summaryrefslogtreecommitdiff
path: root/drivers/rtc/interface.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/rtc/interface.c')
-rw-r--r--drivers/rtc/interface.c329
1 files changed, 294 insertions, 35 deletions
diff --git a/drivers/rtc/interface.c b/drivers/rtc/interface.c
index cb2f0728fd70..72c5cdbe0791 100644
--- a/drivers/rtc/interface.c
+++ b/drivers/rtc/interface.c
@@ -13,6 +13,7 @@
#include <linux/rtc.h>
#include <linux/sched.h>
+#include <linux/module.h>
#include <linux/log2.h>
#include <linux/workqueue.h>
@@ -72,6 +73,8 @@ int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
err = -EINVAL;
mutex_unlock(&rtc->ops_lock);
+ /* A timer might have just expired */
+ schedule_work(&rtc->irqwork);
return err;
}
EXPORT_SYMBOL_GPL(rtc_set_time);
@@ -106,16 +109,198 @@ int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs)
err = rtc->ops->set_time(rtc->dev.parent,
&new);
}
- }
- else
+ } else {
err = -EINVAL;
+ }
mutex_unlock(&rtc->ops_lock);
+ /* A timer might have just expired */
+ schedule_work(&rtc->irqwork);
return err;
}
EXPORT_SYMBOL_GPL(rtc_set_mmss);
+static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
+{
+ int err;
+
+ err = mutex_lock_interruptible(&rtc->ops_lock);
+ if (err)
+ return err;
+
+ if (rtc->ops == NULL)
+ err = -ENODEV;
+ else if (!rtc->ops->read_alarm)
+ err = -EINVAL;
+ else {
+ memset(alarm, 0, sizeof(struct rtc_wkalrm));
+ err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
+ }
+
+ mutex_unlock(&rtc->ops_lock);
+ return err;
+}
+
+int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
+{
+ int err;
+ struct rtc_time before, now;
+ int first_time = 1;
+ unsigned long t_now, t_alm;
+ enum { none, day, month, year } missing = none;
+ unsigned days;
+
+ /* The lower level RTC driver may return -1 in some fields,
+ * creating invalid alarm->time values, for reasons like:
+ *
+ * - The hardware may not be capable of filling them in;
+ * many alarms match only on time-of-day fields, not
+ * day/month/year calendar data.
+ *
+ * - Some hardware uses illegal values as "wildcard" match
+ * values, which non-Linux firmware (like a BIOS) may try
+ * to set up as e.g. "alarm 15 minutes after each hour".
+ * Linux uses only oneshot alarms.
+ *
+ * When we see that here, we deal with it by using values from
+ * a current RTC timestamp for any missing (-1) values. The
+ * RTC driver prevents "periodic alarm" modes.
+ *
+ * But this can be racey, because some fields of the RTC timestamp
+ * may have wrapped in the interval since we read the RTC alarm,
+ * which would lead to us inserting inconsistent values in place
+ * of the -1 fields.
+ *
+ * Reading the alarm and timestamp in the reverse sequence
+ * would have the same race condition, and not solve the issue.
+ *
+ * So, we must first read the RTC timestamp,
+ * then read the RTC alarm value,
+ * and then read a second RTC timestamp.
+ *
+ * If any fields of the second timestamp have changed
+ * when compared with the first timestamp, then we know
+ * our timestamp may be inconsistent with that used by
+ * the low-level rtc_read_alarm_internal() function.
+ *
+ * So, when the two timestamps disagree, we just loop and do
+ * the process again to get a fully consistent set of values.
+ *
+ * This could all instead be done in the lower level driver,
+ * but since more than one lower level RTC implementation needs it,
+ * then it's probably best best to do it here instead of there..
+ */
+
+ /* Get the "before" timestamp */
+ err = rtc_read_time(rtc, &before);
+ if (err < 0)
+ return err;
+ do {
+ if (!first_time)
+ memcpy(&before, &now, sizeof(struct rtc_time));
+ first_time = 0;
+
+ /* get the RTC alarm values, which may be incomplete */
+ err = rtc_read_alarm_internal(rtc, alarm);
+ if (err)
+ return err;
+
+ /* full-function RTCs won't have such missing fields */
+ if (rtc_valid_tm(&alarm->time) == 0)
+ return 0;
+
+ /* get the "after" timestamp, to detect wrapped fields */
+ err = rtc_read_time(rtc, &now);
+ if (err < 0)
+ return err;
+
+ /* note that tm_sec is a "don't care" value here: */
+ } while ( before.tm_min != now.tm_min
+ || before.tm_hour != now.tm_hour
+ || before.tm_mon != now.tm_mon
+ || before.tm_year != now.tm_year);
+
+ /* Fill in the missing alarm fields using the timestamp; we
+ * know there's at least one since alarm->time is invalid.
+ */
+ if (alarm->time.tm_sec == -1)
+ alarm->time.tm_sec = now.tm_sec;
+ if (alarm->time.tm_min == -1)
+ alarm->time.tm_min = now.tm_min;
+ if (alarm->time.tm_hour == -1)
+ alarm->time.tm_hour = now.tm_hour;
+
+ /* For simplicity, only support date rollover for now */
+ if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
+ alarm->time.tm_mday = now.tm_mday;
+ missing = day;
+ }
+ if ((unsigned)alarm->time.tm_mon >= 12) {
+ alarm->time.tm_mon = now.tm_mon;
+ if (missing == none)
+ missing = month;
+ }
+ if (alarm->time.tm_year == -1) {
+ alarm->time.tm_year = now.tm_year;
+ if (missing == none)
+ missing = year;
+ }
+
+ /* with luck, no rollover is needed */
+ rtc_tm_to_time(&now, &t_now);
+ rtc_tm_to_time(&alarm->time, &t_alm);
+ if (t_now < t_alm)
+ goto done;
+
+ switch (missing) {
+
+ /* 24 hour rollover ... if it's now 10am Monday, an alarm that
+ * that will trigger at 5am will do so at 5am Tuesday, which
+ * could also be in the next month or year. This is a common
+ * case, especially for PCs.
+ */
+ case day:
+ dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
+ t_alm += 24 * 60 * 60;
+ rtc_time_to_tm(t_alm, &alarm->time);
+ break;
+
+ /* Month rollover ... if it's the 31th, an alarm on the 3rd will
+ * be next month. An alarm matching on the 30th, 29th, or 28th
+ * may end up in the month after that! Many newer PCs support
+ * this type of alarm.
+ */
+ case month:
+ dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
+ do {
+ if (alarm->time.tm_mon < 11)
+ alarm->time.tm_mon++;
+ else {
+ alarm->time.tm_mon = 0;
+ alarm->time.tm_year++;
+ }
+ days = rtc_month_days(alarm->time.tm_mon,
+ alarm->time.tm_year);
+ } while (days < alarm->time.tm_mday);
+ break;
+
+ /* Year rollover ... easy except for leap years! */
+ case year:
+ dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
+ do {
+ alarm->time.tm_year++;
+ } while (rtc_valid_tm(&alarm->time) != 0);
+ break;
+
+ default:
+ dev_warn(&rtc->dev, "alarm rollover not handled\n");
+ }
+
+done:
+ return 0;
+}
+
int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
{
int err;
@@ -138,7 +323,7 @@ int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
}
EXPORT_SYMBOL_GPL(rtc_read_alarm);
-int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
+static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
{
struct rtc_time tm;
long now, scheduled;
@@ -182,19 +367,54 @@ int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
err = mutex_lock_interruptible(&rtc->ops_lock);
if (err)
return err;
- if (rtc->aie_timer.enabled) {
+ if (rtc->aie_timer.enabled)
rtc_timer_remove(rtc, &rtc->aie_timer);
- }
+
rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
rtc->aie_timer.period = ktime_set(0, 0);
- if (alarm->enabled) {
+ if (alarm->enabled)
err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
- }
+
mutex_unlock(&rtc->ops_lock);
return err;
}
EXPORT_SYMBOL_GPL(rtc_set_alarm);
+/* Called once per device from rtc_device_register */
+int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
+{
+ int err;
+ struct rtc_time now;
+
+ err = rtc_valid_tm(&alarm->time);
+ if (err != 0)
+ return err;
+
+ err = rtc_read_time(rtc, &now);
+ if (err)
+ return err;
+
+ err = mutex_lock_interruptible(&rtc->ops_lock);
+ if (err)
+ return err;
+
+ rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
+ rtc->aie_timer.period = ktime_set(0, 0);
+
+ /* Alarm has to be enabled & in the futrure for us to enqueue it */
+ if (alarm->enabled && (rtc_tm_to_ktime(now).tv64 <
+ rtc->aie_timer.node.expires.tv64)) {
+
+ rtc->aie_timer.enabled = 1;
+ timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
+ }
+ mutex_unlock(&rtc->ops_lock);
+ return err;
+}
+EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
+
+
+
int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
{
int err = mutex_lock_interruptible(&rtc->ops_lock);
@@ -238,6 +458,11 @@ int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
if (rtc->uie_rtctimer.enabled == enabled)
goto out;
+ if (rtc->uie_unsupported) {
+ err = -EINVAL;
+ goto out;
+ }
+
if (enabled) {
struct rtc_time tm;
ktime_t now, onesec;
@@ -274,7 +499,7 @@ EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
* @rtc: pointer to the rtc device
*
* This function is called when an AIE, UIE or PIE mode interrupt
- * has occured (or been emulated).
+ * has occurred (or been emulated).
*
* Triggers the registered irq_task function callback.
*/
@@ -357,20 +582,21 @@ enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
void rtc_update_irq(struct rtc_device *rtc,
unsigned long num, unsigned long events)
{
+ pm_stay_awake(rtc->dev.parent);
schedule_work(&rtc->irqwork);
}
EXPORT_SYMBOL_GPL(rtc_update_irq);
-static int __rtc_match(struct device *dev, void *data)
+static int __rtc_match(struct device *dev, const void *data)
{
- char *name = (char *)data;
+ const char *name = data;
if (strcmp(dev_name(dev), name) == 0)
return 1;
return 0;
}
-struct rtc_device *rtc_class_open(char *name)
+struct rtc_device *rtc_class_open(const char *name)
{
struct device *dev;
struct rtc_device *rtc = NULL;
@@ -430,6 +656,29 @@ void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
}
EXPORT_SYMBOL_GPL(rtc_irq_unregister);
+static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
+{
+ /*
+ * We always cancel the timer here first, because otherwise
+ * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
+ * when we manage to start the timer before the callback
+ * returns HRTIMER_RESTART.
+ *
+ * We cannot use hrtimer_cancel() here as a running callback
+ * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
+ * would spin forever.
+ */
+ if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
+ return -1;
+
+ if (enabled) {
+ ktime_t period = ktime_set(0, NSEC_PER_SEC / rtc->irq_freq);
+
+ hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
+ }
+ return 0;
+}
+
/**
* rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
* @rtc: the rtc device
@@ -445,21 +694,21 @@ int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled
int err = 0;
unsigned long flags;
+retry:
spin_lock_irqsave(&rtc->irq_task_lock, flags);
if (rtc->irq_task != NULL && task == NULL)
err = -EBUSY;
- if (rtc->irq_task != task)
+ else if (rtc->irq_task != task)
err = -EACCES;
-
- if (enabled) {
- ktime_t period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
- hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
- } else {
- hrtimer_cancel(&rtc->pie_timer);
+ else {
+ if (rtc_update_hrtimer(rtc, enabled) < 0) {
+ spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
+ cpu_relax();
+ goto retry;
+ }
+ rtc->pie_enabled = enabled;
}
- rtc->pie_enabled = enabled;
spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
-
return err;
}
EXPORT_SYMBOL_GPL(rtc_irq_set_state);
@@ -479,22 +728,20 @@ int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
int err = 0;
unsigned long flags;
- if (freq <= 0)
+ if (freq <= 0 || freq > RTC_MAX_FREQ)
return -EINVAL;
-
+retry:
spin_lock_irqsave(&rtc->irq_task_lock, flags);
if (rtc->irq_task != NULL && task == NULL)
err = -EBUSY;
- if (rtc->irq_task != task)
+ else if (rtc->irq_task != task)
err = -EACCES;
- if (err == 0) {
+ else {
rtc->irq_freq = freq;
- if (rtc->pie_enabled) {
- ktime_t period;
- hrtimer_cancel(&rtc->pie_timer);
- period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
- hrtimer_start(&rtc->pie_timer, period,
- HRTIMER_MODE_REL);
+ if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) {
+ spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
+ cpu_relax();
+ goto retry;
}
}
spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
@@ -535,6 +782,14 @@ static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
return 0;
}
+static void rtc_alarm_disable(struct rtc_device *rtc)
+{
+ if (!rtc->ops || !rtc->ops->alarm_irq_enable)
+ return;
+
+ rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
+}
+
/**
* rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
* @rtc rtc device
@@ -556,8 +811,10 @@ static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
struct rtc_wkalrm alarm;
int err;
next = timerqueue_getnext(&rtc->timerqueue);
- if (!next)
+ if (!next) {
+ rtc_alarm_disable(rtc);
return;
+ }
alarm.time = rtc_ktime_to_tm(next->expires);
alarm.enabled = 1;
err = __rtc_set_alarm(rtc, &alarm);
@@ -588,6 +845,7 @@ void rtc_timer_do_work(struct work_struct *work)
mutex_lock(&rtc->ops_lock);
again:
+ pm_relax(rtc->dev.parent);
__rtc_read_time(rtc, &tm);
now = rtc_tm_to_ktime(tm);
while ((next = timerqueue_getnext(&rtc->timerqueue))) {
@@ -619,7 +877,8 @@ again:
err = __rtc_set_alarm(rtc, &alarm);
if (err == -ETIME)
goto again;
- }
+ } else
+ rtc_alarm_disable(rtc);
mutex_unlock(&rtc->ops_lock);
}
@@ -632,7 +891,7 @@ again:
*
* Kernel interface to initializing an rtc_timer.
*/
-void rtc_timer_init(struct rtc_timer *timer, void (*f)(void* p), void* data)
+void rtc_timer_init(struct rtc_timer *timer, void (*f)(void *p), void *data)
{
timerqueue_init(&timer->node);
timer->enabled = 0;
@@ -648,7 +907,7 @@ void rtc_timer_init(struct rtc_timer *timer, void (*f)(void* p), void* data)
*
* Kernel interface to set an rtc_timer
*/
-int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer* timer,
+int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
ktime_t expires, ktime_t period)
{
int ret = 0;
@@ -671,7 +930,7 @@ int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer* timer,
*
* Kernel interface to cancel an rtc_timer
*/
-int rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer* timer)
+int rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
{
int ret = 0;
mutex_lock(&rtc->ops_lock);