summaryrefslogtreecommitdiff
path: root/tools/testing/selftests/kvm/x86_64/xen_shinfo_test.c
blob: eda0d2a51224bd1c709d9d52352a9e81be2a29bb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
// SPDX-License-Identifier: GPL-2.0-only
/*
 * svm_vmcall_test
 *
 * Copyright © 2021 Amazon.com, Inc. or its affiliates.
 *
 * Xen shared_info / pvclock testing
 */

#include "test_util.h"
#include "kvm_util.h"
#include "processor.h"

#include <stdint.h>
#include <time.h>
#include <sched.h>

#define VCPU_ID		5

#define SHINFO_REGION_GVA	0xc0000000ULL
#define SHINFO_REGION_GPA	0xc0000000ULL
#define SHINFO_REGION_SLOT	10
#define PAGE_SIZE		4096

#define PVTIME_ADDR	(SHINFO_REGION_GPA + PAGE_SIZE)
#define RUNSTATE_ADDR	(SHINFO_REGION_GPA + PAGE_SIZE + 0x20)

#define RUNSTATE_VADDR	(SHINFO_REGION_GVA + PAGE_SIZE + 0x20)

static struct kvm_vm *vm;

#define XEN_HYPERCALL_MSR	0x40000000

#define MIN_STEAL_TIME		50000

struct pvclock_vcpu_time_info {
        u32   version;
        u32   pad0;
        u64   tsc_timestamp;
        u64   system_time;
        u32   tsc_to_system_mul;
        s8    tsc_shift;
        u8    flags;
        u8    pad[2];
} __attribute__((__packed__)); /* 32 bytes */

struct pvclock_wall_clock {
        u32   version;
        u32   sec;
        u32   nsec;
} __attribute__((__packed__));

struct vcpu_runstate_info {
    uint32_t state;
    uint64_t state_entry_time;
    uint64_t time[4];
};

#define RUNSTATE_running  0
#define RUNSTATE_runnable 1
#define RUNSTATE_blocked  2
#define RUNSTATE_offline  3

static void guest_code(void)
{
	struct vcpu_runstate_info *rs = (void *)RUNSTATE_VADDR;

	/* Test having the host set runstates manually */
	GUEST_SYNC(RUNSTATE_runnable);
	GUEST_ASSERT(rs->time[RUNSTATE_runnable] != 0);
	GUEST_ASSERT(rs->state == 0);

	GUEST_SYNC(RUNSTATE_blocked);
	GUEST_ASSERT(rs->time[RUNSTATE_blocked] != 0);
	GUEST_ASSERT(rs->state == 0);

	GUEST_SYNC(RUNSTATE_offline);
	GUEST_ASSERT(rs->time[RUNSTATE_offline] != 0);
	GUEST_ASSERT(rs->state == 0);

	/* Test runstate time adjust */
	GUEST_SYNC(4);
	GUEST_ASSERT(rs->time[RUNSTATE_blocked] == 0x5a);
	GUEST_ASSERT(rs->time[RUNSTATE_offline] == 0x6b6b);

	/* Test runstate time set */
	GUEST_SYNC(5);
	GUEST_ASSERT(rs->state_entry_time >= 0x8000);
	GUEST_ASSERT(rs->time[RUNSTATE_runnable] == 0);
	GUEST_ASSERT(rs->time[RUNSTATE_blocked] == 0x6b6b);
	GUEST_ASSERT(rs->time[RUNSTATE_offline] == 0x5a);

	/* sched_yield() should result in some 'runnable' time */
	GUEST_SYNC(6);
	GUEST_ASSERT(rs->time[RUNSTATE_runnable] >= MIN_STEAL_TIME);

	GUEST_DONE();
}

static int cmp_timespec(struct timespec *a, struct timespec *b)
{
	if (a->tv_sec > b->tv_sec)
		return 1;
	else if (a->tv_sec < b->tv_sec)
		return -1;
	else if (a->tv_nsec > b->tv_nsec)
		return 1;
	else if (a->tv_nsec < b->tv_nsec)
		return -1;
	else
		return 0;
}

int main(int argc, char *argv[])
{
	struct timespec min_ts, max_ts, vm_ts;

	int xen_caps = kvm_check_cap(KVM_CAP_XEN_HVM);
	if (!(xen_caps & KVM_XEN_HVM_CONFIG_SHARED_INFO) ) {
		print_skip("KVM_XEN_HVM_CONFIG_SHARED_INFO not available");
		exit(KSFT_SKIP);
	}

	bool do_runstate_tests = !!(xen_caps & KVM_XEN_HVM_CONFIG_RUNSTATE);

	clock_gettime(CLOCK_REALTIME, &min_ts);

	vm = vm_create_default(VCPU_ID, 0, (void *) guest_code);
	vcpu_set_cpuid(vm, VCPU_ID, kvm_get_supported_cpuid());

	/* Map a region for the shared_info page */
	vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS,
				    SHINFO_REGION_GPA, SHINFO_REGION_SLOT, 2, 0);
	virt_map(vm, SHINFO_REGION_GVA, SHINFO_REGION_GPA, 2);

	struct kvm_xen_hvm_config hvmc = {
		.flags = KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL,
		.msr = XEN_HYPERCALL_MSR,
	};
	vm_ioctl(vm, KVM_XEN_HVM_CONFIG, &hvmc);

	struct kvm_xen_hvm_attr lm = {
		.type = KVM_XEN_ATTR_TYPE_LONG_MODE,
		.u.long_mode = 1,
	};
	vm_ioctl(vm, KVM_XEN_HVM_SET_ATTR, &lm);

	struct kvm_xen_hvm_attr ha = {
		.type = KVM_XEN_ATTR_TYPE_SHARED_INFO,
		.u.shared_info.gfn = SHINFO_REGION_GPA / PAGE_SIZE,
	};
	vm_ioctl(vm, KVM_XEN_HVM_SET_ATTR, &ha);

	struct kvm_xen_vcpu_attr vi = {
		.type = KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO,
		.u.gpa = SHINFO_REGION_GPA + 0x40,
	};
	vcpu_ioctl(vm, VCPU_ID, KVM_XEN_VCPU_SET_ATTR, &vi);

	struct kvm_xen_vcpu_attr pvclock = {
		.type = KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO,
		.u.gpa = PVTIME_ADDR,
	};
	vcpu_ioctl(vm, VCPU_ID, KVM_XEN_VCPU_SET_ATTR, &pvclock);

	if (do_runstate_tests) {
		struct kvm_xen_vcpu_attr st = {
			.type = KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR,
			.u.gpa = RUNSTATE_ADDR,
		};
		vcpu_ioctl(vm, VCPU_ID, KVM_XEN_VCPU_SET_ATTR, &st);
	}

	struct vcpu_runstate_info *rs = addr_gpa2hva(vm, RUNSTATE_ADDR);
	rs->state = 0x5a;

	for (;;) {
		volatile struct kvm_run *run = vcpu_state(vm, VCPU_ID);
		struct ucall uc;

		vcpu_run(vm, VCPU_ID);

		TEST_ASSERT(run->exit_reason == KVM_EXIT_IO,
			    "Got exit_reason other than KVM_EXIT_IO: %u (%s)\n",
			    run->exit_reason,
			    exit_reason_str(run->exit_reason));

		switch (get_ucall(vm, VCPU_ID, &uc)) {
		case UCALL_ABORT:
			TEST_FAIL("%s", (const char *)uc.args[0]);
			/* NOT REACHED */
		case UCALL_SYNC: {
			struct kvm_xen_vcpu_attr rst;
			long rundelay;

			/* If no runstate support, bail out early */
			if (!do_runstate_tests)
				goto done;

			TEST_ASSERT(rs->state_entry_time == rs->time[0] +
				    rs->time[1] + rs->time[2] + rs->time[3],
				    "runstate times don't add up");

			switch (uc.args[1]) {
			case RUNSTATE_running...RUNSTATE_offline:
				rst.type = KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT;
				rst.u.runstate.state = uc.args[1];
				vcpu_ioctl(vm, VCPU_ID, KVM_XEN_VCPU_SET_ATTR, &rst);
				break;
			case 4:
				rst.type = KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST;
				memset(&rst.u, 0, sizeof(rst.u));
				rst.u.runstate.state = (uint64_t)-1;
				rst.u.runstate.time_blocked =
					0x5a - rs->time[RUNSTATE_blocked];
				rst.u.runstate.time_offline =
					0x6b6b - rs->time[RUNSTATE_offline];
				rst.u.runstate.time_runnable = -rst.u.runstate.time_blocked -
					rst.u.runstate.time_offline;
				vcpu_ioctl(vm, VCPU_ID, KVM_XEN_VCPU_SET_ATTR, &rst);
				break;

			case 5:
				rst.type = KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA;
				memset(&rst.u, 0, sizeof(rst.u));
				rst.u.runstate.state = RUNSTATE_running;
				rst.u.runstate.state_entry_time = 0x6b6b + 0x5a;
				rst.u.runstate.time_blocked = 0x6b6b;
				rst.u.runstate.time_offline = 0x5a;
				vcpu_ioctl(vm, VCPU_ID, KVM_XEN_VCPU_SET_ATTR, &rst);
				break;
			case 6:
				/* Yield until scheduler delay exceeds target */
				rundelay = get_run_delay() + MIN_STEAL_TIME;
				do {
					sched_yield();
				} while (get_run_delay() < rundelay);
				break;
			}
			break;
		}
		case UCALL_DONE:
			goto done;
		default:
			TEST_FAIL("Unknown ucall 0x%lx.", uc.cmd);
		}
	}

 done:
	clock_gettime(CLOCK_REALTIME, &max_ts);

	/*
	 * Just a *really* basic check that things are being put in the
	 * right place. The actual calculations are much the same for
	 * Xen as they are for the KVM variants, so no need to check.
	 */
	struct pvclock_wall_clock *wc;
	struct pvclock_vcpu_time_info *ti, *ti2;

	wc = addr_gpa2hva(vm, SHINFO_REGION_GPA + 0xc00);
	ti = addr_gpa2hva(vm, SHINFO_REGION_GPA + 0x40 + 0x20);
	ti2 = addr_gpa2hva(vm, PVTIME_ADDR);

	vm_ts.tv_sec = wc->sec;
	vm_ts.tv_nsec = wc->nsec;
        TEST_ASSERT(wc->version && !(wc->version & 1),
		    "Bad wallclock version %x", wc->version);
	TEST_ASSERT(cmp_timespec(&min_ts, &vm_ts) <= 0, "VM time too old");
	TEST_ASSERT(cmp_timespec(&max_ts, &vm_ts) >= 0, "VM time too new");

	TEST_ASSERT(ti->version && !(ti->version & 1),
		    "Bad time_info version %x", ti->version);
	TEST_ASSERT(ti2->version && !(ti2->version & 1),
		    "Bad time_info version %x", ti->version);

	if (do_runstate_tests) {
		/*
		 * Fetch runstate and check sanity. Strictly speaking in the
		 * general case we might not expect the numbers to be identical
		 * but in this case we know we aren't running the vCPU any more.
		 */
		struct kvm_xen_vcpu_attr rst = {
			.type = KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA,
		};
		vcpu_ioctl(vm, VCPU_ID, KVM_XEN_VCPU_GET_ATTR, &rst);

		TEST_ASSERT(rs->state == rst.u.runstate.state, "Runstate mismatch");
		TEST_ASSERT(rs->state_entry_time == rst.u.runstate.state_entry_time,
			    "State entry time mismatch");
		TEST_ASSERT(rs->time[RUNSTATE_running] == rst.u.runstate.time_running,
			    "Running time mismatch");
		TEST_ASSERT(rs->time[RUNSTATE_runnable] == rst.u.runstate.time_runnable,
			    "Runnable time mismatch");
		TEST_ASSERT(rs->time[RUNSTATE_blocked] == rst.u.runstate.time_blocked,
			    "Blocked time mismatch");
		TEST_ASSERT(rs->time[RUNSTATE_offline] == rst.u.runstate.time_offline,
			    "Offline time mismatch");

		TEST_ASSERT(rs->state_entry_time == rs->time[0] +
			    rs->time[1] + rs->time[2] + rs->time[3],
			    "runstate times don't add up");
	}
	kvm_vm_free(vm);
	return 0;
}