// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2023 Raspberry Pi Ltd. * * Clock driver for RP1 PCIe multifunction chip. */ #include #include #include #include #include #include #include #include #define PLL_SYS_OFFSET 0x08000 #define PLL_SYS_CS (PLL_SYS_OFFSET + 0x00) #define PLL_SYS_PWR (PLL_SYS_OFFSET + 0x04) #define PLL_SYS_FBDIV_INT (PLL_SYS_OFFSET + 0x08) #define PLL_SYS_FBDIV_FRAC (PLL_SYS_OFFSET + 0x0c) #define PLL_SYS_PRIM (PLL_SYS_OFFSET + 0x10) #define PLL_SYS_SEC (PLL_SYS_OFFSET + 0x14) #define PLL_AUDIO_OFFSET 0x0c000 #define PLL_AUDIO_CS (PLL_AUDIO_OFFSET + 0x00) #define PLL_AUDIO_PWR (PLL_AUDIO_OFFSET + 0x04) #define PLL_AUDIO_FBDIV_INT (PLL_AUDIO_OFFSET + 0x08) #define PLL_AUDIO_FBDIV_FRAC (PLL_AUDIO_OFFSET + 0x0c) #define PLL_AUDIO_PRIM (PLL_AUDIO_OFFSET + 0x10) #define PLL_AUDIO_SEC (PLL_AUDIO_OFFSET + 0x14) #define PLL_AUDIO_TERN (PLL_AUDIO_OFFSET + 0x18) #define PLL_VIDEO_OFFSET 0x10000 #define PLL_VIDEO_CS (PLL_VIDEO_OFFSET + 0x00) #define PLL_VIDEO_PWR (PLL_VIDEO_OFFSET + 0x04) #define PLL_VIDEO_FBDIV_INT (PLL_VIDEO_OFFSET + 0x08) #define PLL_VIDEO_FBDIV_FRAC (PLL_VIDEO_OFFSET + 0x0c) #define PLL_VIDEO_PRIM (PLL_VIDEO_OFFSET + 0x10) #define PLL_VIDEO_SEC (PLL_VIDEO_OFFSET + 0x14) #define GPCLK_OE_CTRL 0x00000 #define CLK_SYS_OFFSET 0x00014 #define CLK_SYS_CTRL (CLK_SYS_OFFSET + 0x00) #define CLK_SYS_DIV_INT (CLK_SYS_OFFSET + 0x04) #define CLK_SYS_SEL (CLK_SYS_OFFSET + 0x0c) #define CLK_SLOW_OFFSET 0x00024 #define CLK_SLOW_SYS_CTRL (CLK_SLOW_OFFSET + 0x00) #define CLK_SLOW_SYS_DIV_INT (CLK_SLOW_OFFSET + 0x04) #define CLK_SLOW_SYS_SEL (CLK_SLOW_OFFSET + 0x0c) #define CLK_DMA_OFFSET 0x00044 #define CLK_DMA_CTRL (CLK_DMA_OFFSET + 0x00) #define CLK_DMA_DIV_INT (CLK_DMA_OFFSET + 0x04) #define CLK_DMA_SEL (CLK_DMA_OFFSET + 0x0c) #define CLK_UART_OFFSET 0x00054 #define CLK_UART_CTRL (CLK_UART_OFFSET + 0x00) #define CLK_UART_DIV_INT (CLK_UART_OFFSET + 0x04) #define CLK_UART_SEL (CLK_UART_OFFSET + 0x0c) #define CLK_ETH_OFFSET 0x00064 #define CLK_ETH_CTRL (CLK_ETH_OFFSET + 0x00) #define CLK_ETH_DIV_INT (CLK_ETH_OFFSET + 0x04) #define CLK_ETH_SEL (CLK_ETH_OFFSET + 0x0c) #define CLK_PWM0_OFFSET 0x00074 #define CLK_PWM0_CTRL (CLK_PWM0_OFFSET + 0x00) #define CLK_PWM0_DIV_INT (CLK_PWM0_OFFSET + 0x04) #define CLK_PWM0_DIV_FRAC (CLK_PWM0_OFFSET + 0x08) #define CLK_PWM0_SEL (CLK_PWM0_OFFSET + 0x0c) #define CLK_PWM1_OFFSET 0x00084 #define CLK_PWM1_CTRL (CLK_PWM1_OFFSET + 0x00) #define CLK_PWM1_DIV_INT (CLK_PWM1_OFFSET + 0x04) #define CLK_PWM1_DIV_FRAC (CLK_PWM1_OFFSET + 0x08) #define CLK_PWM1_SEL (CLK_PWM1_OFFSET + 0x0c) #define CLK_AUDIO_IN_OFFSET 0x00094 #define CLK_AUDIO_IN_CTRL (CLK_AUDIO_IN_OFFSET + 0x00) #define CLK_AUDIO_IN_DIV_INT (CLK_AUDIO_IN_OFFSET + 0x04) #define CLK_AUDIO_IN_SEL (CLK_AUDIO_IN_OFFSET + 0x0c) #define CLK_AUDIO_OUT_OFFSET 0x000a4 #define CLK_AUDIO_OUT_CTRL (CLK_AUDIO_OUT_OFFSET + 0x00) #define CLK_AUDIO_OUT_DIV_INT (CLK_AUDIO_OUT_OFFSET + 0x04) #define CLK_AUDIO_OUT_SEL (CLK_AUDIO_OUT_OFFSET + 0x0c) #define CLK_I2S_OFFSET 0x000b4 #define CLK_I2S_CTRL (CLK_I2S_OFFSET + 0x00) #define CLK_I2S_DIV_INT (CLK_I2S_OFFSET + 0x04) #define CLK_I2S_SEL (CLK_I2S_OFFSET + 0x0c) #define CLK_MIPI0_CFG_OFFSET 0x000c4 #define CLK_MIPI0_CFG_CTRL (CLK_MIPI0_CFG_OFFSET + 0x00) #define CLK_MIPI0_CFG_DIV_INT (CLK_MIPI0_CFG_OFFSET + 0x04) #define CLK_MIPI0_CFG_SEL (CLK_MIPI0_CFG_OFFSET + 0x0c) #define CLK_MIPI1_CFG_OFFSET 0x000d4 #define CLK_MIPI1_CFG_CTRL (CLK_MIPI1_CFG_OFFSET + 0x00) #define CLK_MIPI1_CFG_DIV_INT (CLK_MIPI1_CFG_OFFSET + 0x04) #define CLK_MIPI1_CFG_SEL (CLK_MIPI1_CFG_OFFSET + 0x0c) #define CLK_PCIE_AUX_OFFSET 0x000e4 #define CLK_PCIE_AUX_CTRL (CLK_PCIE_AUX_OFFSET + 0x00) #define CLK_PCIE_AUX_DIV_INT (CLK_PCIE_AUX_OFFSET + 0x04) #define CLK_PCIE_AUX_SEL (CLK_PCIE_AUX_OFFSET + 0x0c) #define CLK_USBH0_MICROFRAME_OFFSET 0x000f4 #define CLK_USBH0_MICROFRAME_CTRL (CLK_USBH0_MICROFRAME_OFFSET + 0x00) #define CLK_USBH0_MICROFRAME_DIV_INT (CLK_USBH0_MICROFRAME_OFFSET + 0x04) #define CLK_USBH0_MICROFRAME_SEL (CLK_USBH0_MICROFRAME_OFFSET + 0x0c) #define CLK_USBH1_MICROFRAME_OFFSET 0x00104 #define CLK_USBH1_MICROFRAME_CTRL (CLK_USBH1_MICROFRAME_OFFSET + 0x00) #define CLK_USBH1_MICROFRAME_DIV_INT (CLK_USBH1_MICROFRAME_OFFSET + 0x04) #define CLK_USBH1_MICROFRAME_SEL (CLK_USBH1_MICROFRAME_OFFSET + 0x0c) #define CLK_USBH0_SUSPEND_OFFSET 0x00114 #define CLK_USBH0_SUSPEND_CTRL (CLK_USBH0_SUSPEND_OFFSET + 0x00) #define CLK_USBH0_SUSPEND_DIV_INT (CLK_USBH0_SUSPEND_OFFSET + 0x04) #define CLK_USBH0_SUSPEND_SEL (CLK_USBH0_SUSPEND_OFFSET + 0x0c) #define CLK_USBH1_SUSPEND_OFFSET 0x00124 #define CLK_USBH1_SUSPEND_CTRL (CLK_USBH1_SUSPEND_OFFSET + 0x00) #define CLK_USBH1_SUSPEND_DIV_INT (CLK_USBH1_SUSPEND_OFFSET + 0x04) #define CLK_USBH1_SUSPEND_SEL (CLK_USBH1_SUSPEND_OFFSET + 0x0c) #define CLK_ETH_TSU_OFFSET 0x00134 #define CLK_ETH_TSU_CTRL (CLK_ETH_TSU_OFFSET + 0x00) #define CLK_ETH_TSU_DIV_INT (CLK_ETH_TSU_OFFSET + 0x04) #define CLK_ETH_TSU_SEL (CLK_ETH_TSU_OFFSET + 0x0c) #define CLK_ADC_OFFSET 0x00144 #define CLK_ADC_CTRL (CLK_ADC_OFFSET + 0x00) #define CLK_ADC_DIV_INT (CLK_ADC_OFFSET + 0x04) #define CLK_ADC_SEL (CLK_ADC_OFFSET + 0x0c) #define CLK_SDIO_TIMER_OFFSET 0x00154 #define CLK_SDIO_TIMER_CTRL (CLK_SDIO_TIMER_OFFSET + 0x00) #define CLK_SDIO_TIMER_DIV_INT (CLK_SDIO_TIMER_OFFSET + 0x04) #define CLK_SDIO_TIMER_SEL (CLK_SDIO_TIMER_OFFSET + 0x0c) #define CLK_SDIO_ALT_SRC_OFFSET 0x00164 #define CLK_SDIO_ALT_SRC_CTRL (CLK_SDIO_ALT_SRC_OFFSET + 0x00) #define CLK_SDIO_ALT_SRC_DIV_INT (CLK_SDIO_ALT_SRC_OFFSET + 0x04) #define CLK_SDIO_ALT_SRC_SEL (CLK_SDIO_ALT_SRC_OFFSET + 0x0c) #define CLK_GP0_OFFSET 0x00174 #define CLK_GP0_CTRL (CLK_GP0_OFFSET + 0x00) #define CLK_GP0_DIV_INT (CLK_GP0_OFFSET + 0x04) #define CLK_GP0_DIV_FRAC (CLK_GP0_OFFSET + 0x08) #define CLK_GP0_SEL (CLK_GP0_OFFSET + 0x0c) #define CLK_GP1_OFFSET 0x00184 #define CLK_GP1_CTRL (CLK_GP1_OFFSET + 0x00) #define CLK_GP1_DIV_INT (CLK_GP1_OFFSET + 0x04) #define CLK_GP1_DIV_FRAC (CLK_GP1_OFFSET + 0x08) #define CLK_GP1_SEL (CLK_GP1_OFFSET + 0x0c) #define CLK_GP2_OFFSET 0x00194 #define CLK_GP2_CTRL (CLK_GP2_OFFSET + 0x00) #define CLK_GP2_DIV_INT (CLK_GP2_OFFSET + 0x04) #define CLK_GP2_DIV_FRAC (CLK_GP2_OFFSET + 0x08) #define CLK_GP2_SEL (CLK_GP2_OFFSET + 0x0c) #define CLK_GP3_OFFSET 0x001a4 #define CLK_GP3_CTRL (CLK_GP3_OFFSET + 0x00) #define CLK_GP3_DIV_INT (CLK_GP3_OFFSET + 0x04) #define CLK_GP3_DIV_FRAC (CLK_GP3_OFFSET + 0x08) #define CLK_GP3_SEL (CLK_GP3_OFFSET + 0x0c) #define CLK_GP4_OFFSET 0x001b4 #define CLK_GP4_CTRL (CLK_GP4_OFFSET + 0x00) #define CLK_GP4_DIV_INT (CLK_GP4_OFFSET + 0x04) #define CLK_GP4_DIV_FRAC (CLK_GP4_OFFSET + 0x08) #define CLK_GP4_SEL (CLK_GP4_OFFSET + 0x0c) #define CLK_GP5_OFFSET 0x001c4 #define CLK_GP5_CTRL (CLK_GP5_OFFSET + 0x00) #define CLK_GP5_DIV_INT (CLK_GP5_OFFSET + 0x04) #define CLK_GP5_DIV_FRAC (CLK_GP5_OFFSET + 0x08) #define CLK_GP5_SEL (CLK_GP5_OFFSET + 0x0c) #define CLK_SYS_RESUS_CTRL 0x0020c #define CLK_SLOW_SYS_RESUS_CTRL 0x00214 #define FC0_OFFSET 0x0021c #define FC0_REF_KHZ (FC0_OFFSET + 0x00) #define FC0_MIN_KHZ (FC0_OFFSET + 0x04) #define FC0_MAX_KHZ (FC0_OFFSET + 0x08) #define FC0_DELAY (FC0_OFFSET + 0x0c) #define FC0_INTERVAL (FC0_OFFSET + 0x10) #define FC0_SRC (FC0_OFFSET + 0x14) #define FC0_STATUS (FC0_OFFSET + 0x18) #define FC0_RESULT (FC0_OFFSET + 0x1c) #define FC_SIZE 0x20 #define FC_COUNT 8 #define FC_NUM(idx, off) ((idx) * 32 + (off)) #define AUX_SEL 1 #define VIDEO_CLOCKS_OFFSET 0x4000 #define VIDEO_CLK_VEC_CTRL (VIDEO_CLOCKS_OFFSET + 0x0000) #define VIDEO_CLK_VEC_DIV_INT (VIDEO_CLOCKS_OFFSET + 0x0004) #define VIDEO_CLK_VEC_SEL (VIDEO_CLOCKS_OFFSET + 0x000c) #define VIDEO_CLK_DPI_CTRL (VIDEO_CLOCKS_OFFSET + 0x0010) #define VIDEO_CLK_DPI_DIV_INT (VIDEO_CLOCKS_OFFSET + 0x0014) #define VIDEO_CLK_DPI_SEL (VIDEO_CLOCKS_OFFSET + 0x001c) #define VIDEO_CLK_MIPI0_DPI_CTRL (VIDEO_CLOCKS_OFFSET + 0x0020) #define VIDEO_CLK_MIPI0_DPI_DIV_INT (VIDEO_CLOCKS_OFFSET + 0x0024) #define VIDEO_CLK_MIPI0_DPI_DIV_FRAC (VIDEO_CLOCKS_OFFSET + 0x0028) #define VIDEO_CLK_MIPI0_DPI_SEL (VIDEO_CLOCKS_OFFSET + 0x002c) #define VIDEO_CLK_MIPI1_DPI_CTRL (VIDEO_CLOCKS_OFFSET + 0x0030) #define VIDEO_CLK_MIPI1_DPI_DIV_INT (VIDEO_CLOCKS_OFFSET + 0x0034) #define VIDEO_CLK_MIPI1_DPI_DIV_FRAC (VIDEO_CLOCKS_OFFSET + 0x0038) #define VIDEO_CLK_MIPI1_DPI_SEL (VIDEO_CLOCKS_OFFSET + 0x003c) #define DIV_INT_8BIT_MAX GENMASK(7, 0) /* max divide for most clocks */ #define DIV_INT_16BIT_MAX GENMASK(15, 0) /* max divide for GPx, PWM */ #define DIV_INT_24BIT_MAX GENMASK(23, 0) /* max divide for CLK_SYS */ #define FC0_STATUS_DONE BIT(4) #define FC0_STATUS_RUNNING BIT(8) #define FC0_RESULT_FRAC_SHIFT 5 #define PLL_PRIM_DIV1_MASK GENMASK(18, 16) #define PLL_PRIM_DIV2_MASK GENMASK(14, 12) #define PLL_SEC_DIV_MASK GENMASK(12, 8) #define PLL_CS_LOCK BIT(31) #define PLL_CS_REFDIV_MASK BIT(1) #define PLL_PWR_PD BIT(0) #define PLL_PWR_DACPD BIT(1) #define PLL_PWR_DSMPD BIT(2) #define PLL_PWR_POSTDIVPD BIT(3) #define PLL_PWR_4PHASEPD BIT(4) #define PLL_PWR_VCOPD BIT(5) #define PLL_PWR_MASK GENMASK(5, 0) #define PLL_SEC_RST BIT(16) #define PLL_SEC_IMPL BIT(31) /* PLL phase output for both PRI and SEC */ #define PLL_PH_EN BIT(4) #define PLL_PH_PHASE_SHIFT 0 #define RP1_PLL_PHASE_0 0 #define RP1_PLL_PHASE_90 1 #define RP1_PLL_PHASE_180 2 #define RP1_PLL_PHASE_270 3 /* Clock fields for all clocks */ #define CLK_CTRL_ENABLE BIT(11) #define CLK_CTRL_AUXSRC_MASK GENMASK(9, 5) #define CLK_CTRL_SRC_SHIFT 0 #define CLK_DIV_FRAC_BITS 16 #define LOCK_TIMEOUT_US 100000 #define LOCK_POLL_DELAY_US 5 #define MAX_CLK_PARENTS 16 #define PLL_DIV_INVALID 19 /* * Secondary PLL channel output divider table. * Divider values range from 8 to 19, where * 19 means invalid. */ static const struct clk_div_table pll_sec_div_table[] = { { 0x00, PLL_DIV_INVALID }, { 0x01, PLL_DIV_INVALID }, { 0x02, PLL_DIV_INVALID }, { 0x03, PLL_DIV_INVALID }, { 0x04, PLL_DIV_INVALID }, { 0x05, PLL_DIV_INVALID }, { 0x06, PLL_DIV_INVALID }, { 0x07, PLL_DIV_INVALID }, { 0x08, 8 }, { 0x09, 9 }, { 0x0a, 10 }, { 0x0b, 11 }, { 0x0c, 12 }, { 0x0d, 13 }, { 0x0e, 14 }, { 0x0f, 15 }, { 0x10, 16 }, { 0x11, 17 }, { 0x12, 18 }, { 0x13, PLL_DIV_INVALID }, { 0x14, PLL_DIV_INVALID }, { 0x15, PLL_DIV_INVALID }, { 0x16, PLL_DIV_INVALID }, { 0x17, PLL_DIV_INVALID }, { 0x18, PLL_DIV_INVALID }, { 0x19, PLL_DIV_INVALID }, { 0x1a, PLL_DIV_INVALID }, { 0x1b, PLL_DIV_INVALID }, { 0x1c, PLL_DIV_INVALID }, { 0x1d, PLL_DIV_INVALID }, { 0x1e, PLL_DIV_INVALID }, { 0x1f, PLL_DIV_INVALID }, { 0 } }; struct rp1_clockman { struct device *dev; void __iomem *regs; struct regmap *regmap; spinlock_t regs_lock; /* spinlock for all clocks */ /* Must be last */ struct clk_hw_onecell_data onecell; }; struct rp1_pll_core_data { u32 cs_reg; u32 pwr_reg; u32 fbdiv_int_reg; u32 fbdiv_frac_reg; u32 fc0_src; }; struct rp1_pll_data { u32 ctrl_reg; u32 fc0_src; }; struct rp1_pll_ph_data { unsigned int phase; unsigned int fixed_divider; u32 ph_reg; u32 fc0_src; }; struct rp1_pll_divider_data { u32 sec_reg; u32 fc0_src; }; struct rp1_clock_data { int num_std_parents; int num_aux_parents; u32 oe_mask; u32 clk_src_mask; u32 ctrl_reg; u32 div_int_reg; u32 div_frac_reg; u32 sel_reg; u32 div_int_max; unsigned long max_freq; u32 fc0_src; }; struct rp1_clk_desc { struct clk_hw *(*clk_register)(struct rp1_clockman *clockman, struct rp1_clk_desc *desc); const void *data; struct clk_hw hw; struct rp1_clockman *clockman; unsigned long cached_rate; struct clk_divider div; }; static inline void clockman_write(struct rp1_clockman *clockman, u32 reg, u32 val) { regmap_write(clockman->regmap, reg, val); } static inline u32 clockman_read(struct rp1_clockman *clockman, u32 reg) { u32 val; regmap_read(clockman->regmap, reg, &val); return val; } static int rp1_pll_core_is_on(struct clk_hw *hw) { struct rp1_clk_desc *pll_core = container_of(hw, struct rp1_clk_desc, hw); struct rp1_clockman *clockman = pll_core->clockman; const struct rp1_pll_core_data *data = pll_core->data; u32 pwr = clockman_read(clockman, data->pwr_reg); return (pwr & PLL_PWR_PD) || (pwr & PLL_PWR_POSTDIVPD); } static int rp1_pll_core_on(struct clk_hw *hw) { struct rp1_clk_desc *pll_core = container_of(hw, struct rp1_clk_desc, hw); struct rp1_clockman *clockman = pll_core->clockman; const struct rp1_pll_core_data *data = pll_core->data; u32 fbdiv_frac, val; int ret; spin_lock(&clockman->regs_lock); if (!(clockman_read(clockman, data->cs_reg) & PLL_CS_LOCK)) { /* Reset to a known state. */ clockman_write(clockman, data->pwr_reg, PLL_PWR_MASK); clockman_write(clockman, data->fbdiv_int_reg, 20); clockman_write(clockman, data->fbdiv_frac_reg, 0); clockman_write(clockman, data->cs_reg, PLL_CS_REFDIV_MASK); } /* Come out of reset. */ fbdiv_frac = clockman_read(clockman, data->fbdiv_frac_reg); clockman_write(clockman, data->pwr_reg, fbdiv_frac ? 0 : PLL_PWR_DSMPD); spin_unlock(&clockman->regs_lock); /* Wait for the PLL to lock. */ ret = regmap_read_poll_timeout(clockman->regmap, data->cs_reg, val, val & PLL_CS_LOCK, LOCK_POLL_DELAY_US, LOCK_TIMEOUT_US); if (ret) dev_err(clockman->dev, "%s: can't lock PLL\n", clk_hw_get_name(hw)); return ret; } static void rp1_pll_core_off(struct clk_hw *hw) { struct rp1_clk_desc *pll_core = container_of(hw, struct rp1_clk_desc, hw); struct rp1_clockman *clockman = pll_core->clockman; const struct rp1_pll_core_data *data = pll_core->data; spin_lock(&clockman->regs_lock); clockman_write(clockman, data->pwr_reg, 0); spin_unlock(&clockman->regs_lock); } static inline unsigned long get_pll_core_divider(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate, u32 *div_int, u32 *div_frac) { u32 fbdiv_int, fbdiv_frac; unsigned long calc_rate; u64 shifted_fbdiv_int; u64 div_fp64; /* 32.32 fixed point fraction. */ /* Factor of reference clock to VCO frequency. */ div_fp64 = (u64)(rate) << 32; div_fp64 = DIV_ROUND_CLOSEST_ULL(div_fp64, parent_rate); /* Round the fractional component at 24 bits. */ div_fp64 += 1 << (32 - 24 - 1); fbdiv_int = div_fp64 >> 32; fbdiv_frac = (div_fp64 >> (32 - 24)) & 0xffffff; shifted_fbdiv_int = (u64)fbdiv_int << 24; calc_rate = (u64)parent_rate * (shifted_fbdiv_int + fbdiv_frac); calc_rate += BIT(23); calc_rate >>= 24; *div_int = fbdiv_int; *div_frac = fbdiv_frac; return calc_rate; } static int rp1_pll_core_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct rp1_clk_desc *pll_core = container_of(hw, struct rp1_clk_desc, hw); struct rp1_clockman *clockman = pll_core->clockman; const struct rp1_pll_core_data *data = pll_core->data; unsigned long calc_rate; u32 fbdiv_int, fbdiv_frac; /* Disable dividers to start with. */ spin_lock(&clockman->regs_lock); clockman_write(clockman, data->fbdiv_int_reg, 0); clockman_write(clockman, data->fbdiv_frac_reg, 0); spin_unlock(&clockman->regs_lock); calc_rate = get_pll_core_divider(hw, rate, parent_rate, &fbdiv_int, &fbdiv_frac); spin_lock(&clockman->regs_lock); clockman_write(clockman, data->pwr_reg, fbdiv_frac ? 0 : PLL_PWR_DSMPD); clockman_write(clockman, data->fbdiv_int_reg, fbdiv_int); clockman_write(clockman, data->fbdiv_frac_reg, fbdiv_frac); spin_unlock(&clockman->regs_lock); /* Check that reference frequency is no greater than VCO / 16. */ if (WARN_ON_ONCE(parent_rate > (rate / 16))) return -ERANGE; pll_core->cached_rate = calc_rate; spin_lock(&clockman->regs_lock); /* Don't need to divide ref unless parent_rate > (output freq / 16) */ clockman_write(clockman, data->cs_reg, clockman_read(clockman, data->cs_reg) | PLL_CS_REFDIV_MASK); spin_unlock(&clockman->regs_lock); return 0; } static unsigned long rp1_pll_core_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct rp1_clk_desc *pll_core = container_of(hw, struct rp1_clk_desc, hw); struct rp1_clockman *clockman = pll_core->clockman; const struct rp1_pll_core_data *data = pll_core->data; u32 fbdiv_int, fbdiv_frac; unsigned long calc_rate; u64 shifted_fbdiv_int; fbdiv_int = clockman_read(clockman, data->fbdiv_int_reg); fbdiv_frac = clockman_read(clockman, data->fbdiv_frac_reg); shifted_fbdiv_int = (u64)fbdiv_int << 24; calc_rate = (u64)parent_rate * (shifted_fbdiv_int + fbdiv_frac); calc_rate += BIT(23); calc_rate >>= 24; return calc_rate; } static long rp1_pll_core_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate) { u32 fbdiv_int, fbdiv_frac; return get_pll_core_divider(hw, rate, *parent_rate, &fbdiv_int, &fbdiv_frac); } static void get_pll_prim_dividers(unsigned long rate, unsigned long parent_rate, u32 *divider1, u32 *divider2) { unsigned int div1, div2; unsigned int best_div1 = 7, best_div2 = 7; unsigned long best_rate_diff = abs_diff(DIV_ROUND_CLOSEST(parent_rate, best_div1 * best_div2), rate); unsigned long rate_diff, calc_rate; for (div1 = 1; div1 <= 7; div1++) { for (div2 = 1; div2 <= div1; div2++) { calc_rate = DIV_ROUND_CLOSEST(parent_rate, div1 * div2); rate_diff = abs_diff(calc_rate, rate); if (calc_rate == rate) { best_div1 = div1; best_div2 = div2; goto done; } else if (rate_diff < best_rate_diff) { best_div1 = div1; best_div2 = div2; best_rate_diff = rate_diff; } } } done: *divider1 = best_div1; *divider2 = best_div2; } static int rp1_pll_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct rp1_clk_desc *pll = container_of(hw, struct rp1_clk_desc, hw); struct rp1_clockman *clockman = pll->clockman; const struct rp1_pll_data *data = pll->data; u32 prim, prim_div1, prim_div2; get_pll_prim_dividers(rate, parent_rate, &prim_div1, &prim_div2); spin_lock(&clockman->regs_lock); prim = clockman_read(clockman, data->ctrl_reg); prim &= ~PLL_PRIM_DIV1_MASK; prim |= FIELD_PREP(PLL_PRIM_DIV1_MASK, prim_div1); prim &= ~PLL_PRIM_DIV2_MASK; prim |= FIELD_PREP(PLL_PRIM_DIV2_MASK, prim_div2); clockman_write(clockman, data->ctrl_reg, prim); spin_unlock(&clockman->regs_lock); return 0; } static unsigned long rp1_pll_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct rp1_clk_desc *pll = container_of(hw, struct rp1_clk_desc, hw); struct rp1_clockman *clockman = pll->clockman; const struct rp1_pll_data *data = pll->data; u32 prim, prim_div1, prim_div2; prim = clockman_read(clockman, data->ctrl_reg); prim_div1 = FIELD_GET(PLL_PRIM_DIV1_MASK, prim); prim_div2 = FIELD_GET(PLL_PRIM_DIV2_MASK, prim); if (!prim_div1 || !prim_div2) { dev_err(clockman->dev, "%s: (%s) zero divider value\n", __func__, clk_hw_get_name(hw)); return 0; } return DIV_ROUND_CLOSEST(parent_rate, prim_div1 * prim_div2); } static long rp1_pll_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate) { u32 div1, div2; get_pll_prim_dividers(rate, *parent_rate, &div1, &div2); return DIV_ROUND_CLOSEST(*parent_rate, div1 * div2); } static int rp1_pll_ph_is_on(struct clk_hw *hw) { struct rp1_clk_desc *pll_ph = container_of(hw, struct rp1_clk_desc, hw); struct rp1_clockman *clockman = pll_ph->clockman; const struct rp1_pll_ph_data *data = pll_ph->data; return !!(clockman_read(clockman, data->ph_reg) & PLL_PH_EN); } static int rp1_pll_ph_on(struct clk_hw *hw) { struct rp1_clk_desc *pll_ph = container_of(hw, struct rp1_clk_desc, hw); struct rp1_clockman *clockman = pll_ph->clockman; const struct rp1_pll_ph_data *data = pll_ph->data; u32 ph_reg; spin_lock(&clockman->regs_lock); ph_reg = clockman_read(clockman, data->ph_reg); ph_reg |= data->phase << PLL_PH_PHASE_SHIFT; ph_reg |= PLL_PH_EN; clockman_write(clockman, data->ph_reg, ph_reg); spin_unlock(&clockman->regs_lock); return 0; } static void rp1_pll_ph_off(struct clk_hw *hw) { struct rp1_clk_desc *pll_ph = container_of(hw, struct rp1_clk_desc, hw); struct rp1_clockman *clockman = pll_ph->clockman; const struct rp1_pll_ph_data *data = pll_ph->data; spin_lock(&clockman->regs_lock); clockman_write(clockman, data->ph_reg, clockman_read(clockman, data->ph_reg) & ~PLL_PH_EN); spin_unlock(&clockman->regs_lock); } static unsigned long rp1_pll_ph_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct rp1_clk_desc *pll_ph = container_of(hw, struct rp1_clk_desc, hw); const struct rp1_pll_ph_data *data = pll_ph->data; return parent_rate / data->fixed_divider; } static long rp1_pll_ph_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate) { struct rp1_clk_desc *pll_ph = container_of(hw, struct rp1_clk_desc, hw); const struct rp1_pll_ph_data *data = pll_ph->data; return *parent_rate / data->fixed_divider; } static int rp1_pll_divider_is_on(struct clk_hw *hw) { struct rp1_clk_desc *divider = container_of(hw, struct rp1_clk_desc, div.hw); struct rp1_clockman *clockman = divider->clockman; const struct rp1_pll_data *data = divider->data; return !(clockman_read(clockman, data->ctrl_reg) & PLL_SEC_RST); } static int rp1_pll_divider_on(struct clk_hw *hw) { struct rp1_clk_desc *divider = container_of(hw, struct rp1_clk_desc, div.hw); struct rp1_clockman *clockman = divider->clockman; const struct rp1_pll_data *data = divider->data; spin_lock(&clockman->regs_lock); /* Check the implementation bit is set! */ WARN_ON(!(clockman_read(clockman, data->ctrl_reg) & PLL_SEC_IMPL)); clockman_write(clockman, data->ctrl_reg, clockman_read(clockman, data->ctrl_reg) & ~PLL_SEC_RST); spin_unlock(&clockman->regs_lock); return 0; } static void rp1_pll_divider_off(struct clk_hw *hw) { struct rp1_clk_desc *divider = container_of(hw, struct rp1_clk_desc, div.hw); struct rp1_clockman *clockman = divider->clockman; const struct rp1_pll_data *data = divider->data; spin_lock(&clockman->regs_lock); clockman_write(clockman, data->ctrl_reg, clockman_read(clockman, data->ctrl_reg) | PLL_SEC_RST); spin_unlock(&clockman->regs_lock); } static int rp1_pll_divider_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct rp1_clk_desc *divider = container_of(hw, struct rp1_clk_desc, div.hw); struct rp1_clockman *clockman = divider->clockman; const struct rp1_pll_data *data = divider->data; u32 div, sec; div = DIV_ROUND_UP_ULL(parent_rate, rate); div = clamp(div, 8u, 19u); spin_lock(&clockman->regs_lock); sec = clockman_read(clockman, data->ctrl_reg); sec &= ~PLL_SEC_DIV_MASK; sec |= FIELD_PREP(PLL_SEC_DIV_MASK, div); /* Must keep the divider in reset to change the value. */ sec |= PLL_SEC_RST; clockman_write(clockman, data->ctrl_reg, sec); /* must sleep 10 pll vco cycles */ ndelay(div64_ul(10ULL * div * NSEC_PER_SEC, parent_rate)); sec &= ~PLL_SEC_RST; clockman_write(clockman, data->ctrl_reg, sec); spin_unlock(&clockman->regs_lock); return 0; } static unsigned long rp1_pll_divider_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { return clk_divider_ops.recalc_rate(hw, parent_rate); } static long rp1_pll_divider_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate) { return clk_divider_ops.round_rate(hw, rate, parent_rate); } static int rp1_clock_is_on(struct clk_hw *hw) { struct rp1_clk_desc *clock = container_of(hw, struct rp1_clk_desc, hw); struct rp1_clockman *clockman = clock->clockman; const struct rp1_clock_data *data = clock->data; return !!(clockman_read(clockman, data->ctrl_reg) & CLK_CTRL_ENABLE); } static unsigned long rp1_clock_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct rp1_clk_desc *clock = container_of(hw, struct rp1_clk_desc, hw); struct rp1_clockman *clockman = clock->clockman; const struct rp1_clock_data *data = clock->data; u64 calc_rate; u64 div; u32 frac; div = clockman_read(clockman, data->div_int_reg); frac = (data->div_frac_reg != 0) ? clockman_read(clockman, data->div_frac_reg) : 0; /* If the integer portion of the divider is 0, treat it as 2^16 */ if (!div) div = 1 << 16; div = (div << CLK_DIV_FRAC_BITS) | (frac >> (32 - CLK_DIV_FRAC_BITS)); calc_rate = (u64)parent_rate << CLK_DIV_FRAC_BITS; calc_rate = div64_u64(calc_rate, div); return calc_rate; } static int rp1_clock_on(struct clk_hw *hw) { struct rp1_clk_desc *clock = container_of(hw, struct rp1_clk_desc, hw); struct rp1_clockman *clockman = clock->clockman; const struct rp1_clock_data *data = clock->data; spin_lock(&clockman->regs_lock); clockman_write(clockman, data->ctrl_reg, clockman_read(clockman, data->ctrl_reg) | CLK_CTRL_ENABLE); /* If this is a GPCLK, turn on the output-enable */ if (data->oe_mask) clockman_write(clockman, GPCLK_OE_CTRL, clockman_read(clockman, GPCLK_OE_CTRL) | data->oe_mask); spin_unlock(&clockman->regs_lock); return 0; } static void rp1_clock_off(struct clk_hw *hw) { struct rp1_clk_desc *clock = container_of(hw, struct rp1_clk_desc, hw); struct rp1_clockman *clockman = clock->clockman; const struct rp1_clock_data *data = clock->data; spin_lock(&clockman->regs_lock); clockman_write(clockman, data->ctrl_reg, clockman_read(clockman, data->ctrl_reg) & ~CLK_CTRL_ENABLE); /* If this is a GPCLK, turn off the output-enable */ if (data->oe_mask) clockman_write(clockman, GPCLK_OE_CTRL, clockman_read(clockman, GPCLK_OE_CTRL) & ~data->oe_mask); spin_unlock(&clockman->regs_lock); } static u32 rp1_clock_choose_div(unsigned long rate, unsigned long parent_rate, const struct rp1_clock_data *data) { u64 div; /* * Due to earlier rounding, calculated parent_rate may differ from * expected value. Don't fail on a small discrepancy near unity divide. */ if (!rate || rate > parent_rate + (parent_rate >> CLK_DIV_FRAC_BITS)) return 0; /* * Always express div in fixed-point format for fractional division; * If no fractional divider is present, the fraction part will be zero. */ if (data->div_frac_reg) { div = (u64)parent_rate << CLK_DIV_FRAC_BITS; div = DIV_ROUND_CLOSEST_ULL(div, rate); } else { div = DIV_ROUND_CLOSEST_ULL(parent_rate, rate); div <<= CLK_DIV_FRAC_BITS; } div = clamp(div, 1ull << CLK_DIV_FRAC_BITS, (u64)data->div_int_max << CLK_DIV_FRAC_BITS); return div; } static u8 rp1_clock_get_parent(struct clk_hw *hw) { struct rp1_clk_desc *clock = container_of(hw, struct rp1_clk_desc, hw); struct rp1_clockman *clockman = clock->clockman; const struct rp1_clock_data *data = clock->data; u32 sel, ctrl; u8 parent; /* Sel is one-hot, so find the first bit set */ sel = clockman_read(clockman, data->sel_reg); parent = ffs(sel) - 1; /* sel == 0 implies the parent clock is not enabled yet. */ if (!sel) { /* Read the clock src from the CTRL register instead */ ctrl = clockman_read(clockman, data->ctrl_reg); parent = (ctrl & data->clk_src_mask) >> CLK_CTRL_SRC_SHIFT; } if (parent >= data->num_std_parents) parent = AUX_SEL; if (parent == AUX_SEL) { /* * Clock parent is an auxiliary source, so get the parent from * the AUXSRC register field. */ ctrl = clockman_read(clockman, data->ctrl_reg); parent = FIELD_GET(CLK_CTRL_AUXSRC_MASK, ctrl); parent += data->num_std_parents; } return parent; } static int rp1_clock_set_parent(struct clk_hw *hw, u8 index) { struct rp1_clk_desc *clock = container_of(hw, struct rp1_clk_desc, hw); struct rp1_clockman *clockman = clock->clockman; const struct rp1_clock_data *data = clock->data; u32 ctrl, sel; spin_lock(&clockman->regs_lock); ctrl = clockman_read(clockman, data->ctrl_reg); if (index >= data->num_std_parents) { /* This is an aux source request */ if (index >= data->num_std_parents + data->num_aux_parents) { spin_unlock(&clockman->regs_lock); return -EINVAL; } /* Select parent from aux list */ ctrl &= ~CLK_CTRL_AUXSRC_MASK; ctrl |= FIELD_PREP(CLK_CTRL_AUXSRC_MASK, index - data->num_std_parents); /* Set src to aux list */ ctrl &= ~data->clk_src_mask; ctrl |= (AUX_SEL << CLK_CTRL_SRC_SHIFT) & data->clk_src_mask; } else { ctrl &= ~data->clk_src_mask; ctrl |= (index << CLK_CTRL_SRC_SHIFT) & data->clk_src_mask; } clockman_write(clockman, data->ctrl_reg, ctrl); spin_unlock(&clockman->regs_lock); sel = rp1_clock_get_parent(hw); if (sel != index) return -EINVAL; return 0; } static int rp1_clock_set_rate_and_parent(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate, u8 parent) { struct rp1_clk_desc *clock = container_of(hw, struct rp1_clk_desc, hw); struct rp1_clockman *clockman = clock->clockman; const struct rp1_clock_data *data = clock->data; u32 div = rp1_clock_choose_div(rate, parent_rate, data); spin_lock(&clockman->regs_lock); clockman_write(clockman, data->div_int_reg, div >> CLK_DIV_FRAC_BITS); if (data->div_frac_reg) clockman_write(clockman, data->div_frac_reg, div << (32 - CLK_DIV_FRAC_BITS)); spin_unlock(&clockman->regs_lock); if (parent != 0xff) return rp1_clock_set_parent(hw, parent); return 0; } static int rp1_clock_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { return rp1_clock_set_rate_and_parent(hw, rate, parent_rate, 0xff); } static void rp1_clock_choose_div_and_prate(struct clk_hw *hw, int parent_idx, unsigned long rate, unsigned long *prate, unsigned long *calc_rate) { struct rp1_clk_desc *clock = container_of(hw, struct rp1_clk_desc, hw); const struct rp1_clock_data *data = clock->data; struct clk_hw *parent; u32 div; u64 tmp; parent = clk_hw_get_parent_by_index(hw, parent_idx); *prate = clk_hw_get_rate(parent); div = rp1_clock_choose_div(rate, *prate, data); if (!div) { *calc_rate = 0; return; } /* Recalculate to account for rounding errors */ tmp = (u64)*prate << CLK_DIV_FRAC_BITS; tmp = div_u64(tmp, div); /* * Prevent overclocks - if all parent choices result in * a downstream clock in excess of the maximum, then the * call to set the clock will fail. */ if (tmp > data->max_freq) *calc_rate = 0; else *calc_rate = tmp; } static int rp1_clock_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) { struct clk_hw *parent, *best_parent = NULL; unsigned long best_rate = 0; unsigned long best_prate = 0; unsigned long best_rate_diff = ULONG_MAX; unsigned long prate, calc_rate; size_t i; /* * If the NO_REPARENT flag is set, try to use existing parent. */ if ((clk_hw_get_flags(hw) & CLK_SET_RATE_NO_REPARENT)) { i = rp1_clock_get_parent(hw); parent = clk_hw_get_parent_by_index(hw, i); if (parent) { rp1_clock_choose_div_and_prate(hw, i, req->rate, &prate, &calc_rate); if (calc_rate > 0) { req->best_parent_hw = parent; req->best_parent_rate = prate; req->rate = calc_rate; return 0; } } } /* * Select parent clock that results in the closest rate (lower or * higher) */ for (i = 0; i < clk_hw_get_num_parents(hw); i++) { parent = clk_hw_get_parent_by_index(hw, i); if (!parent) continue; rp1_clock_choose_div_and_prate(hw, i, req->rate, &prate, &calc_rate); if (abs_diff(calc_rate, req->rate) < best_rate_diff) { best_parent = parent; best_prate = prate; best_rate = calc_rate; best_rate_diff = abs_diff(calc_rate, req->rate); if (best_rate_diff == 0) break; } } if (best_rate == 0) return -EINVAL; req->best_parent_hw = best_parent; req->best_parent_rate = best_prate; req->rate = best_rate; return 0; } static const struct clk_ops rp1_pll_core_ops = { .is_prepared = rp1_pll_core_is_on, .prepare = rp1_pll_core_on, .unprepare = rp1_pll_core_off, .set_rate = rp1_pll_core_set_rate, .recalc_rate = rp1_pll_core_recalc_rate, .round_rate = rp1_pll_core_round_rate, }; static const struct clk_ops rp1_pll_ops = { .set_rate = rp1_pll_set_rate, .recalc_rate = rp1_pll_recalc_rate, .round_rate = rp1_pll_round_rate, }; static const struct clk_ops rp1_pll_ph_ops = { .is_prepared = rp1_pll_ph_is_on, .prepare = rp1_pll_ph_on, .unprepare = rp1_pll_ph_off, .recalc_rate = rp1_pll_ph_recalc_rate, .round_rate = rp1_pll_ph_round_rate, }; static const struct clk_ops rp1_pll_divider_ops = { .is_prepared = rp1_pll_divider_is_on, .prepare = rp1_pll_divider_on, .unprepare = rp1_pll_divider_off, .set_rate = rp1_pll_divider_set_rate, .recalc_rate = rp1_pll_divider_recalc_rate, .round_rate = rp1_pll_divider_round_rate, }; static const struct clk_ops rp1_clk_ops = { .is_prepared = rp1_clock_is_on, .prepare = rp1_clock_on, .unprepare = rp1_clock_off, .recalc_rate = rp1_clock_recalc_rate, .get_parent = rp1_clock_get_parent, .set_parent = rp1_clock_set_parent, .set_rate_and_parent = rp1_clock_set_rate_and_parent, .set_rate = rp1_clock_set_rate, .determine_rate = rp1_clock_determine_rate, }; static struct clk_hw *rp1_register_pll(struct rp1_clockman *clockman, struct rp1_clk_desc *desc) { int ret; desc->clockman = clockman; ret = devm_clk_hw_register(clockman->dev, &desc->hw); if (ret) return ERR_PTR(ret); return &desc->hw; } static struct clk_hw *rp1_register_pll_divider(struct rp1_clockman *clockman, struct rp1_clk_desc *desc) { const struct rp1_pll_data *divider_data = desc->data; int ret; desc->div.reg = clockman->regs + divider_data->ctrl_reg; desc->div.shift = __ffs(PLL_SEC_DIV_MASK); desc->div.width = __ffs(~(PLL_SEC_DIV_MASK >> desc->div.shift)); desc->div.flags = CLK_DIVIDER_ROUND_CLOSEST; desc->div.lock = &clockman->regs_lock; desc->div.hw.init = desc->hw.init; desc->div.table = pll_sec_div_table; desc->clockman = clockman; ret = devm_clk_hw_register(clockman->dev, &desc->div.hw); if (ret) return ERR_PTR(ret); return &desc->div.hw; } static struct clk_hw *rp1_register_clock(struct rp1_clockman *clockman, struct rp1_clk_desc *desc) { const struct rp1_clock_data *clock_data = desc->data; int ret; if (WARN_ON_ONCE(MAX_CLK_PARENTS < clock_data->num_std_parents + clock_data->num_aux_parents)) return ERR_PTR(-EINVAL); /* There must be a gap for the AUX selector */ if (WARN_ON_ONCE(clock_data->num_std_parents > AUX_SEL && desc->hw.init->parent_data[AUX_SEL].index != -1)) return ERR_PTR(-EINVAL); desc->clockman = clockman; ret = devm_clk_hw_register(clockman->dev, &desc->hw); if (ret) return ERR_PTR(ret); return &desc->hw; } /* Assignment helper macros for different clock types. */ #define _REGISTER(f, ...) { .clk_register = f, __VA_ARGS__ } #define CLK_DATA(type, ...) .data = &(struct type) { __VA_ARGS__ } #define REGISTER_PLL(...) _REGISTER(&rp1_register_pll, \ __VA_ARGS__) #define REGISTER_PLL_DIV(...) _REGISTER(&rp1_register_pll_divider, \ __VA_ARGS__) #define REGISTER_CLK(...) _REGISTER(&rp1_register_clock, \ __VA_ARGS__) static struct rp1_clk_desc pll_sys_core_desc = REGISTER_PLL( .hw.init = CLK_HW_INIT_PARENTS_DATA( "pll_sys_core", (const struct clk_parent_data[]) { { .index = 0 } }, &rp1_pll_core_ops, CLK_IS_CRITICAL ), CLK_DATA(rp1_pll_core_data, .cs_reg = PLL_SYS_CS, .pwr_reg = PLL_SYS_PWR, .fbdiv_int_reg = PLL_SYS_FBDIV_INT, .fbdiv_frac_reg = PLL_SYS_FBDIV_FRAC, ) ); static struct rp1_clk_desc pll_audio_core_desc = REGISTER_PLL( .hw.init = CLK_HW_INIT_PARENTS_DATA( "pll_audio_core", (const struct clk_parent_data[]) { { .index = 0 } }, &rp1_pll_core_ops, CLK_IS_CRITICAL ), CLK_DATA(rp1_pll_core_data, .cs_reg = PLL_AUDIO_CS, .pwr_reg = PLL_AUDIO_PWR, .fbdiv_int_reg = PLL_AUDIO_FBDIV_INT, .fbdiv_frac_reg = PLL_AUDIO_FBDIV_FRAC, ) ); static struct rp1_clk_desc pll_video_core_desc = REGISTER_PLL( .hw.init = CLK_HW_INIT_PARENTS_DATA( "pll_video_core", (const struct clk_parent_data[]) { { .index = 0 } }, &rp1_pll_core_ops, CLK_IS_CRITICAL ), CLK_DATA(rp1_pll_core_data, .cs_reg = PLL_VIDEO_CS, .pwr_reg = PLL_VIDEO_PWR, .fbdiv_int_reg = PLL_VIDEO_FBDIV_INT, .fbdiv_frac_reg = PLL_VIDEO_FBDIV_FRAC, ) ); static struct rp1_clk_desc pll_sys_desc = REGISTER_PLL( .hw.init = CLK_HW_INIT_PARENTS_DATA( "pll_sys", (const struct clk_parent_data[]) { { .hw = &pll_sys_core_desc.hw } }, &rp1_pll_ops, 0 ), CLK_DATA(rp1_pll_data, .ctrl_reg = PLL_SYS_PRIM, .fc0_src = FC_NUM(0, 2), ) ); static struct rp1_clk_desc pll_sys_sec_desc = REGISTER_PLL_DIV( .hw.init = CLK_HW_INIT_PARENTS_DATA( "pll_sys_sec", (const struct clk_parent_data[]) { { .hw = &pll_sys_core_desc.hw } }, &rp1_pll_divider_ops, 0 ), CLK_DATA(rp1_pll_data, .ctrl_reg = PLL_SYS_SEC, .fc0_src = FC_NUM(2, 2), ) ); static struct rp1_clk_desc clk_eth_tsu_desc = REGISTER_CLK( .hw.init = CLK_HW_INIT_PARENTS_DATA( "clk_eth_tsu", (const struct clk_parent_data[]) { { .index = 0 } }, &rp1_clk_ops, 0 ), CLK_DATA(rp1_clock_data, .num_std_parents = 0, .num_aux_parents = 1, .ctrl_reg = CLK_ETH_TSU_CTRL, .div_int_reg = CLK_ETH_TSU_DIV_INT, .sel_reg = CLK_ETH_TSU_SEL, .div_int_max = DIV_INT_8BIT_MAX, .max_freq = 50 * HZ_PER_MHZ, .fc0_src = FC_NUM(5, 7), ) ); static const struct clk_parent_data clk_eth_parents[] = { { .hw = &pll_sys_sec_desc.div.hw }, { .hw = &pll_sys_desc.hw }, }; static struct rp1_clk_desc clk_eth_desc = REGISTER_CLK( .hw.init = CLK_HW_INIT_PARENTS_DATA( "clk_eth", clk_eth_parents, &rp1_clk_ops, 0 ), CLK_DATA(rp1_clock_data, .num_std_parents = 0, .num_aux_parents = 2, .ctrl_reg = CLK_ETH_CTRL, .div_int_reg = CLK_ETH_DIV_INT, .sel_reg = CLK_ETH_SEL, .div_int_max = DIV_INT_8BIT_MAX, .max_freq = 125 * HZ_PER_MHZ, .fc0_src = FC_NUM(4, 6), ) ); static const struct clk_parent_data clk_sys_parents[] = { { .index = 0 }, { .index = -1 }, { .hw = &pll_sys_desc.hw }, }; static struct rp1_clk_desc clk_sys_desc = REGISTER_CLK( .hw.init = CLK_HW_INIT_PARENTS_DATA( "clk_sys", clk_sys_parents, &rp1_clk_ops, CLK_IS_CRITICAL ), CLK_DATA(rp1_clock_data, .num_std_parents = 3, .num_aux_parents = 0, .ctrl_reg = CLK_SYS_CTRL, .div_int_reg = CLK_SYS_DIV_INT, .sel_reg = CLK_SYS_SEL, .div_int_max = DIV_INT_24BIT_MAX, .max_freq = 200 * HZ_PER_MHZ, .fc0_src = FC_NUM(0, 4), .clk_src_mask = 0x3, ) ); static struct rp1_clk_desc pll_sys_pri_ph_desc = REGISTER_PLL( .hw.init = CLK_HW_INIT_PARENTS_DATA( "pll_sys_pri_ph", (const struct clk_parent_data[]) { { .hw = &pll_sys_desc.hw } }, &rp1_pll_ph_ops, 0 ), CLK_DATA(rp1_pll_ph_data, .ph_reg = PLL_SYS_PRIM, .fixed_divider = 2, .phase = RP1_PLL_PHASE_0, .fc0_src = FC_NUM(1, 2), ) ); static struct rp1_clk_desc *const clk_desc_array[] = { [RP1_PLL_SYS_CORE] = &pll_sys_core_desc, [RP1_PLL_AUDIO_CORE] = &pll_audio_core_desc, [RP1_PLL_VIDEO_CORE] = &pll_video_core_desc, [RP1_PLL_SYS] = &pll_sys_desc, [RP1_CLK_ETH_TSU] = &clk_eth_tsu_desc, [RP1_CLK_ETH] = &clk_eth_desc, [RP1_CLK_SYS] = &clk_sys_desc, [RP1_PLL_SYS_PRI_PH] = &pll_sys_pri_ph_desc, [RP1_PLL_SYS_SEC] = &pll_sys_sec_desc, }; static const struct regmap_range rp1_reg_ranges[] = { regmap_reg_range(PLL_SYS_CS, PLL_SYS_SEC), regmap_reg_range(PLL_AUDIO_CS, PLL_AUDIO_TERN), regmap_reg_range(PLL_VIDEO_CS, PLL_VIDEO_SEC), regmap_reg_range(GPCLK_OE_CTRL, GPCLK_OE_CTRL), regmap_reg_range(CLK_SYS_CTRL, CLK_SYS_DIV_INT), regmap_reg_range(CLK_SYS_SEL, CLK_SYS_SEL), regmap_reg_range(CLK_SLOW_SYS_CTRL, CLK_SLOW_SYS_DIV_INT), regmap_reg_range(CLK_SLOW_SYS_SEL, CLK_SLOW_SYS_SEL), regmap_reg_range(CLK_DMA_CTRL, CLK_DMA_DIV_INT), regmap_reg_range(CLK_DMA_SEL, CLK_DMA_SEL), regmap_reg_range(CLK_UART_CTRL, CLK_UART_DIV_INT), regmap_reg_range(CLK_UART_SEL, CLK_UART_SEL), regmap_reg_range(CLK_ETH_CTRL, CLK_ETH_DIV_INT), regmap_reg_range(CLK_ETH_SEL, CLK_ETH_SEL), regmap_reg_range(CLK_PWM0_CTRL, CLK_PWM0_SEL), regmap_reg_range(CLK_PWM1_CTRL, CLK_PWM1_SEL), regmap_reg_range(CLK_AUDIO_IN_CTRL, CLK_AUDIO_IN_DIV_INT), regmap_reg_range(CLK_AUDIO_IN_SEL, CLK_AUDIO_IN_SEL), regmap_reg_range(CLK_AUDIO_OUT_CTRL, CLK_AUDIO_OUT_DIV_INT), regmap_reg_range(CLK_AUDIO_OUT_SEL, CLK_AUDIO_OUT_SEL), regmap_reg_range(CLK_I2S_CTRL, CLK_I2S_DIV_INT), regmap_reg_range(CLK_I2S_SEL, CLK_I2S_SEL), regmap_reg_range(CLK_MIPI0_CFG_CTRL, CLK_MIPI0_CFG_DIV_INT), regmap_reg_range(CLK_MIPI0_CFG_SEL, CLK_MIPI0_CFG_SEL), regmap_reg_range(CLK_MIPI1_CFG_CTRL, CLK_MIPI1_CFG_DIV_INT), regmap_reg_range(CLK_MIPI1_CFG_SEL, CLK_MIPI1_CFG_SEL), regmap_reg_range(CLK_PCIE_AUX_CTRL, CLK_PCIE_AUX_DIV_INT), regmap_reg_range(CLK_PCIE_AUX_SEL, CLK_PCIE_AUX_SEL), regmap_reg_range(CLK_USBH0_MICROFRAME_CTRL, CLK_USBH0_MICROFRAME_DIV_INT), regmap_reg_range(CLK_USBH0_MICROFRAME_SEL, CLK_USBH0_MICROFRAME_SEL), regmap_reg_range(CLK_USBH1_MICROFRAME_CTRL, CLK_USBH1_MICROFRAME_DIV_INT), regmap_reg_range(CLK_USBH1_MICROFRAME_SEL, CLK_USBH1_MICROFRAME_SEL), regmap_reg_range(CLK_USBH0_SUSPEND_CTRL, CLK_USBH0_SUSPEND_DIV_INT), regmap_reg_range(CLK_USBH0_SUSPEND_SEL, CLK_USBH0_SUSPEND_SEL), regmap_reg_range(CLK_USBH1_SUSPEND_CTRL, CLK_USBH1_SUSPEND_DIV_INT), regmap_reg_range(CLK_USBH1_SUSPEND_SEL, CLK_USBH1_SUSPEND_SEL), regmap_reg_range(CLK_ETH_TSU_CTRL, CLK_ETH_TSU_DIV_INT), regmap_reg_range(CLK_ETH_TSU_SEL, CLK_ETH_TSU_SEL), regmap_reg_range(CLK_ADC_CTRL, CLK_ADC_DIV_INT), regmap_reg_range(CLK_ADC_SEL, CLK_ADC_SEL), regmap_reg_range(CLK_SDIO_TIMER_CTRL, CLK_SDIO_TIMER_DIV_INT), regmap_reg_range(CLK_SDIO_TIMER_SEL, CLK_SDIO_TIMER_SEL), regmap_reg_range(CLK_SDIO_ALT_SRC_CTRL, CLK_SDIO_ALT_SRC_DIV_INT), regmap_reg_range(CLK_SDIO_ALT_SRC_SEL, CLK_SDIO_ALT_SRC_SEL), regmap_reg_range(CLK_GP0_CTRL, CLK_GP0_SEL), regmap_reg_range(CLK_GP1_CTRL, CLK_GP1_SEL), regmap_reg_range(CLK_GP2_CTRL, CLK_GP2_SEL), regmap_reg_range(CLK_GP3_CTRL, CLK_GP3_SEL), regmap_reg_range(CLK_GP4_CTRL, CLK_GP4_SEL), regmap_reg_range(CLK_GP5_CTRL, CLK_GP5_SEL), regmap_reg_range(CLK_SYS_RESUS_CTRL, CLK_SYS_RESUS_CTRL), regmap_reg_range(CLK_SLOW_SYS_RESUS_CTRL, CLK_SLOW_SYS_RESUS_CTRL), regmap_reg_range(FC0_REF_KHZ, FC0_RESULT), regmap_reg_range(VIDEO_CLK_VEC_CTRL, VIDEO_CLK_VEC_DIV_INT), regmap_reg_range(VIDEO_CLK_VEC_SEL, VIDEO_CLK_DPI_DIV_INT), regmap_reg_range(VIDEO_CLK_DPI_SEL, VIDEO_CLK_MIPI1_DPI_SEL), }; static const struct regmap_access_table rp1_reg_table = { .yes_ranges = rp1_reg_ranges, .n_yes_ranges = ARRAY_SIZE(rp1_reg_ranges), }; static const struct regmap_config rp1_clk_regmap_cfg = { .reg_bits = 32, .val_bits = 32, .reg_stride = 4, .max_register = PLL_VIDEO_SEC, .name = "rp1-clk", .rd_table = &rp1_reg_table, .disable_locking = true, }; static int rp1_clk_probe(struct platform_device *pdev) { const size_t asize = ARRAY_SIZE(clk_desc_array); struct rp1_clk_desc *desc; struct device *dev = &pdev->dev; struct rp1_clockman *clockman; struct clk_hw **hws; unsigned int i; clockman = devm_kzalloc(dev, struct_size(clockman, onecell.hws, asize), GFP_KERNEL); if (!clockman) return -ENOMEM; spin_lock_init(&clockman->regs_lock); clockman->dev = dev; clockman->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(clockman->regs)) return PTR_ERR(clockman->regs); clockman->regmap = devm_regmap_init_mmio(dev, clockman->regs, &rp1_clk_regmap_cfg); if (IS_ERR(clockman->regmap)) { dev_err_probe(dev, PTR_ERR(clockman->regmap), "could not init clock regmap\n"); return PTR_ERR(clockman->regmap); } clockman->onecell.num = asize; hws = clockman->onecell.hws; for (i = 0; i < asize; i++) { desc = clk_desc_array[i]; if (desc && desc->clk_register && desc->data) hws[i] = desc->clk_register(clockman, desc); } platform_set_drvdata(pdev, clockman); return devm_of_clk_add_hw_provider(dev, of_clk_hw_onecell_get, &clockman->onecell); } static const struct of_device_id rp1_clk_of_match[] = { { .compatible = "raspberrypi,rp1-clocks" }, {} }; MODULE_DEVICE_TABLE(of, rp1_clk_of_match); static struct platform_driver rp1_clk_driver = { .driver = { .name = "rp1-clk", .of_match_table = rp1_clk_of_match, }, .probe = rp1_clk_probe, }; module_platform_driver(rp1_clk_driver); MODULE_AUTHOR("Naushir Patuck "); MODULE_AUTHOR("Andrea della Porta "); MODULE_DESCRIPTION("RP1 clock driver"); MODULE_LICENSE("GPL");