/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _X86_POSTED_INTR_H #define _X86_POSTED_INTR_H #include #include #include #include #define POSTED_INTR_ON 0 #define POSTED_INTR_SN 1 #define PID_TABLE_ENTRY_VALID 1 #define NR_PIR_VECTORS 256 #define NR_PIR_WORDS (NR_PIR_VECTORS / BITS_PER_LONG) /* Posted-Interrupt Descriptor */ struct pi_desc { unsigned long pir[NR_PIR_WORDS]; /* Posted interrupt requested */ union { struct { u16 notifications; /* Suppress and outstanding bits */ u8 nv; u8 rsvd_2; u32 ndst; }; u64 control; }; u32 rsvd[6]; } __aligned(64); /* * De-multiplexing posted interrupts is on the performance path, the code * below is written to optimize the cache performance based on the following * considerations: * 1.Posted interrupt descriptor (PID) fits in a cache line that is frequently * accessed by both CPU and IOMMU. * 2.During software processing of posted interrupts, the CPU needs to do * natural width read and xchg for checking and clearing posted interrupt * request (PIR), a 256 bit field within the PID. * 3.On the other side, the IOMMU does atomic swaps of the entire PID cache * line when posting interrupts and setting control bits. * 4.The CPU can access the cache line a magnitude faster than the IOMMU. * 5.Each time the IOMMU does interrupt posting to the PIR will evict the PID * cache line. The cache line states after each operation are as follows, * assuming a 64-bit kernel: * CPU IOMMU PID Cache line state * --------------------------------------------------------------- *...read64 exclusive *...lock xchg64 modified *... post/atomic swap invalid *...------------------------------------------------------------- * * To reduce L1 data cache miss, it is important to avoid contention with * IOMMU's interrupt posting/atomic swap. Therefore, a copy of PIR is used * when processing posted interrupts in software, e.g. to dispatch interrupt * handlers for posted MSIs, or to move interrupts from the PIR to the vIRR * in KVM. * * In addition, the code is trying to keep the cache line state consistent * as much as possible. e.g. when making a copy and clearing the PIR * (assuming non-zero PIR bits are present in the entire PIR), it does: * read, read, read, read, xchg, xchg, xchg, xchg * instead of: * read, xchg, read, xchg, read, xchg, read, xchg */ static __always_inline bool pi_harvest_pir(unsigned long *pir, unsigned long *pir_vals) { unsigned long pending = 0; int i; for (i = 0; i < NR_PIR_WORDS; i++) { pir_vals[i] = READ_ONCE(pir[i]); pending |= pir_vals[i]; } if (!pending) return false; for (i = 0; i < NR_PIR_WORDS; i++) { if (!pir_vals[i]) continue; pir_vals[i] = arch_xchg(&pir[i], 0); } return true; } static inline bool pi_test_and_set_on(struct pi_desc *pi_desc) { return test_and_set_bit(POSTED_INTR_ON, (unsigned long *)&pi_desc->control); } static inline bool pi_test_and_clear_on(struct pi_desc *pi_desc) { return test_and_clear_bit(POSTED_INTR_ON, (unsigned long *)&pi_desc->control); } static inline bool pi_test_and_clear_sn(struct pi_desc *pi_desc) { return test_and_clear_bit(POSTED_INTR_SN, (unsigned long *)&pi_desc->control); } static inline bool pi_test_and_set_pir(int vector, struct pi_desc *pi_desc) { return test_and_set_bit(vector, pi_desc->pir); } static inline bool pi_is_pir_empty(struct pi_desc *pi_desc) { return bitmap_empty(pi_desc->pir, NR_VECTORS); } static inline void pi_set_sn(struct pi_desc *pi_desc) { set_bit(POSTED_INTR_SN, (unsigned long *)&pi_desc->control); } static inline void pi_set_on(struct pi_desc *pi_desc) { set_bit(POSTED_INTR_ON, (unsigned long *)&pi_desc->control); } static inline void pi_clear_on(struct pi_desc *pi_desc) { clear_bit(POSTED_INTR_ON, (unsigned long *)&pi_desc->control); } static inline void pi_clear_sn(struct pi_desc *pi_desc) { clear_bit(POSTED_INTR_SN, (unsigned long *)&pi_desc->control); } static inline bool pi_test_on(struct pi_desc *pi_desc) { return test_bit(POSTED_INTR_ON, (unsigned long *)&pi_desc->control); } static inline bool pi_test_sn(struct pi_desc *pi_desc) { return test_bit(POSTED_INTR_SN, (unsigned long *)&pi_desc->control); } static inline bool pi_test_pir(int vector, struct pi_desc *pi_desc) { return test_bit(vector, (unsigned long *)pi_desc->pir); } /* Non-atomic helpers */ static inline void __pi_set_sn(struct pi_desc *pi_desc) { pi_desc->notifications |= BIT(POSTED_INTR_SN); } static inline void __pi_clear_sn(struct pi_desc *pi_desc) { pi_desc->notifications &= ~BIT(POSTED_INTR_SN); } #ifdef CONFIG_X86_POSTED_MSI /* * Not all external vectors are subject to interrupt remapping, e.g. IOMMU's * own interrupts. Here we do not distinguish them since those vector bits in * PIR will always be zero. */ static inline bool pi_pending_this_cpu(unsigned int vector) { struct pi_desc *pid = this_cpu_ptr(&posted_msi_pi_desc); if (WARN_ON_ONCE(vector > NR_VECTORS || vector < FIRST_EXTERNAL_VECTOR)) return false; return test_bit(vector, pid->pir); } extern void intel_posted_msi_init(void); #else static inline bool pi_pending_this_cpu(unsigned int vector) { return false; } static inline void intel_posted_msi_init(void) {}; #endif /* X86_POSTED_MSI */ #endif /* _X86_POSTED_INTR_H */