summaryrefslogtreecommitdiff
path: root/drivers/thermal/qcom/tsens-common.c
blob: 928e8e81ba6970cd20e710df70f7080a0a4ead3c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (c) 2015, The Linux Foundation. All rights reserved.
 */

#include <linux/err.h>
#include <linux/io.h>
#include <linux/nvmem-consumer.h>
#include <linux/of_address.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include "tsens.h"

char *qfprom_read(struct device *dev, const char *cname)
{
	struct nvmem_cell *cell;
	ssize_t data;
	char *ret;

	cell = nvmem_cell_get(dev, cname);
	if (IS_ERR(cell))
		return ERR_CAST(cell);

	ret = nvmem_cell_read(cell, &data);
	nvmem_cell_put(cell);

	return ret;
}

/*
 * Use this function on devices where slope and offset calculations
 * depend on calibration data read from qfprom. On others the slope
 * and offset values are derived from tz->tzp->slope and tz->tzp->offset
 * resp.
 */
void compute_intercept_slope(struct tsens_priv *priv, u32 *p1,
			     u32 *p2, u32 mode)
{
	int i;
	int num, den;

	for (i = 0; i < priv->num_sensors; i++) {
		dev_dbg(priv->dev,
			"sensor%d - data_point1:%#x data_point2:%#x\n",
			i, p1[i], p2[i]);

		priv->sensor[i].slope = SLOPE_DEFAULT;
		if (mode == TWO_PT_CALIB) {
			/*
			 * slope (m) = adc_code2 - adc_code1 (y2 - y1)/
			 *	temp_120_degc - temp_30_degc (x2 - x1)
			 */
			num = p2[i] - p1[i];
			num *= SLOPE_FACTOR;
			den = CAL_DEGC_PT2 - CAL_DEGC_PT1;
			priv->sensor[i].slope = num / den;
		}

		priv->sensor[i].offset = (p1[i] * SLOPE_FACTOR) -
				(CAL_DEGC_PT1 *
				priv->sensor[i].slope);
		dev_dbg(priv->dev, "offset:%d\n", priv->sensor[i].offset);
	}
}

bool is_sensor_enabled(struct tsens_priv *priv, u32 hw_id)
{
	u32 val;
	int ret;

	if ((hw_id > (priv->num_sensors - 1)) || (hw_id < 0))
		return -EINVAL;
	ret = regmap_field_read(priv->rf[SENSOR_EN], &val);
	if (ret)
		return ret;

	return val & (1 << hw_id);
}

static inline int code_to_degc(u32 adc_code, const struct tsens_sensor *s)
{
	int degc, num, den;

	num = (adc_code * SLOPE_FACTOR) - s->offset;
	den = s->slope;

	if (num > 0)
		degc = num + (den / 2);
	else if (num < 0)
		degc = num - (den / 2);
	else
		degc = num;

	degc /= den;

	return degc;
}

int get_temp_tsens_valid(struct tsens_priv *priv, int i, int *temp)
{
	struct tsens_sensor *s = &priv->sensor[i];
	u32 temp_idx = LAST_TEMP_0 + s->hw_id;
	u32 valid_idx = VALID_0 + s->hw_id;
	u32 last_temp = 0, valid, mask;
	int ret;

	ret = regmap_field_read(priv->rf[valid_idx], &valid);
	if (ret)
		return ret;
	while (!valid) {
		/* Valid bit is 0 for 6 AHB clock cycles.
		 * At 19.2MHz, 1 AHB clock is ~60ns.
		 * We should enter this loop very, very rarely.
		 */
		ndelay(400);
		ret = regmap_field_read(priv->rf[valid_idx], &valid);
		if (ret)
			return ret;
	}

	/* Valid bit is set, OK to read the temperature */
	ret = regmap_field_read(priv->rf[temp_idx], &last_temp);
	if (ret)
		return ret;

	if (priv->feat->adc) {
		/* Convert temperature from ADC code to milliCelsius */
		*temp = code_to_degc(last_temp, s) * 1000;
	} else {
		mask = GENMASK(priv->fields[LAST_TEMP_0].msb,
			       priv->fields[LAST_TEMP_0].lsb);
		/* Convert temperature from deciCelsius to milliCelsius */
		*temp = sign_extend32(last_temp, fls(mask) - 1) * 100;
	}

	return 0;
}

int get_temp_common(struct tsens_priv *priv, int i, int *temp)
{
	struct tsens_sensor *s = &priv->sensor[i];
	int last_temp = 0, ret;

	ret = regmap_field_read(priv->rf[LAST_TEMP_0 + s->hw_id], &last_temp);
	if (ret)
		return ret;

	*temp = code_to_degc(last_temp, s) * 1000;

	return 0;
}

static const struct regmap_config tsens_config = {
	.name		= "tm",
	.reg_bits	= 32,
	.val_bits	= 32,
	.reg_stride	= 4,
};

static const struct regmap_config tsens_srot_config = {
	.name		= "srot",
	.reg_bits	= 32,
	.val_bits	= 32,
	.reg_stride	= 4,
};

int __init init_common(struct tsens_priv *priv)
{
	void __iomem *tm_base, *srot_base;
	struct device *dev = priv->dev;
	struct resource *res;
	u32 enabled;
	int ret, i, j;
	struct platform_device *op = of_find_device_by_node(priv->dev->of_node);

	if (!op)
		return -EINVAL;

	if (op->num_resources > 1) {
		/* DT with separate SROT and TM address space */
		priv->tm_offset = 0;
		res = platform_get_resource(op, IORESOURCE_MEM, 1);
		srot_base = devm_ioremap_resource(&op->dev, res);
		if (IS_ERR(srot_base)) {
			ret = PTR_ERR(srot_base);
			goto err_put_device;
		}

		priv->srot_map = devm_regmap_init_mmio(dev, srot_base,
							&tsens_srot_config);
		if (IS_ERR(priv->srot_map)) {
			ret = PTR_ERR(priv->srot_map);
			goto err_put_device;
		}
	} else {
		/* old DTs where SROT and TM were in a contiguous 2K block */
		priv->tm_offset = 0x1000;
	}

	res = platform_get_resource(op, IORESOURCE_MEM, 0);
	tm_base = devm_ioremap_resource(&op->dev, res);
	if (IS_ERR(tm_base)) {
		ret = PTR_ERR(tm_base);
		goto err_put_device;
	}

	priv->tm_map = devm_regmap_init_mmio(dev, tm_base, &tsens_config);
	if (IS_ERR(priv->tm_map)) {
		ret = PTR_ERR(priv->tm_map);
		goto err_put_device;
	}

	priv->rf[TSENS_EN] = devm_regmap_field_alloc(dev, priv->srot_map,
						     priv->fields[TSENS_EN]);
	if (IS_ERR(priv->rf[TSENS_EN])) {
		ret = PTR_ERR(priv->rf[TSENS_EN]);
		goto err_put_device;
	}
	ret = regmap_field_read(priv->rf[TSENS_EN], &enabled);
	if (ret)
		goto err_put_device;
	if (!enabled) {
		dev_err(dev, "tsens device is not enabled\n");
		ret = -ENODEV;
		goto err_put_device;
	}

	priv->rf[SENSOR_EN] = devm_regmap_field_alloc(dev, priv->srot_map,
						      priv->fields[SENSOR_EN]);
	if (IS_ERR(priv->rf[SENSOR_EN])) {
		ret = PTR_ERR(priv->rf[SENSOR_EN]);
		goto err_put_device;
	}
	/* now alloc regmap_fields in tm_map */
	for (i = 0, j = LAST_TEMP_0; i < priv->feat->max_sensors; i++, j++) {
		priv->rf[j] = devm_regmap_field_alloc(dev, priv->tm_map,
						      priv->fields[j]);
		if (IS_ERR(priv->rf[j])) {
			ret = PTR_ERR(priv->rf[j]);
			goto err_put_device;
		}
	}
	for (i = 0, j = VALID_0; i < priv->feat->max_sensors; i++, j++) {
		priv->rf[j] = devm_regmap_field_alloc(dev, priv->tm_map,
						      priv->fields[j]);
		if (IS_ERR(priv->rf[j])) {
			ret = PTR_ERR(priv->rf[j]);
			goto err_put_device;
		}
	}

	return 0;

err_put_device:
	put_device(&op->dev);
	return ret;
}