 * The majority of actual code is related to sysfs create and read/write
 * attributes.
 *
 * Author: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
 */

#include <linux/cpu.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/suspend.h>
#include <asm/cpu_device_id.h>
#include <asm/intel-family.h>

#include "uncore-frequency-common.h"

/* Max instances for uncore data, one for each die */
static int uncore_max_entries __read_mostly;
/* Storage for uncore data for all instances */
static struct uncore_data *uncore_instances;
/* Stores the CPU mask of the target CPUs to use during uncore read/write */
static cpumask_t uncore_cpu_mask;
/* CPU online callback register instance */
static enum cpuhp_state uncore_hp_state __read_mostly;

#define MSR_UNCORE_RATIO_LIMIT	0x620
#define MSR_UNCORE_PERF_STATUS	0x621
#define UNCORE_FREQ_KHZ_MULTIPLIER	100000

static int uncore_read_control_freq(struct uncore_data *data, unsigned int *min,
				    unsigned int *max)
{
	u64 cap;
	int ret;

	if (data->control_cpu < 0)
		return -ENXIO;

	ret = rdmsrl_on_cpu(data->control_cpu, MSR_UNCORE_RATIO_LIMIT, &cap);
	if (ret)
		return ret;

	*max = (cap & 0x7F) * UNCORE_FREQ_KHZ_MULTIPLIER;
	*min = ((cap & GENMASK(14, 8)) >> 8) * UNCORE_FREQ_KHZ_MULTIPLIER;

	return 0;
}

static int uncore_write_control_freq(struct uncore_data *data, unsigned int input,
				     unsigned int min_max)
{
	int ret;
	u64 cap;

	input /= UNCORE_FREQ_KHZ_MULTIPLIER;
	if (!input || input > 0x7F)
		return -EINVAL;

	if (data->control_cpu < 0)
		return -ENXIO;

	ret = rdmsrl_on_cpu(data->control_cpu, MSR_UNCORE_RATIO_LIMIT, &cap);
	if (ret)
		return ret;

	if (min_max) {
		cap &= ~0x7F;
		cap |= input;
	} else  {
		cap &= ~GENMASK(14, 8);
		cap |= (input << 8);
	}

	ret = wrmsrl_on_cpu(data->control_cpu, MSR_UNCORE_RATIO_LIMIT, cap);
	if (ret)
		return ret;

	data->stored_uncore_data = cap;

	return 0;
}

static int uncore_read_freq(struct uncore_data *data, unsigned int *freq)
{
	u64 ratio;
	int ret;

	if (data->control_cpu < 0)
		return -ENXIO;

	ret = rdmsrl_on_cpu(data->control_cpu, MSR_UNCORE_PERF_STATUS, &ratio);
	if (ret)
		return ret;

	*freq = (ratio & 0x7F) * UNCORE_FREQ_KHZ_MULTIPLIER;

	return 0;
}

/* Caller provides protection */
static struct uncore_data *uncore_get_instance(unsigned int cpu)
{
	int id = topology_logical_die_id(cpu);

	if (id >= 0 && id < uncore_max_entries)
		return &uncore_instances[id];

	return NULL;
}

static int uncore_event_cpu_online(unsigned int cpu)
{
	struct uncore_data *data;
	int target;

	/* Check if there is an online cpu in the package for uncore MSR */
	target = cpumask_any_and(&uncore_cpu_mask, topology_die_cpumask(cpu));
	if (target < nr_cpu_ids)
		return 0;

	/* Use this CPU on this die as a control CPU */
	cpumask_set_cpu(cpu, &uncore_cpu_mask);

	data = uncore_get_instance(cpu);
	if (!data)
		return 0;

	data->package_id = topology_physical_package_id(cpu);
	data->die_id = topology_die_id(cpu);

	return uncore_freq_add_entry(data, cpu);
}

static int uncore_event_cpu_offline(unsigned int cpu)
{
	struct uncore_data *data;
	int target;

	data = uncore_get_instance(cpu);
	if (!data)
		return 0;

	/* Check if existing cpu is used for uncore MSRs */
	if (!cpumask_test_and_clear_cpu(cpu, &uncore_cpu_mask))
		return 0;

	/* Find a new cpu to set uncore MSR */
	target = cpumask_any_but(topology_die_cpumask(cpu), cpu);

	if (target < nr_cpu_ids) {
		cpumask_set_cpu(target, &uncore_cpu_mask);
		uncore_freq_add_entry(data, target);
	} else {
		uncore_freq_remove_die_entry(data);
	}

	return 0;
}

static int uncore_pm_notify(struct notifier_block *nb, unsigned long mode,
			    void *_unused)
{
	int i;

	switch (mode) {
	case PM_POST_HIBERNATION:
	case PM_POST_RESTORE:
	case PM_POST_SUSPEND:
		for (i = 0; i < uncore_max_entries; ++i) {
			struct uncore_data *data = &uncore_instances[i];

			if (!data || !data->valid || !data->stored_uncore_data)
				return 0;

			wrmsrl_on_cpu(data->control_cpu, MSR_UNCORE_RATIO_LIMIT,
				      data->stored_uncore_data);
		}
		break;
	default:
		break;
	}
	return 0;
}

static struct notifier_block uncore_pm_nb = {
	.notifier_call = uncore_pm_notify,
};

static const struct x86_cpu_id intel_uncore_cpu_ids[] = {
	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_G,	NULL),
	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X,	NULL),
	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D,	NULL),
	X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X,	NULL),
	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X,	NULL),
	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D,	NULL),
	X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, NULL),
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_uncore_cpu_ids);

static int __init intel_uncore_init(void)
{
	const struct x86_cpu_id *id;
	int ret;

	id = x86_match_cpu(intel_uncore_cpu_ids);
	if (!id)
		return -ENODEV;

	uncore_max_entries = topology_max_packages() *
					topology_max_die_per_package();
	uncore_instances = kcalloc(uncore_max_entries,
				   sizeof(*uncore_instances), GFP_KERNEL);
	if (!uncore_instances)
		return -ENOMEM;

	ret = uncore_freq_common_init(uncore_read_control_freq, uncore_write_control_freq,
				      uncore_read_freq);
	if (ret)
		goto err_free;

	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
				"platform/x86/uncore-freq:online",
				uncore_event_cpu_online,
				uncore_event_cpu_offline);
	if (ret < 0)
		goto err_rem_kobj;

	uncore_hp_state = ret;

	ret = register_pm_notifier(&uncore_pm_nb);
	if (ret)
		goto err_rem_state;

	return 0;

err_rem_state:
	cpuhp_remove_state(uncore_hp_state);
err_rem_kobj:
	uncore_freq_common_exit();
err_free:
	kfree(uncore_instances);

	return ret;
}
module_init(intel_uncore_init)

static void __exit intel_uncore_exit(void)
{
	int i;

	unregister_pm_notifier(&uncore_pm_nb);
	cpuhp_remove_state(uncore_hp_state);
	for (i = 0; i < uncore_max_entries; ++i)
		uncore_freq_remove_die_entry(&uncore_instances[i]);
	uncore_freq_common_exit();
	kfree(uncore_instances);
}
module_exit(intel_uncore_exit)

MODULE_IMPORT_NS(INTEL_UNCORE_FREQUENCY);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("Intel Uncore Frequency Limits Driver");