summaryrefslogtreecommitdiff
path: root/kernel
AgeCommit message (Collapse)Author
2017-01-14sched/core: Reset RQCF_ACT_SKIP before unpinning rq->lockMatt Fleming
rq_clock() is called from sched_info_{depart,arrive}() after resetting RQCF_ACT_SKIP but prior to a call to update_rq_clock(). In preparation for pending patches that check whether the rq clock has been updated inside of a pin context before rq_clock() is called, move the reset of rq->clock_skip_update immediately before unpinning the rq lock. This will avoid the new warnings which check if update_rq_clock() is being actively skipped. Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Byungchul Park <byungchul.park@lge.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Jan Kara <jack@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Luca Abeni <luca.abeni@unitn.it> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Mike Galbraith <efault@gmx.de> Cc: Mike Galbraith <umgwanakikbuti@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Rik van Riel <riel@redhat.com> Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Wanpeng Li <wanpeng.li@hotmail.com> Cc: Yuyang Du <yuyang.du@intel.com> Link: http://lkml.kernel.org/r/20160921133813.31976-6-matt@codeblueprint.co.uk Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-01-14sched/core: Add wrappers for lockdep_(un)pin_lock()Matt Fleming
In preparation for adding diagnostic checks to catch missing calls to update_rq_clock(), provide wrappers for (re)pinning and unpinning rq->lock. Because the pending diagnostic checks allow state to be maintained in rq_flags across pin contexts, swap the 'struct pin_cookie' arguments for 'struct rq_flags *'. Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Byungchul Park <byungchul.park@lge.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Jan Kara <jack@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Luca Abeni <luca.abeni@unitn.it> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Mike Galbraith <efault@gmx.de> Cc: Mike Galbraith <umgwanakikbuti@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Rik van Riel <riel@redhat.com> Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Wanpeng Li <wanpeng.li@hotmail.com> Cc: Yuyang Du <yuyang.du@intel.com> Link: http://lkml.kernel.org/r/20160921133813.31976-5-matt@codeblueprint.co.uk Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-01-14locking/mutex: Initialize mutex_waiter::ww_ctx with poison when debuggingNicolai Hähnle
Help catch cases where mutex_lock is used directly on w/w mutexes, which otherwise result in the w/w tasks reading uninitialized data. Signed-off-by: Nicolai Hähnle <Nicolai.Haehnle@amd.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Maarten Lankhorst <dev@mblankhorst.nl> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: dri-devel@lists.freedesktop.org Link: http://lkml.kernel.org/r/1482346000-9927-12-git-send-email-nhaehnle@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-01-14locking/ww_mutex: Optimize ww-mutexes by yielding to other waiters from ↵Nicolai Hähnle
optimistic spin Lock stealing is less beneficial for w/w mutexes since we may just end up backing off if we stole from a thread with an earlier acquire stamp that already holds another w/w mutex that we also need. So don't spin optimistically unless we are sure that there is no other waiter that might cause us to back off. Median timings taken of a contention-heavy GPU workload: Before: real 0m52.946s user 0m7.272s sys 1m55.964s After: real 0m53.086s user 0m7.360s sys 1m46.204s This particular workload still spends 20%-25% of CPU in mutex_spin_on_owner according to perf, but my attempts to further reduce this spinning based on various heuristics all lead to an increase in measured wall time despite the decrease in sys time. Signed-off-by: Nicolai Hähnle <Nicolai.Haehnle@amd.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Maarten Lankhorst <dev@mblankhorst.nl> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: dri-devel@lists.freedesktop.org Link: http://lkml.kernel.org/r/1482346000-9927-11-git-send-email-nhaehnle@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-01-14locking/ww_mutex: Re-check ww->ctx in the inner optimistic spin loopNicolai Hähnle
In the following scenario, thread #1 should back off its attempt to lock ww1 and unlock ww2 (assuming the acquire context stamps are ordered accordingly). Thread #0 Thread #1 --------- --------- successfully lock ww2 set ww1->base.owner attempt to lock ww1 confirm ww1->ctx == NULL enter mutex_spin_on_owner set ww1->ctx What was likely to happen previously is: attempt to lock ww2 refuse to spin because ww2->ctx != NULL schedule() detect thread #0 is off CPU stop optimistic spin return -EDEADLK unlock ww2 wakeup thread #0 lock ww2 Now, we are more likely to see: detect ww1->ctx != NULL stop optimistic spin return -EDEADLK unlock ww2 successfully lock ww2 ... because thread #1 will stop its optimistic spin as soon as possible. The whole scenario is quite unlikely, since it requires thread #1 to get between thread #0 setting the owner and setting the ctx. But since we're idling here anyway, the additional check is basically free. Found by inspection. Signed-off-by: Nicolai Hähnle <Nicolai.Haehnle@amd.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Maarten Lankhorst <dev@mblankhorst.nl> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: dri-devel@lists.freedesktop.org Link: http://lkml.kernel.org/r/1482346000-9927-10-git-send-email-nhaehnle@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-01-14locking/mutex: Improve inliningPeter Zijlstra
Instead of inlining __mutex_lock_common() 5 times, once for each {state,ww} variant. Reduce this to two, ww and !ww. Then add __always_inline to mutex_optimistic_spin(), so that that will get inlined all 4 remaining times, for all {waiter,ww} variants. text data bss dec hex filename 6301 0 0 6301 189d defconfig-build/kernel/locking/mutex.o 4053 0 0 4053 fd5 defconfig-build/kernel/locking/mutex.o 4257 0 0 4257 10a1 defconfig-build/kernel/locking/mutex.o This reduces total text size and better separates the ww and !ww mutex code generation. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-01-14locking/ww_mutex: Optimize ww-mutexes by waking at most one waiter for ↵Nicolai Hähnle
backoff when acquiring the lock The wait list is sorted by stamp order, and the only waiting task that may have to back off is the first waiter with a context. The regular slow path does not have to wake any other tasks at all, since all other waiters that would have to back off were either woken up when the waiter was added to the list, or detected the condition before they added themselves. Median timings taken of a contention-heavy GPU workload: Without this series: real 0m59.900s user 0m7.516s sys 2m16.076s With changes up to and including this patch: real 0m52.946s user 0m7.272s sys 1m55.964s Signed-off-by: Nicolai Hähnle <Nicolai.Haehnle@amd.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Maarten Lankhorst <dev@mblankhorst.nl> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: dri-devel@lists.freedesktop.org Link: http://lkml.kernel.org/r/1482346000-9927-9-git-send-email-nhaehnle@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-01-14locking/ww_mutex: Notify waiters that have to back off while adding tasks to ↵Nicolai Hähnle
wait list While adding our task as a waiter, detect if another task should back off because of us. With this patch, we establish the invariant that the wait list contains at most one (sleeping) waiter with ww_ctx->acquired > 0, and this waiter will be the first waiter with a context. Since only waiters with ww_ctx->acquired > 0 have to back off, this allows us to be much more economical with wakeups. Signed-off-by: Nicolai Hähnle <Nicolai.Haehnle@amd.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Maarten Lankhorst <dev@mblankhorst.nl> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: dri-devel@lists.freedesktop.org Link: http://lkml.kernel.org/r/1482346000-9927-8-git-send-email-nhaehnle@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-01-14locking/ww_mutex: Add waiters in stamp orderNicolai Hähnle
Add regular waiters in stamp order. Keep adding waiters that have no context in FIFO order and take care not to starve them. While adding our task as a waiter, back off if we detect that there is a waiter with a lower stamp in front of us. Make sure to call lock_contended even when we back off early. For w/w mutexes, being first in the wait list is only stable when taking the lock without a context. Therefore, the purpose of the first flag is split into two: 'first' remains to indicate whether we want to spin optimistically, while 'handoff' indicates that we should be prepared to accept a handoff. For w/w locking with a context, we always accept handoffs after the first schedule(), to handle the following sequence of events: 1. Task #0 unlocks and hands off to Task #2 which is first in line 2. Task #1 adds itself in front of Task #2 3. Task #2 wakes up and must accept the handoff even though it is no longer first in line Signed-off-by: Nicolai Hähnle <nicolai.haehnle@amd.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: =?UTF-8?q?Nicolai=20H=C3=A4hnle?= <Nicolai.Haehnle@amd.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Maarten Lankhorst <dev@mblankhorst.nl> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: dri-devel@lists.freedesktop.org Link: http://lkml.kernel.org/r/1482346000-9927-7-git-send-email-nhaehnle@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-01-14locking/ww_mutex: Remove the __ww_mutex_lock*() inline wrappersNicolai Hähnle
Keep the documentation in the header file since there is no good place for it in mutex.c: there are two rather different implementations with different EXPORT_SYMBOLs for each function. Signed-off-by: Nicolai Hähnle <nicolai.haehnle@amd.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: =?UTF-8?q?Nicolai=20H=C3=A4hnle?= <Nicolai.Haehnle@amd.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Maarten Lankhorst <dev@mblankhorst.nl> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: dri-devel@lists.freedesktop.org Link: http://lkml.kernel.org/r/1482346000-9927-6-git-send-email-nhaehnle@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-01-14locking/ww_mutex: Set use_ww_ctx even when locking without a contextNicolai Hähnle
We will add a new field to struct mutex_waiter. This field must be initialized for all waiters if any waiter uses the ww_use_ctx path. So there is a trade-off: Keep ww_mutex locking without a context on the faster non-use_ww_ctx path, at the cost of adding the initialization to all mutex locks (including non-ww_mutexes), or avoid the additional cost for non-ww_mutex locks, at the cost of adding additional checks to the use_ww_ctx path. We take the latter choice. It may be worth eliminating the users of ww_mutex_lock(lock, NULL), but there are a lot of them. Signed-off-by: Nicolai Hähnle <Nicolai.Haehnle@amd.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Maarten Lankhorst <dev@mblankhorst.nl> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: dri-devel@lists.freedesktop.org Link: http://lkml.kernel.org/r/1482346000-9927-5-git-send-email-nhaehnle@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-01-14locking/ww_mutex: Extract stamp comparison to __ww_mutex_stamp_after()Nicolai Hähnle
The function will be re-used in subsequent patches. Signed-off-by: Nicolai Hähnle <Nicolai.Haehnle@amd.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Maarten Lankhorst <dev@mblankhorst.nl> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: dri-devel@lists.freedesktop.org Link: http://lkml.kernel.org/r/1482346000-9927-4-git-send-email-nhaehnle@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-01-14locking/mutex: Fix mutex handoffPeter Zijlstra
While reviewing the ww_mutex patches, I noticed that it was still possible to (incorrectly) succeed for (incorrect) code like: mutex_lock(&a); mutex_lock(&a); This was possible if the second mutex_lock() would block (as expected) but then receive a spurious wakeup. At that point it would find itself at the front of the queue, request a handoff and instantly claim ownership and continue, since owner would point to itself. Avoid this scenario and simplify the code by introducing a third low bit to signal handoff pickup. So once we request handoff, unlock clears the handoff bit and sets the pickup bit along with the new owner. This also removes the need for the .handoff argument to __mutex_trylock(), since that becomes superfluous with PICKUP. In order to guarantee enough low bits, ensure task_struct alignment is at least L1_CACHE_BYTES (which seems a good ideal regardless). Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Fixes: 9d659ae14b54 ("locking/mutex: Add lock handoff to avoid starvation") Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-01-14locking/percpu-rwsem: Replace waitqueue with rcuwaitDavidlohr Bueso
The use of any kind of wait queue is an overkill for pcpu-rwsems. While one option would be to use the less heavy simple (swait) flavor, this is still too much for what pcpu-rwsems needs. For one, we do not care about any sort of queuing in that the only (rare) time writers (and readers, for that matter) are queued is when trying to acquire the regular contended rw_sem. There cannot be any further queuing as writers are serialized by the rw_sem in the first place. Given that percpu_down_write() must not be called after exit_notify(), we can replace the bulky waitqueue with rcuwait such that a writer can wait for its turn to take the lock. As such, we can avoid the queue handling and locking overhead. Signed-off-by: Davidlohr Bueso <dbueso@suse.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: dave@stgolabs.net Link: http://lkml.kernel.org/r/1484148146-14210-3-git-send-email-dave@stgolabs.net Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-01-14sched/wait, RCU: Introduce rcuwait machineryDavidlohr Bueso
rcuwait provides support for (single) RCU-safe task wait/wake functionality, with the caveat that it must not be called after exit_notify(), such that we avoid racing with rcu delayed_put_task_struct callbacks, task_struct being rcu unaware in this context -- for which we similarly have task_rcu_dereference() magic, but with different return semantics, which can conflict with the wakeup side. The interfaces are quite straightforward: rcuwait_wait_event() rcuwait_wake_up() More details are in the comments, but it's perhaps worth mentioning at least, that users must provide proper serialization when waiting on a condition, and avoid corrupting a concurrent waiter. Also care must be taken between the task and the condition for when calling the wakeup -- we cannot miss wakeups. When porting users, this is for example, a given when using waitqueues in that everything is done under the q->lock. As such, it can remove sources of non preemptable unbounded work for realtime. Signed-off-by: Davidlohr Bueso <dbueso@suse.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: dave@stgolabs.net Link: http://lkml.kernel.org/r/1484148146-14210-2-git-send-email-dave@stgolabs.net Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-01-14sched/core: Remove set_task_state()Davidlohr Bueso
This is a nasty interface and setting the state of a foreign task must not be done. As of the following commit: be628be0956 ("bcache: Make gc wakeup sane, remove set_task_state()") ... everyone in the kernel calls set_task_state() with current, allowing the helper to be removed. However, as the comment indicates, it is still around for those archs where computing current is more expensive than using a pointer, at least in theory. An important arch that is affected is arm64, however this has been addressed now [1] and performance is up to par making no difference with either calls. Of all the callers, if any, it's the locking bits that would care most about this -- ie: we end up passing a tsk pointer to a lot of the lock slowpath, and setting ->state on that. The following numbers are based on two tests: a custom ad-hoc microbenchmark that just measures latencies (for ~65 million calls) between get_task_state() vs get_current_state(). Secondly for a higher overview, an unlink microbenchmark was used, which pounds on a single file with open, close,unlink combos with increasing thread counts (up to 4x ncpus). While the workload is quite unrealistic, it does contend a lot on the inode mutex or now rwsem. [1] https://lkml.kernel.org/r/1483468021-8237-1-git-send-email-mark.rutland@arm.com == 1. x86-64 == Avg runtime set_task_state(): 601 msecs Avg runtime set_current_state(): 552 msecs vanilla dirty Hmean unlink1-processes-2 36089.26 ( 0.00%) 38977.33 ( 8.00%) Hmean unlink1-processes-5 28555.01 ( 0.00%) 29832.55 ( 4.28%) Hmean unlink1-processes-8 37323.75 ( 0.00%) 44974.57 ( 20.50%) Hmean unlink1-processes-12 43571.88 ( 0.00%) 44283.01 ( 1.63%) Hmean unlink1-processes-21 34431.52 ( 0.00%) 38284.45 ( 11.19%) Hmean unlink1-processes-30 34813.26 ( 0.00%) 37975.17 ( 9.08%) Hmean unlink1-processes-48 37048.90 ( 0.00%) 39862.78 ( 7.59%) Hmean unlink1-processes-79 35630.01 ( 0.00%) 36855.30 ( 3.44%) Hmean unlink1-processes-110 36115.85 ( 0.00%) 39843.91 ( 10.32%) Hmean unlink1-processes-141 32546.96 ( 0.00%) 35418.52 ( 8.82%) Hmean unlink1-processes-172 34674.79 ( 0.00%) 36899.21 ( 6.42%) Hmean unlink1-processes-203 37303.11 ( 0.00%) 36393.04 ( -2.44%) Hmean unlink1-processes-224 35712.13 ( 0.00%) 36685.96 ( 2.73%) == 2. ppc64le == Avg runtime set_task_state(): 938 msecs Avg runtime set_current_state: 940 msecs vanilla dirty Hmean unlink1-processes-2 19269.19 ( 0.00%) 30704.50 ( 59.35%) Hmean unlink1-processes-5 20106.15 ( 0.00%) 21804.15 ( 8.45%) Hmean unlink1-processes-8 17496.97 ( 0.00%) 17243.28 ( -1.45%) Hmean unlink1-processes-12 14224.15 ( 0.00%) 17240.21 ( 21.20%) Hmean unlink1-processes-21 14155.66 ( 0.00%) 15681.23 ( 10.78%) Hmean unlink1-processes-30 14450.70 ( 0.00%) 15995.83 ( 10.69%) Hmean unlink1-processes-48 16945.57 ( 0.00%) 16370.42 ( -3.39%) Hmean unlink1-processes-79 15788.39 ( 0.00%) 14639.27 ( -7.28%) Hmean unlink1-processes-110 14268.48 ( 0.00%) 14377.40 ( 0.76%) Hmean unlink1-processes-141 14023.65 ( 0.00%) 16271.69 ( 16.03%) Hmean unlink1-processes-172 13417.62 ( 0.00%) 16067.55 ( 19.75%) Hmean unlink1-processes-203 15293.08 ( 0.00%) 15440.40 ( 0.96%) Hmean unlink1-processes-234 13719.32 ( 0.00%) 16190.74 ( 18.01%) Hmean unlink1-processes-265 16400.97 ( 0.00%) 16115.22 ( -1.74%) Hmean unlink1-processes-296 14388.60 ( 0.00%) 16216.13 ( 12.70%) Hmean unlink1-processes-320 15771.85 ( 0.00%) 15905.96 ( 0.85%) x86-64 (known to be fast for get_current()/this_cpu_read_stable() caching) and ppc64 (with paca) show similar improvements in the unlink microbenches. The small delta for ppc64 (2ms), does not represent the gains on the unlink runs. In the case of x86, there was a decent amount of variation in the latency runs, but always within a 20 to 50ms increase), ppc was more constant. Signed-off-by: Davidlohr Bueso <dbueso@suse.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: dave@stgolabs.net Cc: mark.rutland@arm.com Link: http://lkml.kernel.org/r/1483479794-14013-5-git-send-email-dave@stgolabs.net Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-01-14kernel/locking: Compute 'current' directlyDavidlohr Bueso
This patch effectively replaces the tsk pointer dereference (which is obviously == current), to directly use get_current() macro. This is to make the removal of setting foreign task states smoother and painfully obvious. Performance win on some archs such as x86-64 and ppc64. On a microbenchmark that calls set_task_state() vs set_current_state() and an inode rwsem pounding benchmark doing unlink: == 1. x86-64 == Avg runtime set_task_state(): 601 msecs Avg runtime set_current_state(): 552 msecs vanilla dirty Hmean unlink1-processes-2 36089.26 ( 0.00%) 38977.33 ( 8.00%) Hmean unlink1-processes-5 28555.01 ( 0.00%) 29832.55 ( 4.28%) Hmean unlink1-processes-8 37323.75 ( 0.00%) 44974.57 ( 20.50%) Hmean unlink1-processes-12 43571.88 ( 0.00%) 44283.01 ( 1.63%) Hmean unlink1-processes-21 34431.52 ( 0.00%) 38284.45 ( 11.19%) Hmean unlink1-processes-30 34813.26 ( 0.00%) 37975.17 ( 9.08%) Hmean unlink1-processes-48 37048.90 ( 0.00%) 39862.78 ( 7.59%) Hmean unlink1-processes-79 35630.01 ( 0.00%) 36855.30 ( 3.44%) Hmean unlink1-processes-110 36115.85 ( 0.00%) 39843.91 ( 10.32%) Hmean unlink1-processes-141 32546.96 ( 0.00%) 35418.52 ( 8.82%) Hmean unlink1-processes-172 34674.79 ( 0.00%) 36899.21 ( 6.42%) Hmean unlink1-processes-203 37303.11 ( 0.00%) 36393.04 ( -2.44%) Hmean unlink1-processes-224 35712.13 ( 0.00%) 36685.96 ( 2.73%) == 2. ppc64le == Avg runtime set_task_state(): 938 msecs Avg runtime set_current_state: 940 msecs vanilla dirty Hmean unlink1-processes-2 19269.19 ( 0.00%) 30704.50 ( 59.35%) Hmean unlink1-processes-5 20106.15 ( 0.00%) 21804.15 ( 8.45%) Hmean unlink1-processes-8 17496.97 ( 0.00%) 17243.28 ( -1.45%) Hmean unlink1-processes-12 14224.15 ( 0.00%) 17240.21 ( 21.20%) Hmean unlink1-processes-21 14155.66 ( 0.00%) 15681.23 ( 10.78%) Hmean unlink1-processes-30 14450.70 ( 0.00%) 15995.83 ( 10.69%) Hmean unlink1-processes-48 16945.57 ( 0.00%) 16370.42 ( -3.39%) Hmean unlink1-processes-79 15788.39 ( 0.00%) 14639.27 ( -7.28%) Hmean unlink1-processes-110 14268.48 ( 0.00%) 14377.40 ( 0.76%) Hmean unlink1-processes-141 14023.65 ( 0.00%) 16271.69 ( 16.03%) Hmean unlink1-processes-172 13417.62 ( 0.00%) 16067.55 ( 19.75%) Hmean unlink1-processes-203 15293.08 ( 0.00%) 15440.40 ( 0.96%) Hmean unlink1-processes-234 13719.32 ( 0.00%) 16190.74 ( 18.01%) Hmean unlink1-processes-265 16400.97 ( 0.00%) 16115.22 ( -1.74%) Hmean unlink1-processes-296 14388.60 ( 0.00%) 16216.13 ( 12.70%) Hmean unlink1-processes-320 15771.85 ( 0.00%) 15905.96 ( 0.85%) Signed-off-by: Davidlohr Bueso <dbueso@suse.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: dave@stgolabs.net Cc: mark.rutland@arm.com Link: http://lkml.kernel.org/r/1483479794-14013-4-git-send-email-dave@stgolabs.net Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-01-14kernel/exit: Compute 'current' directlyDavidlohr Bueso
This patch effectively replaces the tsk pointer dereference (which is obviously == current), to directly use get_current() macro. In this case, do_exit() always passes current to exit_mm(), hence we can simply get rid of the argument. This is also a performance win on some archs such as x86-64 and ppc64 -- arm64 is no longer an issue. Signed-off-by: Davidlohr Bueso <dbueso@suse.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: dave@stgolabs.net Cc: mark.rutland@arm.com Link: http://lkml.kernel.org/r/1483479794-14013-2-git-send-email-dave@stgolabs.net Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-01-14perf/x86/intel: Account interrupts for PEBS errorsJiri Olsa
It's possible to set up PEBS events to get only errors and not any data, like on SNB-X (model 45) and IVB-EP (model 62) via 2 perf commands running simultaneously: taskset -c 1 ./perf record -c 4 -e branches:pp -j any -C 10 This leads to a soft lock up, because the error path of the intel_pmu_drain_pebs_nhm() does not account event->hw.interrupt for error PEBS interrupts, so in case you're getting ONLY errors you don't have a way to stop the event when it's over the max_samples_per_tick limit: NMI watchdog: BUG: soft lockup - CPU#22 stuck for 22s! [perf_fuzzer:5816] ... RIP: 0010:[<ffffffff81159232>] [<ffffffff81159232>] smp_call_function_single+0xe2/0x140 ... Call Trace: ? trace_hardirqs_on_caller+0xf5/0x1b0 ? perf_cgroup_attach+0x70/0x70 perf_install_in_context+0x199/0x1b0 ? ctx_resched+0x90/0x90 SYSC_perf_event_open+0x641/0xf90 SyS_perf_event_open+0x9/0x10 do_syscall_64+0x6c/0x1f0 entry_SYSCALL64_slow_path+0x25/0x25 Add perf_event_account_interrupt() which does the interrupt and frequency checks and call it from intel_pmu_drain_pebs_nhm()'s error path. We keep the pending_kill and pending_wakeup logic only in the __perf_event_overflow() path, because they make sense only if there's any data to deliver. Signed-off-by: Jiri Olsa <jolsa@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vince@deater.net> Cc: Vince Weaver <vincent.weaver@maine.edu> Link: http://lkml.kernel.org/r/1482931866-6018-2-git-send-email-jolsa@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-01-14perf/core: Fix concurrent sys_perf_event_open() vs. 'move_group' racePeter Zijlstra
Di Shen reported a race between two concurrent sys_perf_event_open() calls where both try and move the same pre-existing software group into a hardware context. The problem is exactly that described in commit: f63a8daa5812 ("perf: Fix event->ctx locking") ... where, while we wait for a ctx->mutex acquisition, the event->ctx relation can have changed under us. That very same commit failed to recognise sys_perf_event_context() as an external access vector to the events and thereby didn't apply the established locking rules correctly. So while one sys_perf_event_open() call is stuck waiting on mutex_lock_double(), the other (which owns said locks) moves the group about. So by the time the former sys_perf_event_open() acquires the locks, the context we've acquired is stale (and possibly dead). Apply the established locking rules as per perf_event_ctx_lock_nested() to the mutex_lock_double() for the 'move_group' case. This obviously means we need to validate state after we acquire the locks. Reported-by: Di Shen (Keen Lab) Tested-by: John Dias <joaodias@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Min Chong <mchong@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Fixes: f63a8daa5812 ("perf: Fix event->ctx locking") Link: http://lkml.kernel.org/r/20170106131444.GZ3174@twins.programming.kicks-ass.net Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-01-14perf/core: Fix sys_perf_event_open() vs. hotplugPeter Zijlstra
There is problem with installing an event in a task that is 'stuck' on an offline CPU. Blocked tasks are not dis-assosciated from offlined CPUs, after all, a blocked task doesn't run and doesn't require a CPU etc.. Only on wakeup do we ammend the situation and place the task on a available CPU. If we hit such a task with perf_install_in_context() we'll loop until either that task wakes up or the CPU comes back online, if the task waking depends on the event being installed, we're stuck. While looking into this issue, I also spotted another problem, if we hit a task with perf_install_in_context() that is in the middle of being migrated, that is we observe the old CPU before sending the IPI, but run the IPI (on the old CPU) while the task is already running on the new CPU, things also go sideways. Rework things to rely on task_curr() -- outside of rq->lock -- which is rather tricky. Imagine the following scenario where we're trying to install the first event into our task 't': CPU0 CPU1 CPU2 (current == t) t->perf_event_ctxp[] = ctx; smp_mb(); cpu = task_cpu(t); switch(t, n); migrate(t, 2); switch(p, t); ctx = t->perf_event_ctxp[]; // must not be NULL smp_function_call(cpu, ..); generic_exec_single() func(); spin_lock(ctx->lock); if (task_curr(t)) // false add_event_to_ctx(); spin_unlock(ctx->lock); perf_event_context_sched_in(); spin_lock(ctx->lock); // sees event So its CPU0's store of t->perf_event_ctxp[] that must not go 'missing'. Because if CPU2's load of that variable were to observe NULL, it would not try to schedule the ctx and we'd have a task running without its counter, which would be 'bad'. As long as we observe !NULL, we'll acquire ctx->lock. If we acquire it first and not see the event yet, then CPU0 must observe task_curr() and retry. If the install happens first, then we must see the event on sched-in and all is well. I think we can translate the first part (until the 'must not be NULL') of the scenario to a litmus test like: C C-peterz { } P0(int *x, int *y) { int r1; WRITE_ONCE(*x, 1); smp_mb(); r1 = READ_ONCE(*y); } P1(int *y, int *z) { WRITE_ONCE(*y, 1); smp_store_release(z, 1); } P2(int *x, int *z) { int r1; int r2; r1 = smp_load_acquire(z); smp_mb(); r2 = READ_ONCE(*x); } exists (0:r1=0 /\ 2:r1=1 /\ 2:r2=0) Where: x is perf_event_ctxp[], y is our tasks's CPU, and z is our task being placed on the rq of CPU2. The P0 smp_mb() is the one added by this patch, ordering the store to perf_event_ctxp[] from find_get_context() and the load of task_cpu() in task_function_call(). The smp_store_release/smp_load_acquire model the RCpc locking of the rq->lock and the smp_mb() of P2 is the context switch switching from whatever CPU2 was running to our task 't'. This litmus test evaluates into: Test C-peterz Allowed States 7 0:r1=0; 2:r1=0; 2:r2=0; 0:r1=0; 2:r1=0; 2:r2=1; 0:r1=0; 2:r1=1; 2:r2=1; 0:r1=1; 2:r1=0; 2:r2=0; 0:r1=1; 2:r1=0; 2:r2=1; 0:r1=1; 2:r1=1; 2:r2=0; 0:r1=1; 2:r1=1; 2:r2=1; No Witnesses Positive: 0 Negative: 7 Condition exists (0:r1=0 /\ 2:r1=1 /\ 2:r2=0) Observation C-peterz Never 0 7 Hash=e427f41d9146b2a5445101d3e2fcaa34 And the strong and weak model agree. Reported-by: Mark Rutland <mark.rutland@arm.com> Tested-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: Will Deacon <will.deacon@arm.com> Cc: jeremy.linton@arm.com Link: http://lkml.kernel.org/r/20161209135900.GU3174@twins.programming.kicks-ass.net Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-01-14sched/cputime: Rename vtime_account_user() to vtime_flush()Frederic Weisbecker
CONFIG_VIRT_CPU_ACCOUNTING_NATIVE=y used to accumulate user time and account it on ticks and context switches only through the vtime_account_user() function. Now this model has been generalized on the 3 archs for all kind of cputime (system, irq, ...) and all the cputime flushing happens under vtime_account_user(). So let's rename this function to better reflect its new role. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Stanislaw Gruszka <sgruszka@redhat.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Wanpeng Li <wanpeng.li@hotmail.com> Link: http://lkml.kernel.org/r/1483636310-6557-11-git-send-email-fweisbec@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-01-14sched/cputime: Export account_guest_time()Frederic Weisbecker
In order to prepare for CONFIG_VIRT_CPU_ACCOUNTING_NATIVE=y to delay cputime accounting to the tick, let's allow archs to account cputime directly to gtime. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Stanislaw Gruszka <sgruszka@redhat.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Wanpeng Li <wanpeng.li@hotmail.com> Link: http://lkml.kernel.org/r/1483636310-6557-5-git-send-email-fweisbec@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-01-14sched/cputime: Allow accounting system time using cpustat indexFrederic Weisbecker
In order to prepare for CONFIG_VIRT_CPU_ACCOUNTING_NATIVE=y to delay cputime accounting to the tick, let's provide APIs to account system time to precise contexts: hardirq, softirq, pure system, ... Inspired-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Stanislaw Gruszka <sgruszka@redhat.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Wanpeng Li <wanpeng.li@hotmail.com> Link: http://lkml.kernel.org/r/1483636310-6557-4-git-send-email-fweisbec@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-01-14kprobes, extable: Identify kprobes trampolines as kernel text areaMasami Hiramatsu
Improve __kernel_text_address()/kernel_text_address() to return true if the given address is on a kprobe's instruction slot trampoline. This can help stacktraces to determine the address is on a text area or not. To implement this atomically in is_kprobe_*_slot(), also change the insn_cache page list to an RCU list. This changes timings a bit (it delays page freeing to the RCU garbage collection phase), but none of that is in the hot path. Note: this change can add small overhead to stack unwinders because it adds 2 additional checks to __kernel_text_address(). However, the impact should be very small, because kprobe_insn_pages list has 1 entry per 256 probes(on x86, on arm/arm64 it will be 1024 probes), and kprobe_optinsn_pages has 1 entry per 32 probes(on x86). In most use cases, the number of kprobe events may be less than 20, which means that is_kprobe_*_slot() will check just one entry. Tested-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org> Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Ananth N Mavinakayanahalli <ananth@linux.vnet.ibm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/148388747896.6869.6354262871751682264.stgit@devbox [ Improved the changelog and coding style. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-01-13Merge tag 'vfio-v4.10-rc4' of git://github.com/awilliam/linux-vfioLinus Torvalds
Pull VFIO fixes from Alex Williamson: - Cleanups and bug fixes for the mtty sample driver (Dan Carpenter) - Export and make use of has_capability() to fix incorrect use of ns_capable() for testing task capabilities (Jike Song) * tag 'vfio-v4.10-rc4' of git://github.com/awilliam/linux-vfio: vfio/type1: Remove pid_namespace.h include vfio iommu type1: fix the testing of capability for remote task capability: export has_capability vfio-mdev: remove some dead code vfio-mdev: buffer overflow in ioctl() vfio-mdev: return -EFAULT if copy_to_user() fails
2017-01-13Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds
Pull KVM fixes from Paolo Bonzini: - fix for module unload vs deferred jump labels (note: there might be other buggy modules!) - two NULL pointer dereferences from syzkaller - also syzkaller: fix emulation of fxsave/fxrstor/sgdt/sidt, problem made worse during this merge window, "just" kernel memory leak on releases - fix emulation of "mov ss" - somewhat serious on AMD, less so on Intel * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: KVM: x86: fix emulation of "MOV SS, null selector" KVM: x86: fix NULL deref in vcpu_scan_ioapic KVM: eventfd: fix NULL deref irqbypass consumer KVM: x86: Introduce segmented_write_std KVM: x86: flush pending lapic jump label updates on module unload jump_labels: API for flushing deferred jump label updates
2017-01-12security,selinux,smack: kill security_task_wait hookStephen Smalley
As reported by yangshukui, a permission denial from security_task_wait() can lead to a soft lockup in zap_pid_ns_processes() since it only expects sys_wait4() to return 0 or -ECHILD. Further, security_task_wait() can in general lead to zombies; in the absence of some way to automatically reparent a child process upon a denial, the hook is not useful. Remove the security hook and its implementations in SELinux and Smack. Smack already removed its check from its hook. Reported-by: yangshukui <yangshukui@huawei.com> Signed-off-by: Stephen Smalley <sds@tycho.nsa.gov> Acked-by: Casey Schaufler <casey@schaufler-ca.com> Acked-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Paul Moore <paul@paul-moore.com>
2017-01-12Merge branch 'aarch64/for-next/debug-virtual' into aarch64/for-next/coreWill Deacon
Merge core DEBUG_VIRTUAL changes from Laura Abbott. Later arm and arm64 support depends on these. * aarch64/for-next/debug-virtual: drivers: firmware: psci: Use __pa_symbol for kernel symbol mm/usercopy: Switch to using lm_alias mm/kasan: Switch to using __pa_symbol and lm_alias kexec: Switch to __pa_symbol mm: Introduce lm_alias mm/cma: Cleanup highmem check lib/Kconfig.debug: Add ARCH_HAS_DEBUG_VIRTUAL
2017-01-12bpf: allow b/h/w/dw access for bpf's cb in ctxDaniel Borkmann
When structs are used to store temporary state in cb[] buffer that is used with programs and among tail calls, then the generated code will not always access the buffer in bpf_w chunks. We can ease programming of it and let this act more natural by allowing for aligned b/h/w/dw sized access for cb[] ctx member. Various test cases are attached as well for the selftest suite. Potentially, this can also be reused for other program types to pass data around. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-12bpf: pass original insn directly to convert_ctx_accessDaniel Borkmann
Currently, when calling convert_ctx_access() callback for the various program types, we pass in insn->dst_reg, insn->src_reg, insn->off from the original instruction. This information is needed to rewrite the instruction that is based on the user ctx structure into a kernel representation for the ctx. As we'd like to allow access size beyond just BPF_W, we'd need also insn->code for that in order to decode the original access size. Given that, lets just pass insn directly to the convert_ctx_access() callback and work on that to not clutter the callback with even more arguments we need to pass when everything is already contained in insn. So lets go through that once, no functional change. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-12capability: export has_capabilityJike Song
has_capability() is sometimes needed by modules to test capability for specified task other than current, so export it. Cc: Kirti Wankhede <kwankhede@nvidia.com> Signed-off-by: Jike Song <jike.song@intel.com> Acked-by: Serge Hallyn <serge@hallyn.com> Acked-by: James Morris <james.l.morris@oracle.com> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2017-01-12jump_labels: API for flushing deferred jump label updatesDavid Matlack
Modules that use static_key_deferred need a way to synchronize with any delayed work that is still pending when the module is unloaded. Introduce static_key_deferred_flush() which flushes any pending jump label updates. Signed-off-by: David Matlack <dmatlack@google.com> Cc: stable@vger.kernel.org Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-01-12locking/pvqspinlock: Don't wait if vCPU is preemptedPan Xinhui
If prev node is not in running state or its vCPU is preempted, we can give up our vCPU slices in pv_wait_node() ASAP. Signed-off-by: Pan Xinhui <xinhui.pan@linux.vnet.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: longman@redhat.com Link: http://lkml.kernel.org/r/1484035006-6787-1-git-send-email-xinhui.pan@linux.vnet.ibm.com [ Fixed typos in the changelog, removed ugly linebreak from the code. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-01-12locking/spinlocks: Remove the unused spin_lock_bh_nested() APIWaiman Long
The spin_lock_bh_nested() API is defined but is not used anywhere in the kernel. So all spin_lock_bh_nested() and related APIs are now removed. Signed-off-by: Waiman Long <longman@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1483975612-16447-1-git-send-email-longman@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-01-11Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/netDavid S. Miller
Two AF_* families adding entries to the lockdep tables at the same time. Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-11kexec: Switch to __pa_symbolLaura Abbott
__pa_symbol is the correct api to get the physical address of kernel symbols. Switch to it to allow for better debug checking. Reviewed-by: Mark Rutland <mark.rutland@arm.com> Tested-by: Mark Rutland <mark.rutland@arm.com> Acked-by: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Laura Abbott <labbott@redhat.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-01-11nohz: Fix collision between tick and other hrtimersFrederic Weisbecker
When the tick is stopped and an interrupt occurs afterward, we check on that interrupt exit if the next tick needs to be rescheduled. If it doesn't need any update, we don't want to do anything. In order to check if the tick needs an update, we compare it against the clockevent device deadline. Now that's a problem because the clockevent device is at a lower level than the tick itself if it is implemented on top of hrtimer. Every hrtimer share this clockevent device. So comparing the next tick deadline against the clockevent device deadline is wrong because the device may be programmed for another hrtimer whose deadline collides with the tick. As a result we may end up not reprogramming the tick accidentally. In a worst case scenario under full dynticks mode, the tick stops firing as it is supposed to every 1hz, leaving /proc/stat stalled: Task in a full dynticks CPU ---------------------------- * hrtimer A is queued 2 seconds ahead * the tick is stopped, scheduled 1 second ahead * tick fires 1 second later * on tick exit, nohz schedules the tick 1 second ahead but sees the clockevent device is already programmed to that deadline, fooled by hrtimer A, the tick isn't rescheduled. * hrtimer A is cancelled before its deadline * tick never fires again until an interrupt happens... In order to fix this, store the next tick deadline to the tick_sched local structure and reuse that value later to check whether we need to reprogram the clock after an interrupt. On the other hand, ts->sleep_length still wants to know about the next clock event and not just the tick, so we want to improve the related comment to avoid confusion. Reported-by: James Hartsock <hartsjc@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Reviewed-by: Wanpeng Li <wanpeng.li@hotmail.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Acked-by: Rik van Riel <riel@redhat.com> Link: http://lkml.kernel.org/r/1483539124-5693-1-git-send-email-fweisbec@gmail.com Cc: stable@vger.kernel.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2017-01-10signal: protect SIGNAL_UNKILLABLE from unintentional clearing.Jamie Iles
Since commit 00cd5c37afd5 ("ptrace: permit ptracing of /sbin/init") we can now trace init processes. init is initially protected with SIGNAL_UNKILLABLE which will prevent fatal signals such as SIGSTOP, but there are a number of paths during tracing where SIGNAL_UNKILLABLE can be implicitly cleared. This can result in init becoming stoppable/killable after tracing. For example, running: while true; do kill -STOP 1; done & strace -p 1 and then stopping strace and the kill loop will result in init being left in state TASK_STOPPED. Sending SIGCONT to init will resume it, but init will now respond to future SIGSTOP signals rather than ignoring them. Make sure that when setting SIGNAL_STOP_CONTINUED/SIGNAL_STOP_STOPPED that we don't clear SIGNAL_UNKILLABLE. Link: http://lkml.kernel.org/r/20170104122017.25047-1-jamie.iles@oracle.com Signed-off-by: Jamie Iles <jamie.iles@oracle.com> Acked-by: Oleg Nesterov <oleg@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-01-10mm: fix devm_memremap_pages crash, use mem_hotplug_{begin, done}Dan Williams
Both arch_add_memory() and arch_remove_memory() expect a single threaded context. For example, arch/x86/mm/init_64.c::kernel_physical_mapping_init() does not hold any locks over this check and branch: if (pgd_val(*pgd)) { pud = (pud_t *)pgd_page_vaddr(*pgd); paddr_last = phys_pud_init(pud, __pa(vaddr), __pa(vaddr_end), page_size_mask); continue; } pud = alloc_low_page(); paddr_last = phys_pud_init(pud, __pa(vaddr), __pa(vaddr_end), page_size_mask); The result is that two threads calling devm_memremap_pages() simultaneously can end up colliding on pgd initialization. This leads to crash signatures like the following where the loser of the race initializes the wrong pgd entry: BUG: unable to handle kernel paging request at ffff888ebfff0000 IP: memcpy_erms+0x6/0x10 PGD 2f8e8fc067 PUD 0 /* <---- Invalid PUD */ Oops: 0000 [#1] SMP DEBUG_PAGEALLOC CPU: 54 PID: 3818 Comm: systemd-udevd Not tainted 4.6.7+ #13 task: ffff882fac290040 ti: ffff882f887a4000 task.ti: ffff882f887a4000 RIP: memcpy_erms+0x6/0x10 [..] Call Trace: ? pmem_do_bvec+0x205/0x370 [nd_pmem] ? blk_queue_enter+0x3a/0x280 pmem_rw_page+0x38/0x80 [nd_pmem] bdev_read_page+0x84/0xb0 Hold the standard memory hotplug mutex over calls to arch_{add,remove}_memory(). Fixes: 41e94a851304 ("add devm_memremap_pages") Link: http://lkml.kernel.org/r/148357647831.9498.12606007370121652979.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com> Cc: Christoph Hellwig <hch@lst.de> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-01-10bpf: do not use KMALLOC_SHIFT_MAXMichal Hocko
Commit 01b3f52157ff ("bpf: fix allocation warnings in bpf maps and integer overflow") has added checks for the maximum allocateable size. It (ab)used KMALLOC_SHIFT_MAX for that purpose. While this is not incorrect it is not very clean because we already have KMALLOC_MAX_SIZE for this very reason so let's change both checks to use KMALLOC_MAX_SIZE instead. The original motivation for using KMALLOC_SHIFT_MAX was to work around an incorrect KMALLOC_MAX_SIZE which could lead to allocation warnings but it is no longer needed since "slab: make sure that KMALLOC_MAX_SIZE will fit into MAX_ORDER". Link: http://lkml.kernel.org/r/20161220130659.16461-3-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Andrey Konovalov <andreyknvl@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-01-10bpf: Make unnecessarily global functions staticTobias Klauser
Make the functions __local_list_pop_free(), __local_list_pop_pending(), bpf_common_lru_populate() and bpf_percpu_lru_populate() static as they are not used outide of bpf_lru_list.c This fixes the following GCC warnings when building with 'W=1': kernel/bpf/bpf_lru_list.c:363:22: warning: no previous prototype for ‘__local_list_pop_free’ [-Wmissing-prototypes] kernel/bpf/bpf_lru_list.c:376:22: warning: no previous prototype for ‘__local_list_pop_pending’ [-Wmissing-prototypes] kernel/bpf/bpf_lru_list.c:560:6: warning: no previous prototype for ‘bpf_common_lru_populate’ [-Wmissing-prototypes] kernel/bpf/bpf_lru_list.c:577:6: warning: no previous prototype for ‘bpf_percpu_lru_populate’ [-Wmissing-prototypes] Cc: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Tobias Klauser <tklauser@distanz.ch> Acked-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-10bpf: Remove unused but set variable in __bpf_lru_list_shrink_inactive()Tobias Klauser
Remove the unused but set variable 'first_node' in __bpf_lru_list_shrink_inactive() to fix the following GCC warning when building with 'W=1': kernel/bpf/bpf_lru_list.c:216:41: warning: variable ‘first_node’ set but not used [-Wunused-but-set-variable] Cc: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Tobias Klauser <tklauser@distanz.ch> Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-10rdmacg: Fixed uninitialized current resource usageParav Pandit
Fixed warning reported by kbuild test robot. When reading current resource usage value, when no resources are allocated, its possible that it can report a uninitialized value for current resource usage. This fix avoids it by initializing it to zero as no resource is allocated. Signed-off-by: Parav Pandit <pandit.parav@gmail.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2017-01-10rdmacg: Added rdma cgroup controllerParav Pandit
Added rdma cgroup controller that does accounting, limit enforcement on rdma/IB resources. Added rdma cgroup header file which defines its APIs to perform charging/uncharging functionality. It also defined APIs for RDMA/IB stack for device registration. Devices which are registered will participate in controller functions of accounting and limit enforcements. It define rdmacg_device structure to bind IB stack and RDMA cgroup controller. RDMA resources are tracked using resource pool. Resource pool is per device, per cgroup entity which allows setting up accounting limits on per device basis. Currently resources are defined by the RDMA cgroup. Resource pool is created/destroyed dynamically whenever charging/uncharging occurs respectively and whenever user configuration is done. Its a tradeoff of memory vs little more code space that creates resource pool object whenever necessary, instead of creating them during cgroup creation and device registration time. Signed-off-by: Parav Pandit <pandit.parav@gmail.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2017-01-10pid: fix lockdep deadlock warning due to ucount_lockAndrei Vagin
========================================================= [ INFO: possible irq lock inversion dependency detected ] 4.10.0-rc2-00024-g4aecec9-dirty #118 Tainted: G W --------------------------------------------------------- swapper/1/0 just changed the state of lock: (&(&sighand->siglock)->rlock){-.....}, at: [<ffffffffbd0a1bc6>] __lock_task_sighand+0xb6/0x2c0 but this lock took another, HARDIRQ-unsafe lock in the past: (ucounts_lock){+.+...} and interrupts could create inverse lock ordering between them. other info that might help us debug this: Chain exists of: &(&sighand->siglock)->rlock --> &(&tty->ctrl_lock)->rlock --> ucounts_lock Possible interrupt unsafe locking scenario: CPU0 CPU1 ---- ---- lock(ucounts_lock); local_irq_disable(); lock(&(&sighand->siglock)->rlock); lock(&(&tty->ctrl_lock)->rlock); <Interrupt> lock(&(&sighand->siglock)->rlock); *** DEADLOCK *** This patch removes a dependency between rlock and ucount_lock. Fixes: f333c700c610 ("pidns: Add a limit on the number of pid namespaces") Cc: stable@vger.kernel.org Signed-off-by: Andrei Vagin <avagin@openvz.org> Acked-by: Al Viro <viro@ZenIV.linux.org.uk> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2017-01-09bpf: rename ARG_PTR_TO_STACKAlexei Starovoitov
since ARG_PTR_TO_STACK is no longer just pointer to stack rename it to ARG_PTR_TO_MEM and adjust comment. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-09bpf: allow helpers access to variable memoryGianluca Borello
Currently, helpers that read and write from/to the stack can do so using a pair of arguments of type ARG_PTR_TO_STACK and ARG_CONST_STACK_SIZE. ARG_CONST_STACK_SIZE accepts a constant register of type CONST_IMM, so that the verifier can safely check the memory access. However, requiring the argument to be a constant can be limiting in some circumstances. Since the current logic keeps track of the minimum and maximum value of a register throughout the simulated execution, ARG_CONST_STACK_SIZE can be changed to also accept an UNKNOWN_VALUE register in case its boundaries have been set and the range doesn't cause invalid memory accesses. One common situation when this is useful: int len; char buf[BUFSIZE]; /* BUFSIZE is 128 */ if (some_condition) len = 42; else len = 84; some_helper(..., buf, len & (BUFSIZE - 1)); The compiler can often decide to assign the constant values 42 or 48 into a variable on the stack, instead of keeping it in a register. When the variable is then read back from stack into the register in order to be passed to the helper, the verifier will not be able to recognize the register as constant (the verifier is not currently tracking all constant writes into memory), and the program won't be valid. However, by allowing the helper to accept an UNKNOWN_VALUE register, this program will work because the bitwise AND operation will set the range of possible values for the UNKNOWN_VALUE register to [0, BUFSIZE), so the verifier can guarantee the helper call will be safe (assuming the argument is of type ARG_CONST_STACK_SIZE_OR_ZERO, otherwise one more check against 0 would be needed). Custom ranges can be set not only with ALU operations, but also by explicitly comparing the UNKNOWN_VALUE register with constants. Another very common example happens when intercepting system call arguments and accessing user-provided data of variable size using bpf_probe_read(). One can load at runtime the user-provided length in an UNKNOWN_VALUE register, and then read that exact amount of data up to a compile-time determined limit in order to fit into the proper local storage allocated on the stack, without having to guess a suboptimal access size at compile time. Also, in case the helpers accepting the UNKNOWN_VALUE register operate in raw mode, disable the raw mode so that the program is required to initialize all memory, since there is no guarantee the helper will fill it completely, leaving possibilities for data leak (just relevant when the memory used by the helper is the stack, not when using a pointer to map element value or packet). In other words, ARG_PTR_TO_RAW_STACK will be treated as ARG_PTR_TO_STACK. Signed-off-by: Gianluca Borello <g.borello@gmail.com> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-09bpf: allow adjusted map element values to spillGianluca Borello
commit 484611357c19 ("bpf: allow access into map value arrays") introduces the ability to do pointer math inside a map element value via the PTR_TO_MAP_VALUE_ADJ register type. The current support doesn't handle the case where a PTR_TO_MAP_VALUE_ADJ is spilled into the stack, limiting several use cases, especially when generating bpf code from a compiler. Handle this case by explicitly enabling the register type PTR_TO_MAP_VALUE_ADJ to be spilled. Also, make sure that min_value and max_value are reset just for BPF_LDX operations that don't result in a restore of a spilled register from stack. Signed-off-by: Gianluca Borello <g.borello@gmail.com> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-09bpf: allow helpers access to map element valuesGianluca Borello
Enable helpers to directly access a map element value by passing a register type PTR_TO_MAP_VALUE (or PTR_TO_MAP_VALUE_ADJ) to helper arguments ARG_PTR_TO_STACK or ARG_PTR_TO_RAW_STACK. This enables several use cases. For example, a typical tracing program might want to capture pathnames passed to sys_open() with: struct trace_data { char pathname[PATHLEN]; }; SEC("kprobe/sys_open") void bpf_sys_open(struct pt_regs *ctx) { struct trace_data data; bpf_probe_read(data.pathname, sizeof(data.pathname), ctx->di); /* consume data.pathname, for example via * bpf_trace_printk() or bpf_perf_event_output() */ } Such a program could easily hit the stack limit in case PATHLEN needs to be large or more local variables need to exist, both of which are quite common scenarios. Allowing direct helper access to map element values, one could do: struct bpf_map_def SEC("maps") scratch_map = { .type = BPF_MAP_TYPE_PERCPU_ARRAY, .key_size = sizeof(u32), .value_size = sizeof(struct trace_data), .max_entries = 1, }; SEC("kprobe/sys_open") int bpf_sys_open(struct pt_regs *ctx) { int id = 0; struct trace_data *p = bpf_map_lookup_elem(&scratch_map, &id); if (!p) return; bpf_probe_read(p->pathname, sizeof(p->pathname), ctx->di); /* consume p->pathname, for example via * bpf_trace_printk() or bpf_perf_event_output() */ } And wouldn't risk exhausting the stack. Code changes are loosely modeled after commit 6841de8b0d03 ("bpf: allow helpers access the packet directly"). Unlike with PTR_TO_PACKET, these changes just work with ARG_PTR_TO_STACK and ARG_PTR_TO_RAW_STACK (not ARG_PTR_TO_MAP_KEY, ARG_PTR_TO_MAP_VALUE, ...): adding those would be trivial, but since there is not currently a use case for that, it's reasonable to limit the set of changes. Also, add new tests to make sure accesses to map element values from helpers never go out of boundary, even when adjusted. Signed-off-by: Gianluca Borello <g.borello@gmail.com> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>