summaryrefslogtreecommitdiff
path: root/tools/testing/selftests/kvm/x86_64/private_mem_conversions_test.c
blob: 65ad38b6be1f1ad45afa085f5dbfb6402d581bb4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (C) 2022, Google LLC.
 */
#define _GNU_SOURCE /* for program_invocation_short_name */
#include <fcntl.h>
#include <limits.h>
#include <pthread.h>
#include <sched.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>

#include <linux/compiler.h>
#include <linux/kernel.h>
#include <linux/kvm_para.h>
#include <linux/memfd.h>
#include <linux/sizes.h>

#include <test_util.h>
#include <kvm_util.h>
#include <processor.h>

#define BASE_DATA_SLOT		10
#define BASE_DATA_GPA		((uint64_t)(1ull << 32))
#define PER_CPU_DATA_SIZE	((uint64_t)(SZ_2M + PAGE_SIZE))

/* Horrific macro so that the line info is captured accurately :-( */
#define memcmp_g(gpa, pattern,  size)								\
do {												\
	uint8_t *mem = (uint8_t *)gpa;								\
	size_t i;										\
												\
	for (i = 0; i < size; i++)								\
		__GUEST_ASSERT(mem[i] == pattern,						\
			       "Guest expected 0x%x at offset %lu (gpa 0x%lx), got 0x%x",	\
			       pattern, i, gpa + i, mem[i]);					\
} while (0)

static void memcmp_h(uint8_t *mem, uint64_t gpa, uint8_t pattern, size_t size)
{
	size_t i;

	for (i = 0; i < size; i++)
		TEST_ASSERT(mem[i] == pattern,
			    "Host expected 0x%x at gpa 0x%lx, got 0x%x",
			    pattern, gpa + i, mem[i]);
}

/*
 * Run memory conversion tests with explicit conversion:
 * Execute KVM hypercall to map/unmap gpa range which will cause userspace exit
 * to back/unback private memory. Subsequent accesses by guest to the gpa range
 * will not cause exit to userspace.
 *
 * Test memory conversion scenarios with following steps:
 * 1) Access private memory using private access and verify that memory contents
 *   are not visible to userspace.
 * 2) Convert memory to shared using explicit conversions and ensure that
 *   userspace is able to access the shared regions.
 * 3) Convert memory back to private using explicit conversions and ensure that
 *   userspace is again not able to access converted private regions.
 */

#define GUEST_STAGE(o, s) { .offset = o, .size = s }

enum ucall_syncs {
	SYNC_SHARED,
	SYNC_PRIVATE,
};

static void guest_sync_shared(uint64_t gpa, uint64_t size,
			      uint8_t current_pattern, uint8_t new_pattern)
{
	GUEST_SYNC5(SYNC_SHARED, gpa, size, current_pattern, new_pattern);
}

static void guest_sync_private(uint64_t gpa, uint64_t size, uint8_t pattern)
{
	GUEST_SYNC4(SYNC_PRIVATE, gpa, size, pattern);
}

/* Arbitrary values, KVM doesn't care about the attribute flags. */
#define MAP_GPA_SET_ATTRIBUTES	BIT(0)
#define MAP_GPA_SHARED		BIT(1)
#define MAP_GPA_DO_FALLOCATE	BIT(2)

static void guest_map_mem(uint64_t gpa, uint64_t size, bool map_shared,
			  bool do_fallocate)
{
	uint64_t flags = MAP_GPA_SET_ATTRIBUTES;

	if (map_shared)
		flags |= MAP_GPA_SHARED;
	if (do_fallocate)
		flags |= MAP_GPA_DO_FALLOCATE;
	kvm_hypercall_map_gpa_range(gpa, size, flags);
}

static void guest_map_shared(uint64_t gpa, uint64_t size, bool do_fallocate)
{
	guest_map_mem(gpa, size, true, do_fallocate);
}

static void guest_map_private(uint64_t gpa, uint64_t size, bool do_fallocate)
{
	guest_map_mem(gpa, size, false, do_fallocate);
}

struct {
	uint64_t offset;
	uint64_t size;
} static const test_ranges[] = {
	GUEST_STAGE(0, PAGE_SIZE),
	GUEST_STAGE(0, SZ_2M),
	GUEST_STAGE(PAGE_SIZE, PAGE_SIZE),
	GUEST_STAGE(PAGE_SIZE, SZ_2M),
	GUEST_STAGE(SZ_2M, PAGE_SIZE),
};

static void guest_test_explicit_conversion(uint64_t base_gpa, bool do_fallocate)
{
	const uint8_t def_p = 0xaa;
	const uint8_t init_p = 0xcc;
	uint64_t j;
	int i;

	/* Memory should be shared by default. */
	memset((void *)base_gpa, def_p, PER_CPU_DATA_SIZE);
	memcmp_g(base_gpa, def_p, PER_CPU_DATA_SIZE);
	guest_sync_shared(base_gpa, PER_CPU_DATA_SIZE, def_p, init_p);

	memcmp_g(base_gpa, init_p, PER_CPU_DATA_SIZE);

	for (i = 0; i < ARRAY_SIZE(test_ranges); i++) {
		uint64_t gpa = base_gpa + test_ranges[i].offset;
		uint64_t size = test_ranges[i].size;
		uint8_t p1 = 0x11;
		uint8_t p2 = 0x22;
		uint8_t p3 = 0x33;
		uint8_t p4 = 0x44;

		/*
		 * Set the test region to pattern one to differentiate it from
		 * the data range as a whole (contains the initial pattern).
		 */
		memset((void *)gpa, p1, size);

		/*
		 * Convert to private, set and verify the private data, and
		 * then verify that the rest of the data (map shared) still
		 * holds the initial pattern, and that the host always sees the
		 * shared memory (initial pattern).  Unlike shared memory,
		 * punching a hole in private memory is destructive, i.e.
		 * previous values aren't guaranteed to be preserved.
		 */
		guest_map_private(gpa, size, do_fallocate);

		if (size > PAGE_SIZE) {
			memset((void *)gpa, p2, PAGE_SIZE);
			goto skip;
		}

		memset((void *)gpa, p2, size);
		guest_sync_private(gpa, size, p1);

		/*
		 * Verify that the private memory was set to pattern two, and
		 * that shared memory still holds the initial pattern.
		 */
		memcmp_g(gpa, p2, size);
		if (gpa > base_gpa)
			memcmp_g(base_gpa, init_p, gpa - base_gpa);
		if (gpa + size < base_gpa + PER_CPU_DATA_SIZE)
			memcmp_g(gpa + size, init_p,
				 (base_gpa + PER_CPU_DATA_SIZE) - (gpa + size));

		/*
		 * Convert odd-number page frames back to shared to verify KVM
		 * also correctly handles holes in private ranges.
		 */
		for (j = 0; j < size; j += PAGE_SIZE) {
			if ((j >> PAGE_SHIFT) & 1) {
				guest_map_shared(gpa + j, PAGE_SIZE, do_fallocate);
				guest_sync_shared(gpa + j, PAGE_SIZE, p1, p3);

				memcmp_g(gpa + j, p3, PAGE_SIZE);
			} else {
				guest_sync_private(gpa + j, PAGE_SIZE, p1);
			}
		}

skip:
		/*
		 * Convert the entire region back to shared, explicitly write
		 * pattern three to fill in the even-number frames before
		 * asking the host to verify (and write pattern four).
		 */
		guest_map_shared(gpa, size, do_fallocate);
		memset((void *)gpa, p3, size);
		guest_sync_shared(gpa, size, p3, p4);
		memcmp_g(gpa, p4, size);

		/* Reset the shared memory back to the initial pattern. */
		memset((void *)gpa, init_p, size);

		/*
		 * Free (via PUNCH_HOLE) *all* private memory so that the next
		 * iteration starts from a clean slate, e.g. with respect to
		 * whether or not there are pages/folios in guest_mem.
		 */
		guest_map_shared(base_gpa, PER_CPU_DATA_SIZE, true);
	}
}

static void guest_punch_hole(uint64_t gpa, uint64_t size)
{
	/* "Mapping" memory shared via fallocate() is done via PUNCH_HOLE. */
	uint64_t flags = MAP_GPA_SHARED | MAP_GPA_DO_FALLOCATE;

	kvm_hypercall_map_gpa_range(gpa, size, flags);
}

/*
 * Test that PUNCH_HOLE actually frees memory by punching holes without doing a
 * proper conversion.  Freeing (PUNCH_HOLE) should zap SPTEs, and reallocating
 * (subsequent fault) should zero memory.
 */
static void guest_test_punch_hole(uint64_t base_gpa, bool precise)
{
	const uint8_t init_p = 0xcc;
	int i;

	/*
	 * Convert the entire range to private, this testcase is all about
	 * punching holes in guest_memfd, i.e. shared mappings aren't needed.
	 */
	guest_map_private(base_gpa, PER_CPU_DATA_SIZE, false);

	for (i = 0; i < ARRAY_SIZE(test_ranges); i++) {
		uint64_t gpa = base_gpa + test_ranges[i].offset;
		uint64_t size = test_ranges[i].size;

		/*
		 * Free all memory before each iteration, even for the !precise
		 * case where the memory will be faulted back in.  Freeing and
		 * reallocating should obviously work, and freeing all memory
		 * minimizes the probability of cross-testcase influence.
		 */
		guest_punch_hole(base_gpa, PER_CPU_DATA_SIZE);

		/* Fault-in and initialize memory, and verify the pattern. */
		if (precise) {
			memset((void *)gpa, init_p, size);
			memcmp_g(gpa, init_p, size);
		} else {
			memset((void *)base_gpa, init_p, PER_CPU_DATA_SIZE);
			memcmp_g(base_gpa, init_p, PER_CPU_DATA_SIZE);
		}

		/*
		 * Punch a hole at the target range and verify that reads from
		 * the guest succeed and return zeroes.
		 */
		guest_punch_hole(gpa, size);
		memcmp_g(gpa, 0, size);
	}
}

static void guest_code(uint64_t base_gpa)
{
	/*
	 * Run the conversion test twice, with and without doing fallocate() on
	 * the guest_memfd backing when converting between shared and private.
	 */
	guest_test_explicit_conversion(base_gpa, false);
	guest_test_explicit_conversion(base_gpa, true);

	/*
	 * Run the PUNCH_HOLE test twice too, once with the entire guest_memfd
	 * faulted in, once with only the target range faulted in.
	 */
	guest_test_punch_hole(base_gpa, false);
	guest_test_punch_hole(base_gpa, true);
	GUEST_DONE();
}

static void handle_exit_hypercall(struct kvm_vcpu *vcpu)
{
	struct kvm_run *run = vcpu->run;
	uint64_t gpa = run->hypercall.args[0];
	uint64_t size = run->hypercall.args[1] * PAGE_SIZE;
	bool set_attributes = run->hypercall.args[2] & MAP_GPA_SET_ATTRIBUTES;
	bool map_shared = run->hypercall.args[2] & MAP_GPA_SHARED;
	bool do_fallocate = run->hypercall.args[2] & MAP_GPA_DO_FALLOCATE;
	struct kvm_vm *vm = vcpu->vm;

	TEST_ASSERT(run->hypercall.nr == KVM_HC_MAP_GPA_RANGE,
		    "Wanted MAP_GPA_RANGE (%u), got '%llu'",
		    KVM_HC_MAP_GPA_RANGE, run->hypercall.nr);

	if (do_fallocate)
		vm_guest_mem_fallocate(vm, gpa, size, map_shared);

	if (set_attributes)
		vm_set_memory_attributes(vm, gpa, size,
					 map_shared ? 0 : KVM_MEMORY_ATTRIBUTE_PRIVATE);
	run->hypercall.ret = 0;
}

static bool run_vcpus;

static void *__test_mem_conversions(void *__vcpu)
{
	struct kvm_vcpu *vcpu = __vcpu;
	struct kvm_run *run = vcpu->run;
	struct kvm_vm *vm = vcpu->vm;
	struct ucall uc;

	while (!READ_ONCE(run_vcpus))
		;

	for ( ;; ) {
		vcpu_run(vcpu);

		if (run->exit_reason == KVM_EXIT_HYPERCALL) {
			handle_exit_hypercall(vcpu);
			continue;
		}

		TEST_ASSERT(run->exit_reason == KVM_EXIT_IO,
			    "Wanted KVM_EXIT_IO, got exit reason: %u (%s)",
			    run->exit_reason, exit_reason_str(run->exit_reason));

		switch (get_ucall(vcpu, &uc)) {
		case UCALL_ABORT:
			REPORT_GUEST_ASSERT(uc);
		case UCALL_SYNC: {
			uint64_t gpa  = uc.args[1];
			size_t size = uc.args[2];
			size_t i;

			TEST_ASSERT(uc.args[0] == SYNC_SHARED ||
				    uc.args[0] == SYNC_PRIVATE,
				    "Unknown sync command '%ld'", uc.args[0]);

			for (i = 0; i < size; i += vm->page_size) {
				size_t nr_bytes = min_t(size_t, vm->page_size, size - i);
				uint8_t *hva = addr_gpa2hva(vm, gpa + i);

				/* In all cases, the host should observe the shared data. */
				memcmp_h(hva, gpa + i, uc.args[3], nr_bytes);

				/* For shared, write the new pattern to guest memory. */
				if (uc.args[0] == SYNC_SHARED)
					memset(hva, uc.args[4], nr_bytes);
			}
			break;
		}
		case UCALL_DONE:
			return NULL;
		default:
			TEST_FAIL("Unknown ucall 0x%lx.", uc.cmd);
		}
	}
}

static void test_mem_conversions(enum vm_mem_backing_src_type src_type, uint32_t nr_vcpus,
				 uint32_t nr_memslots)
{
	/*
	 * Allocate enough memory so that each vCPU's chunk of memory can be
	 * naturally aligned with respect to the size of the backing store.
	 */
	const size_t alignment = max_t(size_t, SZ_2M, get_backing_src_pagesz(src_type));
	const size_t per_cpu_size = align_up(PER_CPU_DATA_SIZE, alignment);
	const size_t memfd_size = per_cpu_size * nr_vcpus;
	const size_t slot_size = memfd_size / nr_memslots;
	struct kvm_vcpu *vcpus[KVM_MAX_VCPUS];
	pthread_t threads[KVM_MAX_VCPUS];
	struct kvm_vm *vm;
	int memfd, i, r;

	const struct vm_shape shape = {
		.mode = VM_MODE_DEFAULT,
		.type = KVM_X86_SW_PROTECTED_VM,
	};

	TEST_ASSERT(slot_size * nr_memslots == memfd_size,
		    "The memfd size (0x%lx) needs to be cleanly divisible by the number of memslots (%u)",
		    memfd_size, nr_memslots);
	vm = __vm_create_with_vcpus(shape, nr_vcpus, 0, guest_code, vcpus);

	vm_enable_cap(vm, KVM_CAP_EXIT_HYPERCALL, (1 << KVM_HC_MAP_GPA_RANGE));

	memfd = vm_create_guest_memfd(vm, memfd_size, 0);

	for (i = 0; i < nr_memslots; i++)
		vm_mem_add(vm, src_type, BASE_DATA_GPA + slot_size * i,
			   BASE_DATA_SLOT + i, slot_size / vm->page_size,
			   KVM_MEM_GUEST_MEMFD, memfd, slot_size * i);

	for (i = 0; i < nr_vcpus; i++) {
		uint64_t gpa =  BASE_DATA_GPA + i * per_cpu_size;

		vcpu_args_set(vcpus[i], 1, gpa);

		/*
		 * Map only what is needed so that an out-of-bounds access
		 * results #PF => SHUTDOWN instead of data corruption.
		 */
		virt_map(vm, gpa, gpa, PER_CPU_DATA_SIZE / vm->page_size);

		pthread_create(&threads[i], NULL, __test_mem_conversions, vcpus[i]);
	}

	WRITE_ONCE(run_vcpus, true);

	for (i = 0; i < nr_vcpus; i++)
		pthread_join(threads[i], NULL);

	kvm_vm_free(vm);

	/*
	 * Allocate and free memory from the guest_memfd after closing the VM
	 * fd.  The guest_memfd is gifted a reference to its owning VM, i.e.
	 * should prevent the VM from being fully destroyed until the last
	 * reference to the guest_memfd is also put.
	 */
	r = fallocate(memfd, FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE, 0, memfd_size);
	TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("fallocate()", r));

	r = fallocate(memfd, FALLOC_FL_KEEP_SIZE, 0, memfd_size);
	TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("fallocate()", r));
}

static void usage(const char *cmd)
{
	puts("");
	printf("usage: %s [-h] [-m nr_memslots] [-s mem_type] [-n nr_vcpus]\n", cmd);
	puts("");
	backing_src_help("-s");
	puts("");
	puts(" -n: specify the number of vcpus (default: 1)");
	puts("");
	puts(" -m: specify the number of memslots (default: 1)");
	puts("");
}

int main(int argc, char *argv[])
{
	enum vm_mem_backing_src_type src_type = DEFAULT_VM_MEM_SRC;
	uint32_t nr_memslots = 1;
	uint32_t nr_vcpus = 1;
	int opt;

	TEST_REQUIRE(kvm_check_cap(KVM_CAP_VM_TYPES) & BIT(KVM_X86_SW_PROTECTED_VM));

	while ((opt = getopt(argc, argv, "hm:s:n:")) != -1) {
		switch (opt) {
		case 's':
			src_type = parse_backing_src_type(optarg);
			break;
		case 'n':
			nr_vcpus = atoi_positive("nr_vcpus", optarg);
			break;
		case 'm':
			nr_memslots = atoi_positive("nr_memslots", optarg);
			break;
		case 'h':
		default:
			usage(argv[0]);
			exit(0);
		}
	}

	test_mem_conversions(src_type, nr_vcpus, nr_memslots);

	return 0;
}