// SPDX-License-Identifier: MIT /* * Copyright 2013 Advanced Micro Devices, Inc. * Copyright 2025 Valve Corporation * Copyright 2025 Alexandre Demers * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * Authors: Christian König * Timur Kristóf * Alexandre Demers */ #include #include "amdgpu.h" #include "amdgpu_vce.h" #include "amdgpu_gart.h" #include "sid.h" #include "vce_v1_0.h" #include "vce/vce_1_0_d.h" #include "vce/vce_1_0_sh_mask.h" #include "oss/oss_1_0_d.h" #include "oss/oss_1_0_sh_mask.h" #define VCE_V1_0_FW_SIZE (256 * 1024) #define VCE_V1_0_STACK_SIZE (64 * 1024) #define VCE_V1_0_DATA_SIZE (7808 * (AMDGPU_MAX_VCE_HANDLES + 1)) #define VCE_STATUS_VCPU_REPORT_FW_LOADED_MASK 0x02 #define VCE_V1_0_GART_PAGE_START \ (AMDGPU_GTT_MAX_TRANSFER_SIZE * AMDGPU_GTT_NUM_TRANSFER_WINDOWS) #define VCE_V1_0_GART_ADDR_START \ (VCE_V1_0_GART_PAGE_START * AMDGPU_GPU_PAGE_SIZE) static void vce_v1_0_set_ring_funcs(struct amdgpu_device *adev); static void vce_v1_0_set_irq_funcs(struct amdgpu_device *adev); struct vce_v1_0_fw_signature { int32_t offset; uint32_t length; int32_t number; struct { uint32_t chip_id; uint32_t keyselect; uint32_t nonce[4]; uint32_t sigval[4]; } val[8]; }; /** * vce_v1_0_ring_get_rptr - get read pointer * * @ring: amdgpu_ring pointer * * Returns the current hardware read pointer */ static uint64_t vce_v1_0_ring_get_rptr(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; if (ring->me == 0) return RREG32(mmVCE_RB_RPTR); else return RREG32(mmVCE_RB_RPTR2); } /** * vce_v1_0_ring_get_wptr - get write pointer * * @ring: amdgpu_ring pointer * * Returns the current hardware write pointer */ static uint64_t vce_v1_0_ring_get_wptr(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; if (ring->me == 0) return RREG32(mmVCE_RB_WPTR); else return RREG32(mmVCE_RB_WPTR2); } /** * vce_v1_0_ring_set_wptr - set write pointer * * @ring: amdgpu_ring pointer * * Commits the write pointer to the hardware */ static void vce_v1_0_ring_set_wptr(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; if (ring->me == 0) WREG32(mmVCE_RB_WPTR, lower_32_bits(ring->wptr)); else WREG32(mmVCE_RB_WPTR2, lower_32_bits(ring->wptr)); } static int vce_v1_0_lmi_clean(struct amdgpu_device *adev) { int i, j; for (i = 0; i < 10; ++i) { for (j = 0; j < 100; ++j) { if (RREG32(mmVCE_LMI_STATUS) & 0x337f) return 0; mdelay(10); } } return -ETIMEDOUT; } static int vce_v1_0_firmware_loaded(struct amdgpu_device *adev) { int i, j; for (i = 0; i < 10; ++i) { for (j = 0; j < 100; ++j) { if (RREG32(mmVCE_STATUS) & VCE_STATUS_VCPU_REPORT_FW_LOADED_MASK) return 0; mdelay(10); } dev_err(adev->dev, "VCE not responding, trying to reset the ECPU\n"); WREG32_P(mmVCE_SOFT_RESET, VCE_SOFT_RESET__ECPU_SOFT_RESET_MASK, ~VCE_SOFT_RESET__ECPU_SOFT_RESET_MASK); mdelay(10); WREG32_P(mmVCE_SOFT_RESET, 0, ~VCE_SOFT_RESET__ECPU_SOFT_RESET_MASK); mdelay(10); } return -ETIMEDOUT; } static void vce_v1_0_init_cg(struct amdgpu_device *adev) { u32 tmp; tmp = RREG32(mmVCE_CLOCK_GATING_A); tmp |= VCE_CLOCK_GATING_A__CGC_DYN_CLOCK_MODE_MASK; WREG32(mmVCE_CLOCK_GATING_A, tmp); tmp = RREG32(mmVCE_CLOCK_GATING_B); tmp |= 0x1e; tmp &= ~0xe100e1; WREG32(mmVCE_CLOCK_GATING_B, tmp); tmp = RREG32(mmVCE_UENC_CLOCK_GATING); tmp &= ~0xff9ff000; WREG32(mmVCE_UENC_CLOCK_GATING, tmp); tmp = RREG32(mmVCE_UENC_REG_CLOCK_GATING); tmp &= ~0x3ff; WREG32(mmVCE_UENC_REG_CLOCK_GATING, tmp); } /** * vce_v1_0_load_fw_signature - load firmware signature into VCPU BO * * @adev: amdgpu_device pointer * * The VCE1 firmware validation mechanism needs a firmware signature. * This function finds the signature appropriate for the current * ASIC and writes that into the VCPU BO. */ static int vce_v1_0_load_fw_signature(struct amdgpu_device *adev) { const struct common_firmware_header *hdr; struct vce_v1_0_fw_signature *sign; unsigned int ucode_offset; uint32_t chip_id; u32 *cpu_addr; int i; hdr = (const struct common_firmware_header *)adev->vce.fw->data; ucode_offset = le32_to_cpu(hdr->ucode_array_offset_bytes); cpu_addr = adev->vce.cpu_addr; sign = (void *)adev->vce.fw->data + ucode_offset; switch (adev->asic_type) { case CHIP_TAHITI: chip_id = 0x01000014; break; case CHIP_VERDE: chip_id = 0x01000015; break; case CHIP_PITCAIRN: chip_id = 0x01000016; break; default: dev_err(adev->dev, "asic_type %#010x was not found!", adev->asic_type); return -EINVAL; } for (i = 0; i < le32_to_cpu(sign->number); ++i) { if (le32_to_cpu(sign->val[i].chip_id) == chip_id) break; } if (i == le32_to_cpu(sign->number)) { dev_err(adev->dev, "chip_id 0x%x for %s was not found in VCE firmware", chip_id, amdgpu_asic_name[adev->asic_type]); return -EINVAL; } cpu_addr += (256 - 64) / 4; memcpy_toio(&cpu_addr[0], &sign->val[i].nonce[0], 16); cpu_addr[4] = cpu_to_le32(le32_to_cpu(sign->length) + 64); memset_io(&cpu_addr[5], 0, 44); memcpy_toio(&cpu_addr[16], &sign[1], hdr->ucode_size_bytes - sizeof(*sign)); cpu_addr += (le32_to_cpu(sign->length) + 64) / 4; memcpy_toio(&cpu_addr[0], &sign->val[i].sigval[0], 16); adev->vce.keyselect = le32_to_cpu(sign->val[i].keyselect); return 0; } static int vce_v1_0_wait_for_fw_validation(struct amdgpu_device *adev) { int i; dev_dbg(adev->dev, "VCE keyselect: %d", adev->vce.keyselect); WREG32(mmVCE_LMI_FW_START_KEYSEL, adev->vce.keyselect); for (i = 0; i < 10; ++i) { mdelay(10); if (RREG32(mmVCE_FW_REG_STATUS) & VCE_FW_REG_STATUS__DONE_MASK) break; } if (!(RREG32(mmVCE_FW_REG_STATUS) & VCE_FW_REG_STATUS__DONE_MASK)) { dev_err(adev->dev, "VCE FW validation timeout\n"); return -ETIMEDOUT; } if (!(RREG32(mmVCE_FW_REG_STATUS) & VCE_FW_REG_STATUS__PASS_MASK)) { dev_err(adev->dev, "VCE FW validation failed\n"); return -EINVAL; } for (i = 0; i < 10; ++i) { mdelay(10); if (!(RREG32(mmVCE_FW_REG_STATUS) & VCE_FW_REG_STATUS__BUSY_MASK)) break; } if (RREG32(mmVCE_FW_REG_STATUS) & VCE_FW_REG_STATUS__BUSY_MASK) { dev_err(adev->dev, "VCE FW busy timeout\n"); return -ETIMEDOUT; } return 0; } static int vce_v1_0_mc_resume(struct amdgpu_device *adev) { uint32_t offset; uint32_t size; /* * When the keyselect is already set, don't perturb VCE FW. * Validation seems to always fail the second time. */ if (RREG32(mmVCE_LMI_FW_START_KEYSEL)) { dev_dbg(adev->dev, "keyselect already set: 0x%x (on CPU: 0x%x)\n", RREG32(mmVCE_LMI_FW_START_KEYSEL), adev->vce.keyselect); WREG32_P(mmVCE_LMI_CTRL2, 0x0, ~0x100); return 0; } WREG32_P(mmVCE_CLOCK_GATING_A, 0, ~(1 << 16)); WREG32_P(mmVCE_UENC_CLOCK_GATING, 0x1FF000, ~0xFF9FF000); WREG32_P(mmVCE_UENC_REG_CLOCK_GATING, 0x3F, ~0x3F); WREG32(mmVCE_CLOCK_GATING_B, 0); WREG32_P(mmVCE_LMI_FW_PERIODIC_CTRL, 0x4, ~0x4); WREG32(mmVCE_LMI_CTRL, 0x00398000); WREG32_P(mmVCE_LMI_CACHE_CTRL, 0x0, ~0x1); WREG32(mmVCE_LMI_SWAP_CNTL, 0); WREG32(mmVCE_LMI_SWAP_CNTL1, 0); WREG32(mmVCE_LMI_VM_CTRL, 0); WREG32(mmVCE_VCPU_SCRATCH7, AMDGPU_MAX_VCE_HANDLES); offset = adev->vce.gpu_addr + AMDGPU_VCE_FIRMWARE_OFFSET; size = VCE_V1_0_FW_SIZE; WREG32(mmVCE_VCPU_CACHE_OFFSET0, offset & 0x7fffffff); WREG32(mmVCE_VCPU_CACHE_SIZE0, size); offset += size; size = VCE_V1_0_STACK_SIZE; WREG32(mmVCE_VCPU_CACHE_OFFSET1, offset & 0x7fffffff); WREG32(mmVCE_VCPU_CACHE_SIZE1, size); offset += size; size = VCE_V1_0_DATA_SIZE; WREG32(mmVCE_VCPU_CACHE_OFFSET2, offset & 0x7fffffff); WREG32(mmVCE_VCPU_CACHE_SIZE2, size); WREG32_P(mmVCE_LMI_CTRL2, 0x0, ~0x100); return vce_v1_0_wait_for_fw_validation(adev); } /** * vce_v1_0_is_idle() - Check idle status of VCE1 IP block * * @ip_block: amdgpu_ip_block pointer * * Check whether VCE is busy according to VCE_STATUS. * Also check whether the SRBM thinks VCE is busy, although * SRBM_STATUS.VCE_BUSY seems to be bogus because it * appears to mirror the VCE_STATUS.VCPU_REPORT_FW_LOADED bit. */ static bool vce_v1_0_is_idle(struct amdgpu_ip_block *ip_block) { struct amdgpu_device *adev = ip_block->adev; bool busy = (RREG32(mmVCE_STATUS) & (VCE_STATUS__JOB_BUSY_MASK | VCE_STATUS__UENC_BUSY_MASK)) || (RREG32(mmSRBM_STATUS2) & SRBM_STATUS2__VCE_BUSY_MASK); return !busy; } static int vce_v1_0_wait_for_idle(struct amdgpu_ip_block *ip_block) { struct amdgpu_device *adev = ip_block->adev; unsigned int i; for (i = 0; i < adev->usec_timeout; i++) { udelay(1); if (vce_v1_0_is_idle(ip_block)) return 0; } return -ETIMEDOUT; } /** * vce_v1_0_start - start VCE block * * @adev: amdgpu_device pointer * * Setup and start the VCE block */ static int vce_v1_0_start(struct amdgpu_device *adev) { struct amdgpu_ring *ring; int r; WREG32_P(mmVCE_STATUS, 1, ~1); r = vce_v1_0_mc_resume(adev); if (r) return r; ring = &adev->vce.ring[0]; WREG32(mmVCE_RB_RPTR, lower_32_bits(ring->wptr)); WREG32(mmVCE_RB_WPTR, lower_32_bits(ring->wptr)); WREG32(mmVCE_RB_BASE_LO, lower_32_bits(ring->gpu_addr)); WREG32(mmVCE_RB_BASE_HI, upper_32_bits(ring->gpu_addr)); WREG32(mmVCE_RB_SIZE, ring->ring_size / 4); ring = &adev->vce.ring[1]; WREG32(mmVCE_RB_RPTR2, lower_32_bits(ring->wptr)); WREG32(mmVCE_RB_WPTR2, lower_32_bits(ring->wptr)); WREG32(mmVCE_RB_BASE_LO2, lower_32_bits(ring->gpu_addr)); WREG32(mmVCE_RB_BASE_HI2, upper_32_bits(ring->gpu_addr)); WREG32(mmVCE_RB_SIZE2, ring->ring_size / 4); WREG32_P(mmVCE_VCPU_CNTL, VCE_VCPU_CNTL__CLK_EN_MASK, ~VCE_VCPU_CNTL__CLK_EN_MASK); WREG32_P(mmVCE_SOFT_RESET, VCE_SOFT_RESET__ECPU_SOFT_RESET_MASK | VCE_SOFT_RESET__FME_SOFT_RESET_MASK, ~(VCE_SOFT_RESET__ECPU_SOFT_RESET_MASK | VCE_SOFT_RESET__FME_SOFT_RESET_MASK)); mdelay(100); WREG32_P(mmVCE_SOFT_RESET, 0, ~(VCE_SOFT_RESET__ECPU_SOFT_RESET_MASK | VCE_SOFT_RESET__FME_SOFT_RESET_MASK)); r = vce_v1_0_firmware_loaded(adev); /* Clear VCE_STATUS, otherwise SRBM thinks VCE1 is busy. */ WREG32(mmVCE_STATUS, 0); if (r) { dev_err(adev->dev, "VCE not responding, giving up\n"); return r; } return 0; } static int vce_v1_0_stop(struct amdgpu_device *adev) { struct amdgpu_ip_block *ip_block; int status; int i; ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_VCE); if (!ip_block) return -EINVAL; if (vce_v1_0_lmi_clean(adev)) dev_warn(adev->dev, "VCE not idle\n"); if (vce_v1_0_wait_for_idle(ip_block)) dev_warn(adev->dev, "VCE busy: VCE_STATUS=0x%x, SRBM_STATUS2=0x%x\n", RREG32(mmVCE_STATUS), RREG32(mmSRBM_STATUS2)); /* Stall UMC and register bus before resetting VCPU */ WREG32_P(mmVCE_LMI_CTRL2, 1 << 8, ~(1 << 8)); for (i = 0; i < 100; ++i) { status = RREG32(mmVCE_LMI_STATUS); if (status & 0x240) break; mdelay(1); } WREG32_P(mmVCE_VCPU_CNTL, 0, ~VCE_VCPU_CNTL__CLK_EN_MASK); WREG32_P(mmVCE_SOFT_RESET, VCE_SOFT_RESET__ECPU_SOFT_RESET_MASK | VCE_SOFT_RESET__FME_SOFT_RESET_MASK, ~(VCE_SOFT_RESET__ECPU_SOFT_RESET_MASK | VCE_SOFT_RESET__FME_SOFT_RESET_MASK)); WREG32(mmVCE_STATUS, 0); return 0; } static void vce_v1_0_enable_mgcg(struct amdgpu_device *adev, bool enable) { u32 tmp; if (enable && (adev->cg_flags & AMD_CG_SUPPORT_VCE_MGCG)) { tmp = RREG32(mmVCE_CLOCK_GATING_A); tmp |= VCE_CLOCK_GATING_A__CGC_DYN_CLOCK_MODE_MASK; WREG32(mmVCE_CLOCK_GATING_A, tmp); tmp = RREG32(mmVCE_UENC_CLOCK_GATING); tmp &= ~0x1ff000; tmp |= 0xff800000; WREG32(mmVCE_UENC_CLOCK_GATING, tmp); tmp = RREG32(mmVCE_UENC_REG_CLOCK_GATING); tmp &= ~0x3ff; WREG32(mmVCE_UENC_REG_CLOCK_GATING, tmp); } else { tmp = RREG32(mmVCE_CLOCK_GATING_A); tmp &= ~VCE_CLOCK_GATING_A__CGC_DYN_CLOCK_MODE_MASK; WREG32(mmVCE_CLOCK_GATING_A, tmp); tmp = RREG32(mmVCE_UENC_CLOCK_GATING); tmp |= 0x1ff000; tmp &= ~0xff800000; WREG32(mmVCE_UENC_CLOCK_GATING, tmp); tmp = RREG32(mmVCE_UENC_REG_CLOCK_GATING); tmp |= 0x3ff; WREG32(mmVCE_UENC_REG_CLOCK_GATING, tmp); } } static int vce_v1_0_early_init(struct amdgpu_ip_block *ip_block) { struct amdgpu_device *adev = ip_block->adev; int r; r = amdgpu_vce_early_init(adev); if (r) return r; adev->vce.num_rings = 2; vce_v1_0_set_ring_funcs(adev); vce_v1_0_set_irq_funcs(adev); return 0; } /** * vce_v1_0_ensure_vcpu_bo_32bit_addr() - ensure the VCPU BO has a 32-bit address * * @adev: amdgpu_device pointer * * Due to various hardware limitations, the VCE1 requires * the VCPU BO to be in the low 32 bit address range. * Ensure that the VCPU BO has a 32-bit GPU address, * or return an error code when that isn't possible. * * To accomodate that, we put GART to the LOW address range * and reserve some GART pages where we map the VCPU BO, * so that it gets a 32-bit address. */ static int vce_v1_0_ensure_vcpu_bo_32bit_addr(struct amdgpu_device *adev) { u64 gpu_addr = amdgpu_bo_gpu_offset(adev->vce.vcpu_bo); u64 bo_size = amdgpu_bo_size(adev->vce.vcpu_bo); u64 max_vcpu_bo_addr = 0xffffffff - bo_size; u64 num_pages = ALIGN(bo_size, AMDGPU_GPU_PAGE_SIZE) / AMDGPU_GPU_PAGE_SIZE; u64 pa = amdgpu_gmc_vram_pa(adev, adev->vce.vcpu_bo); u64 flags = AMDGPU_PTE_READABLE | AMDGPU_PTE_WRITEABLE | AMDGPU_PTE_VALID; /* * Check if the VCPU BO already has a 32-bit address. * Eg. if MC is configured to put VRAM in the low address range. */ if (gpu_addr <= max_vcpu_bo_addr) return 0; /* Check if we can map the VCPU BO in GART to a 32-bit address. */ if (adev->gmc.gart_start + VCE_V1_0_GART_ADDR_START > max_vcpu_bo_addr) return -EINVAL; amdgpu_gart_map_vram_range(adev, pa, VCE_V1_0_GART_PAGE_START, num_pages, flags, adev->gart.ptr); adev->vce.gpu_addr = adev->gmc.gart_start + VCE_V1_0_GART_ADDR_START; if (adev->vce.gpu_addr > max_vcpu_bo_addr) return -EINVAL; return 0; } static int vce_v1_0_sw_init(struct amdgpu_ip_block *ip_block) { struct amdgpu_device *adev = ip_block->adev; struct amdgpu_ring *ring; int r, i; r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, 167, &adev->vce.irq); if (r) return r; r = amdgpu_vce_sw_init(adev, VCE_V1_0_FW_SIZE + VCE_V1_0_STACK_SIZE + VCE_V1_0_DATA_SIZE); if (r) return r; r = amdgpu_vce_resume(adev); if (r) return r; r = vce_v1_0_load_fw_signature(adev); if (r) return r; r = vce_v1_0_ensure_vcpu_bo_32bit_addr(adev); if (r) return r; for (i = 0; i < adev->vce.num_rings; i++) { enum amdgpu_ring_priority_level hw_prio = amdgpu_vce_get_ring_prio(i); ring = &adev->vce.ring[i]; sprintf(ring->name, "vce%d", i); r = amdgpu_ring_init(adev, ring, 512, &adev->vce.irq, 0, hw_prio, NULL); if (r) return r; } return r; } static int vce_v1_0_sw_fini(struct amdgpu_ip_block *ip_block) { struct amdgpu_device *adev = ip_block->adev; int r; r = amdgpu_vce_suspend(adev); if (r) return r; return amdgpu_vce_sw_fini(adev); } /** * vce_v1_0_hw_init - start and test VCE block * * @ip_block: Pointer to the amdgpu_ip_block for this hw instance. * * Initialize the hardware, boot up the VCPU and do some testing */ static int vce_v1_0_hw_init(struct amdgpu_ip_block *ip_block) { struct amdgpu_device *adev = ip_block->adev; int i, r; if (adev->pm.dpm_enabled) amdgpu_dpm_enable_vce(adev, true); else amdgpu_asic_set_vce_clocks(adev, 10000, 10000); for (i = 0; i < adev->vce.num_rings; i++) { r = amdgpu_ring_test_helper(&adev->vce.ring[i]); if (r) return r; } dev_info(adev->dev, "VCE initialized successfully.\n"); return 0; } static int vce_v1_0_hw_fini(struct amdgpu_ip_block *ip_block) { int r; r = vce_v1_0_stop(ip_block->adev); if (r) return r; cancel_delayed_work_sync(&ip_block->adev->vce.idle_work); return 0; } static int vce_v1_0_suspend(struct amdgpu_ip_block *ip_block) { struct amdgpu_device *adev = ip_block->adev; int r; /* * Proper cleanups before halting the HW engine: * - cancel the delayed idle work * - enable powergating * - enable clockgating * - disable dpm * * TODO: to align with the VCN implementation, move the * jobs for clockgating/powergating/dpm setting to * ->set_powergating_state(). */ cancel_delayed_work_sync(&adev->vce.idle_work); if (adev->pm.dpm_enabled) { amdgpu_dpm_enable_vce(adev, false); } else { amdgpu_asic_set_vce_clocks(adev, 0, 0); amdgpu_device_ip_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_VCE, AMD_PG_STATE_GATE); amdgpu_device_ip_set_clockgating_state(adev, AMD_IP_BLOCK_TYPE_VCE, AMD_CG_STATE_GATE); } r = vce_v1_0_hw_fini(ip_block); if (r) { dev_err(adev->dev, "vce_v1_0_hw_fini() failed with error %i", r); return r; } return amdgpu_vce_suspend(adev); } static int vce_v1_0_resume(struct amdgpu_ip_block *ip_block) { struct amdgpu_device *adev = ip_block->adev; int r; r = amdgpu_vce_resume(adev); if (r) return r; r = vce_v1_0_load_fw_signature(adev); if (r) return r; r = vce_v1_0_ensure_vcpu_bo_32bit_addr(adev); if (r) return r; return vce_v1_0_hw_init(ip_block); } static int vce_v1_0_set_interrupt_state(struct amdgpu_device *adev, struct amdgpu_irq_src *source, unsigned int type, enum amdgpu_interrupt_state state) { uint32_t val = 0; if (state == AMDGPU_IRQ_STATE_ENABLE) val |= VCE_SYS_INT_EN__VCE_SYS_INT_TRAP_INTERRUPT_EN_MASK; WREG32_P(mmVCE_SYS_INT_EN, val, ~VCE_SYS_INT_EN__VCE_SYS_INT_TRAP_INTERRUPT_EN_MASK); return 0; } static int vce_v1_0_process_interrupt(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { dev_dbg(adev->dev, "IH: VCE\n"); switch (entry->src_data[0]) { case 0: case 1: amdgpu_fence_process(&adev->vce.ring[entry->src_data[0]]); break; default: dev_err(adev->dev, "Unhandled interrupt: %d %d\n", entry->src_id, entry->src_data[0]); break; } return 0; } static int vce_v1_0_set_clockgating_state(struct amdgpu_ip_block *ip_block, enum amd_clockgating_state state) { struct amdgpu_device *adev = ip_block->adev; vce_v1_0_init_cg(adev); vce_v1_0_enable_mgcg(adev, state == AMD_CG_STATE_GATE); return 0; } static int vce_v1_0_set_powergating_state(struct amdgpu_ip_block *ip_block, enum amd_powergating_state state) { struct amdgpu_device *adev = ip_block->adev; /* * This doesn't actually powergate the VCE block. * That's done in the dpm code via the SMC. This * just re-inits the block as necessary. The actual * gating still happens in the dpm code. We should * revisit this when there is a cleaner line between * the smc and the hw blocks */ if (state == AMD_PG_STATE_GATE) return vce_v1_0_stop(adev); else return vce_v1_0_start(adev); } static const struct amd_ip_funcs vce_v1_0_ip_funcs = { .name = "vce_v1_0", .early_init = vce_v1_0_early_init, .sw_init = vce_v1_0_sw_init, .sw_fini = vce_v1_0_sw_fini, .hw_init = vce_v1_0_hw_init, .hw_fini = vce_v1_0_hw_fini, .suspend = vce_v1_0_suspend, .resume = vce_v1_0_resume, .is_idle = vce_v1_0_is_idle, .wait_for_idle = vce_v1_0_wait_for_idle, .set_clockgating_state = vce_v1_0_set_clockgating_state, .set_powergating_state = vce_v1_0_set_powergating_state, }; static const struct amdgpu_ring_funcs vce_v1_0_ring_funcs = { .type = AMDGPU_RING_TYPE_VCE, .align_mask = 0xf, .nop = VCE_CMD_NO_OP, .support_64bit_ptrs = false, .no_user_fence = true, .get_rptr = vce_v1_0_ring_get_rptr, .get_wptr = vce_v1_0_ring_get_wptr, .set_wptr = vce_v1_0_ring_set_wptr, .parse_cs = amdgpu_vce_ring_parse_cs, .emit_frame_size = 6, /* amdgpu_vce_ring_emit_fence x1 no user fence */ .emit_ib_size = 4, /* amdgpu_vce_ring_emit_ib */ .emit_ib = amdgpu_vce_ring_emit_ib, .emit_fence = amdgpu_vce_ring_emit_fence, .test_ring = amdgpu_vce_ring_test_ring, .test_ib = amdgpu_vce_ring_test_ib, .insert_nop = amdgpu_ring_insert_nop, .pad_ib = amdgpu_ring_generic_pad_ib, .begin_use = amdgpu_vce_ring_begin_use, .end_use = amdgpu_vce_ring_end_use, }; static void vce_v1_0_set_ring_funcs(struct amdgpu_device *adev) { int i; for (i = 0; i < adev->vce.num_rings; i++) { adev->vce.ring[i].funcs = &vce_v1_0_ring_funcs; adev->vce.ring[i].me = i; } }; static const struct amdgpu_irq_src_funcs vce_v1_0_irq_funcs = { .set = vce_v1_0_set_interrupt_state, .process = vce_v1_0_process_interrupt, }; static void vce_v1_0_set_irq_funcs(struct amdgpu_device *adev) { adev->vce.irq.num_types = 1; adev->vce.irq.funcs = &vce_v1_0_irq_funcs; }; const struct amdgpu_ip_block_version vce_v1_0_ip_block = { .type = AMD_IP_BLOCK_TYPE_VCE, .major = 1, .minor = 0, .rev = 0, .funcs = &vce_v1_0_ip_funcs, };