// SPDX-License-Identifier: GPL-2.0-only /* * K3 DTHE V2 crypto accelerator driver * * Copyright (C) Texas Instruments 2025 - https://www.ti.com * Author: T Pratham */ #include #include #include #include #include #include #include "dthev2-common.h" #include #include #include #include #include /* Registers */ // AES Engine #define DTHE_P_AES_BASE 0x7000 #define DTHE_P_AES_KEY1_0 0x0038 #define DTHE_P_AES_KEY1_1 0x003C #define DTHE_P_AES_KEY1_2 0x0030 #define DTHE_P_AES_KEY1_3 0x0034 #define DTHE_P_AES_KEY1_4 0x0028 #define DTHE_P_AES_KEY1_5 0x002C #define DTHE_P_AES_KEY1_6 0x0020 #define DTHE_P_AES_KEY1_7 0x0024 #define DTHE_P_AES_IV_IN_0 0x0040 #define DTHE_P_AES_IV_IN_1 0x0044 #define DTHE_P_AES_IV_IN_2 0x0048 #define DTHE_P_AES_IV_IN_3 0x004C #define DTHE_P_AES_CTRL 0x0050 #define DTHE_P_AES_C_LENGTH_0 0x0054 #define DTHE_P_AES_C_LENGTH_1 0x0058 #define DTHE_P_AES_AUTH_LENGTH 0x005C #define DTHE_P_AES_DATA_IN_OUT 0x0060 #define DTHE_P_AES_SYSCONFIG 0x0084 #define DTHE_P_AES_IRQSTATUS 0x008C #define DTHE_P_AES_IRQENABLE 0x0090 /* Register write values and macros */ enum aes_ctrl_mode_masks { AES_CTRL_ECB_MASK = 0x00, AES_CTRL_CBC_MASK = BIT(5), }; #define DTHE_AES_CTRL_MODE_CLEAR_MASK ~GENMASK(28, 5) #define DTHE_AES_CTRL_DIR_ENC BIT(2) #define DTHE_AES_CTRL_KEYSIZE_16B BIT(3) #define DTHE_AES_CTRL_KEYSIZE_24B BIT(4) #define DTHE_AES_CTRL_KEYSIZE_32B (BIT(3) | BIT(4)) #define DTHE_AES_CTRL_SAVE_CTX_SET BIT(29) #define DTHE_AES_CTRL_OUTPUT_READY BIT_MASK(0) #define DTHE_AES_CTRL_INPUT_READY BIT_MASK(1) #define DTHE_AES_CTRL_SAVED_CTX_READY BIT_MASK(30) #define DTHE_AES_CTRL_CTX_READY BIT_MASK(31) #define DTHE_AES_SYSCONFIG_DMA_DATA_IN_OUT_EN GENMASK(6, 5) #define DTHE_AES_IRQENABLE_EN_ALL GENMASK(3, 0) /* Misc */ #define AES_IV_SIZE AES_BLOCK_SIZE #define AES_BLOCK_WORDS (AES_BLOCK_SIZE / sizeof(u32)) #define AES_IV_WORDS AES_BLOCK_WORDS static int dthe_cipher_init_tfm(struct crypto_skcipher *tfm) { struct dthe_tfm_ctx *ctx = crypto_skcipher_ctx(tfm); struct dthe_data *dev_data = dthe_get_dev(ctx); ctx->dev_data = dev_data; ctx->keylen = 0; return 0; } static int dthe_aes_setkey(struct crypto_skcipher *tfm, const u8 *key, unsigned int keylen) { struct dthe_tfm_ctx *ctx = crypto_skcipher_ctx(tfm); if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 && keylen != AES_KEYSIZE_256) return -EINVAL; ctx->keylen = keylen; memcpy(ctx->key, key, keylen); return 0; } static int dthe_aes_ecb_setkey(struct crypto_skcipher *tfm, const u8 *key, unsigned int keylen) { struct dthe_tfm_ctx *ctx = crypto_skcipher_ctx(tfm); ctx->aes_mode = DTHE_AES_ECB; return dthe_aes_setkey(tfm, key, keylen); } static int dthe_aes_cbc_setkey(struct crypto_skcipher *tfm, const u8 *key, unsigned int keylen) { struct dthe_tfm_ctx *ctx = crypto_skcipher_ctx(tfm); ctx->aes_mode = DTHE_AES_CBC; return dthe_aes_setkey(tfm, key, keylen); } static void dthe_aes_set_ctrl_key(struct dthe_tfm_ctx *ctx, struct dthe_aes_req_ctx *rctx, u32 *iv_in) { struct dthe_data *dev_data = dthe_get_dev(ctx); void __iomem *aes_base_reg = dev_data->regs + DTHE_P_AES_BASE; u32 ctrl_val = 0; writel_relaxed(ctx->key[0], aes_base_reg + DTHE_P_AES_KEY1_0); writel_relaxed(ctx->key[1], aes_base_reg + DTHE_P_AES_KEY1_1); writel_relaxed(ctx->key[2], aes_base_reg + DTHE_P_AES_KEY1_2); writel_relaxed(ctx->key[3], aes_base_reg + DTHE_P_AES_KEY1_3); if (ctx->keylen > AES_KEYSIZE_128) { writel_relaxed(ctx->key[4], aes_base_reg + DTHE_P_AES_KEY1_4); writel_relaxed(ctx->key[5], aes_base_reg + DTHE_P_AES_KEY1_5); } if (ctx->keylen == AES_KEYSIZE_256) { writel_relaxed(ctx->key[6], aes_base_reg + DTHE_P_AES_KEY1_6); writel_relaxed(ctx->key[7], aes_base_reg + DTHE_P_AES_KEY1_7); } if (rctx->enc) ctrl_val |= DTHE_AES_CTRL_DIR_ENC; if (ctx->keylen == AES_KEYSIZE_128) ctrl_val |= DTHE_AES_CTRL_KEYSIZE_16B; else if (ctx->keylen == AES_KEYSIZE_192) ctrl_val |= DTHE_AES_CTRL_KEYSIZE_24B; else ctrl_val |= DTHE_AES_CTRL_KEYSIZE_32B; // Write AES mode ctrl_val &= DTHE_AES_CTRL_MODE_CLEAR_MASK; switch (ctx->aes_mode) { case DTHE_AES_ECB: ctrl_val |= AES_CTRL_ECB_MASK; break; case DTHE_AES_CBC: ctrl_val |= AES_CTRL_CBC_MASK; break; } if (iv_in) { ctrl_val |= DTHE_AES_CTRL_SAVE_CTX_SET; for (int i = 0; i < AES_IV_WORDS; ++i) writel_relaxed(iv_in[i], aes_base_reg + DTHE_P_AES_IV_IN_0 + (DTHE_REG_SIZE * i)); } writel_relaxed(ctrl_val, aes_base_reg + DTHE_P_AES_CTRL); } static void dthe_aes_dma_in_callback(void *data) { struct skcipher_request *req = (struct skcipher_request *)data; struct dthe_aes_req_ctx *rctx = skcipher_request_ctx(req); complete(&rctx->aes_compl); } static int dthe_aes_run(struct crypto_engine *engine, void *areq) { struct skcipher_request *req = container_of(areq, struct skcipher_request, base); struct dthe_tfm_ctx *ctx = crypto_skcipher_ctx(crypto_skcipher_reqtfm(req)); struct dthe_data *dev_data = dthe_get_dev(ctx); struct dthe_aes_req_ctx *rctx = skcipher_request_ctx(req); unsigned int len = req->cryptlen; struct scatterlist *src = req->src; struct scatterlist *dst = req->dst; int src_nents = sg_nents_for_len(src, len); int dst_nents; int src_mapped_nents; int dst_mapped_nents; bool diff_dst; enum dma_data_direction src_dir, dst_dir; struct device *tx_dev, *rx_dev; struct dma_async_tx_descriptor *desc_in, *desc_out; int ret; void __iomem *aes_base_reg = dev_data->regs + DTHE_P_AES_BASE; u32 aes_irqenable_val = readl_relaxed(aes_base_reg + DTHE_P_AES_IRQENABLE); u32 aes_sysconfig_val = readl_relaxed(aes_base_reg + DTHE_P_AES_SYSCONFIG); aes_sysconfig_val |= DTHE_AES_SYSCONFIG_DMA_DATA_IN_OUT_EN; writel_relaxed(aes_sysconfig_val, aes_base_reg + DTHE_P_AES_SYSCONFIG); aes_irqenable_val |= DTHE_AES_IRQENABLE_EN_ALL; writel_relaxed(aes_irqenable_val, aes_base_reg + DTHE_P_AES_IRQENABLE); if (src == dst) { diff_dst = false; src_dir = DMA_BIDIRECTIONAL; dst_dir = DMA_BIDIRECTIONAL; } else { diff_dst = true; src_dir = DMA_TO_DEVICE; dst_dir = DMA_FROM_DEVICE; } tx_dev = dmaengine_get_dma_device(dev_data->dma_aes_tx); rx_dev = dmaengine_get_dma_device(dev_data->dma_aes_rx); src_mapped_nents = dma_map_sg(tx_dev, src, src_nents, src_dir); if (src_mapped_nents == 0) { ret = -EINVAL; goto aes_err; } if (!diff_dst) { dst_nents = src_nents; dst_mapped_nents = src_mapped_nents; } else { dst_nents = sg_nents_for_len(dst, len); dst_mapped_nents = dma_map_sg(rx_dev, dst, dst_nents, dst_dir); if (dst_mapped_nents == 0) { dma_unmap_sg(tx_dev, src, src_nents, src_dir); ret = -EINVAL; goto aes_err; } } desc_in = dmaengine_prep_slave_sg(dev_data->dma_aes_rx, dst, dst_mapped_nents, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!desc_in) { dev_err(dev_data->dev, "IN prep_slave_sg() failed\n"); ret = -EINVAL; goto aes_prep_err; } desc_out = dmaengine_prep_slave_sg(dev_data->dma_aes_tx, src, src_mapped_nents, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!desc_out) { dev_err(dev_data->dev, "OUT prep_slave_sg() failed\n"); ret = -EINVAL; goto aes_prep_err; } desc_in->callback = dthe_aes_dma_in_callback; desc_in->callback_param = req; init_completion(&rctx->aes_compl); if (ctx->aes_mode == DTHE_AES_ECB) dthe_aes_set_ctrl_key(ctx, rctx, NULL); else dthe_aes_set_ctrl_key(ctx, rctx, (u32 *)req->iv); writel_relaxed(lower_32_bits(req->cryptlen), aes_base_reg + DTHE_P_AES_C_LENGTH_0); writel_relaxed(upper_32_bits(req->cryptlen), aes_base_reg + DTHE_P_AES_C_LENGTH_1); dmaengine_submit(desc_in); dmaengine_submit(desc_out); dma_async_issue_pending(dev_data->dma_aes_rx); dma_async_issue_pending(dev_data->dma_aes_tx); // Need to do a timeout to ensure finalise gets called if DMA callback fails for any reason ret = wait_for_completion_timeout(&rctx->aes_compl, msecs_to_jiffies(DTHE_DMA_TIMEOUT_MS)); if (!ret) { ret = -ETIMEDOUT; dmaengine_terminate_sync(dev_data->dma_aes_rx); dmaengine_terminate_sync(dev_data->dma_aes_tx); for (int i = 0; i < AES_BLOCK_WORDS; ++i) readl_relaxed(aes_base_reg + DTHE_P_AES_DATA_IN_OUT + (DTHE_REG_SIZE * i)); } else { ret = 0; } // For modes other than ECB, read IV_OUT if (ctx->aes_mode != DTHE_AES_ECB) { u32 *iv_out = (u32 *)req->iv; for (int i = 0; i < AES_IV_WORDS; ++i) iv_out[i] = readl_relaxed(aes_base_reg + DTHE_P_AES_IV_IN_0 + (DTHE_REG_SIZE * i)); } aes_prep_err: dma_unmap_sg(tx_dev, src, src_nents, src_dir); if (dst_dir != DMA_BIDIRECTIONAL) dma_unmap_sg(rx_dev, dst, dst_nents, dst_dir); aes_err: local_bh_disable(); crypto_finalize_skcipher_request(dev_data->engine, req, ret); local_bh_enable(); return ret; } static int dthe_aes_crypt(struct skcipher_request *req) { struct dthe_tfm_ctx *ctx = crypto_skcipher_ctx(crypto_skcipher_reqtfm(req)); struct dthe_data *dev_data = dthe_get_dev(ctx); struct crypto_engine *engine; /* * If data is not a multiple of AES_BLOCK_SIZE, need to return -EINVAL * If data length input is zero, no need to do any operation. */ if (req->cryptlen % AES_BLOCK_SIZE) return -EINVAL; if (req->cryptlen == 0) return 0; engine = dev_data->engine; return crypto_transfer_skcipher_request_to_engine(engine, req); } static int dthe_aes_encrypt(struct skcipher_request *req) { struct dthe_aes_req_ctx *rctx = skcipher_request_ctx(req); rctx->enc = 1; return dthe_aes_crypt(req); } static int dthe_aes_decrypt(struct skcipher_request *req) { struct dthe_aes_req_ctx *rctx = skcipher_request_ctx(req); rctx->enc = 0; return dthe_aes_crypt(req); } static struct skcipher_engine_alg cipher_algs[] = { { .base.init = dthe_cipher_init_tfm, .base.setkey = dthe_aes_ecb_setkey, .base.encrypt = dthe_aes_encrypt, .base.decrypt = dthe_aes_decrypt, .base.min_keysize = AES_MIN_KEY_SIZE, .base.max_keysize = AES_MAX_KEY_SIZE, .base.base = { .cra_name = "ecb(aes)", .cra_driver_name = "ecb-aes-dthev2", .cra_priority = 299, .cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_alignmask = AES_BLOCK_SIZE - 1, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct dthe_tfm_ctx), .cra_reqsize = sizeof(struct dthe_aes_req_ctx), .cra_module = THIS_MODULE, }, .op.do_one_request = dthe_aes_run, }, /* ECB AES */ { .base.init = dthe_cipher_init_tfm, .base.setkey = dthe_aes_cbc_setkey, .base.encrypt = dthe_aes_encrypt, .base.decrypt = dthe_aes_decrypt, .base.min_keysize = AES_MIN_KEY_SIZE, .base.max_keysize = AES_MAX_KEY_SIZE, .base.ivsize = AES_IV_SIZE, .base.base = { .cra_name = "cbc(aes)", .cra_driver_name = "cbc-aes-dthev2", .cra_priority = 299, .cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_alignmask = AES_BLOCK_SIZE - 1, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct dthe_tfm_ctx), .cra_reqsize = sizeof(struct dthe_aes_req_ctx), .cra_module = THIS_MODULE, }, .op.do_one_request = dthe_aes_run, } /* CBC AES */ }; int dthe_register_aes_algs(void) { return crypto_engine_register_skciphers(cipher_algs, ARRAY_SIZE(cipher_algs)); } void dthe_unregister_aes_algs(void) { crypto_engine_unregister_skciphers(cipher_algs, ARRAY_SIZE(cipher_algs)); }