// SPDX-License-Identifier: MIT /* * Copyright © 2025 Intel Corporation */ #include #include #include #include "xe_bo.h" #include "xe_device.h" #include "xe_gt_printk.h" #include "xe_gt_types.h" #include "xe_gt_stats.h" #include "xe_hw_engine.h" #include "xe_pagefault.h" #include "xe_pagefault_types.h" #include "xe_svm.h" #include "xe_trace_bo.h" #include "xe_vm.h" /** * DOC: Xe page faults * * Xe page faults are handled in two layers. The producer layer interacts with * hardware or firmware to receive and parse faults into struct xe_pagefault, * then forwards them to the consumer. The consumer layer services the faults * (e.g., memory migration, page table updates) and acknowledges the result back * to the producer, which then forwards the results to the hardware or firmware. * The consumer uses a page fault queue sized to absorb all potential faults and * a multi-threaded worker to process them. Multiple producers are supported, * with a single shared consumer. * * xe_pagefault.c implements the consumer layer. */ static int xe_pagefault_entry_size(void) { /* * Power of two alignment is not a hardware requirement, rather a * software restriction which makes the math for page fault queue * management simplier. */ return roundup_pow_of_two(sizeof(struct xe_pagefault)); } static int xe_pagefault_begin(struct drm_exec *exec, struct xe_vma *vma, struct xe_vram_region *vram, bool need_vram_move) { struct xe_bo *bo = xe_vma_bo(vma); struct xe_vm *vm = xe_vma_vm(vma); int err; err = xe_vm_lock_vma(exec, vma); if (err) return err; if (!bo) return 0; return need_vram_move ? xe_bo_migrate(bo, vram->placement, NULL, exec) : xe_bo_validate(bo, vm, true, exec); } static int xe_pagefault_handle_vma(struct xe_gt *gt, struct xe_vma *vma, bool atomic) { struct xe_vm *vm = xe_vma_vm(vma); struct xe_tile *tile = gt_to_tile(gt); struct xe_validation_ctx ctx; struct drm_exec exec; struct dma_fence *fence; int err, needs_vram; lockdep_assert_held_write(&vm->lock); needs_vram = xe_vma_need_vram_for_atomic(vm->xe, vma, atomic); if (needs_vram < 0 || (needs_vram && xe_vma_is_userptr(vma))) return needs_vram < 0 ? needs_vram : -EACCES; xe_gt_stats_incr(gt, XE_GT_STATS_ID_VMA_PAGEFAULT_COUNT, 1); xe_gt_stats_incr(gt, XE_GT_STATS_ID_VMA_PAGEFAULT_KB, xe_vma_size(vma) / SZ_1K); trace_xe_vma_pagefault(vma); /* Check if VMA is valid, opportunistic check only */ if (xe_vm_has_valid_gpu_mapping(tile, vma->tile_present, vma->tile_invalidated) && !atomic) return 0; retry_userptr: if (xe_vma_is_userptr(vma) && xe_vma_userptr_check_repin(to_userptr_vma(vma))) { struct xe_userptr_vma *uvma = to_userptr_vma(vma); err = xe_vma_userptr_pin_pages(uvma); if (err) return err; } /* Lock VM and BOs dma-resv */ xe_validation_ctx_init(&ctx, &vm->xe->val, &exec, (struct xe_val_flags) {}); drm_exec_until_all_locked(&exec) { err = xe_pagefault_begin(&exec, vma, tile->mem.vram, needs_vram == 1); drm_exec_retry_on_contention(&exec); xe_validation_retry_on_oom(&ctx, &err); if (err) goto unlock_dma_resv; /* Bind VMA only to the GT that has faulted */ trace_xe_vma_pf_bind(vma); xe_vm_set_validation_exec(vm, &exec); fence = xe_vma_rebind(vm, vma, BIT(tile->id)); xe_vm_set_validation_exec(vm, NULL); if (IS_ERR(fence)) { err = PTR_ERR(fence); xe_validation_retry_on_oom(&ctx, &err); goto unlock_dma_resv; } } dma_fence_wait(fence, false); dma_fence_put(fence); unlock_dma_resv: xe_validation_ctx_fini(&ctx); if (err == -EAGAIN) goto retry_userptr; return err; } static bool xe_pagefault_access_is_atomic(enum xe_pagefault_access_type access_type) { return access_type == XE_PAGEFAULT_ACCESS_TYPE_ATOMIC; } static struct xe_vm *xe_pagefault_asid_to_vm(struct xe_device *xe, u32 asid) { struct xe_vm *vm; down_read(&xe->usm.lock); vm = xa_load(&xe->usm.asid_to_vm, asid); if (vm && xe_vm_in_fault_mode(vm)) xe_vm_get(vm); else vm = ERR_PTR(-EINVAL); up_read(&xe->usm.lock); return vm; } static int xe_pagefault_service(struct xe_pagefault *pf) { struct xe_gt *gt = pf->gt; struct xe_device *xe = gt_to_xe(gt); struct xe_vm *vm; struct xe_vma *vma = NULL; int err; bool atomic; /* Producer flagged this fault to be nacked */ if (pf->consumer.fault_level == XE_PAGEFAULT_LEVEL_NACK) return -EFAULT; vm = xe_pagefault_asid_to_vm(xe, pf->consumer.asid); if (IS_ERR(vm)) return PTR_ERR(vm); /* * TODO: Change to read lock? Using write lock for simplicity. */ down_write(&vm->lock); if (xe_vm_is_closed(vm)) { err = -ENOENT; goto unlock_vm; } vma = xe_vm_find_vma_by_addr(vm, pf->consumer.page_addr); if (!vma) { err = -EINVAL; goto unlock_vm; } atomic = xe_pagefault_access_is_atomic(pf->consumer.access_type); if (xe_vma_is_cpu_addr_mirror(vma)) err = xe_svm_handle_pagefault(vm, vma, gt, pf->consumer.page_addr, atomic); else err = xe_pagefault_handle_vma(gt, vma, atomic); unlock_vm: if (!err) vm->usm.last_fault_vma = vma; up_write(&vm->lock); xe_vm_put(vm); return err; } static bool xe_pagefault_queue_pop(struct xe_pagefault_queue *pf_queue, struct xe_pagefault *pf) { bool found_fault = false; spin_lock_irq(&pf_queue->lock); if (pf_queue->tail != pf_queue->head) { memcpy(pf, pf_queue->data + pf_queue->tail, sizeof(*pf)); pf_queue->tail = (pf_queue->tail + xe_pagefault_entry_size()) % pf_queue->size; found_fault = true; } spin_unlock_irq(&pf_queue->lock); return found_fault; } static void xe_pagefault_print(struct xe_pagefault *pf) { xe_gt_dbg(pf->gt, "\n\tASID: %d\n" "\tFaulted Address: 0x%08x%08x\n" "\tFaultType: %d\n" "\tAccessType: %d\n" "\tFaultLevel: %d\n" "\tEngineClass: %d %s\n" "\tEngineInstance: %d\n", pf->consumer.asid, upper_32_bits(pf->consumer.page_addr), lower_32_bits(pf->consumer.page_addr), pf->consumer.fault_type, pf->consumer.access_type, pf->consumer.fault_level, pf->consumer.engine_class, xe_hw_engine_class_to_str(pf->consumer.engine_class), pf->consumer.engine_instance); } static void xe_pagefault_queue_work(struct work_struct *w) { struct xe_pagefault_queue *pf_queue = container_of(w, typeof(*pf_queue), worker); struct xe_pagefault pf; unsigned long threshold; #define USM_QUEUE_MAX_RUNTIME_MS 20 threshold = jiffies + msecs_to_jiffies(USM_QUEUE_MAX_RUNTIME_MS); while (xe_pagefault_queue_pop(pf_queue, &pf)) { int err; if (!pf.gt) /* Fault squashed during reset */ continue; err = xe_pagefault_service(&pf); if (err) { xe_pagefault_print(&pf); xe_gt_dbg(pf.gt, "Fault response: Unsuccessful %pe\n", ERR_PTR(err)); } pf.producer.ops->ack_fault(&pf, err); if (time_after(jiffies, threshold)) { queue_work(gt_to_xe(pf.gt)->usm.pf_wq, w); break; } } #undef USM_QUEUE_MAX_RUNTIME_MS } static int xe_pagefault_queue_init(struct xe_device *xe, struct xe_pagefault_queue *pf_queue) { struct xe_gt *gt; int total_num_eus = 0; u8 id; for_each_gt(gt, xe, id) { xe_dss_mask_t all_dss; int num_dss, num_eus; bitmap_or(all_dss, gt->fuse_topo.g_dss_mask, gt->fuse_topo.c_dss_mask, XE_MAX_DSS_FUSE_BITS); num_dss = bitmap_weight(all_dss, XE_MAX_DSS_FUSE_BITS); num_eus = bitmap_weight(gt->fuse_topo.eu_mask_per_dss, XE_MAX_EU_FUSE_BITS) * num_dss; total_num_eus += num_eus; } xe_assert(xe, total_num_eus); /* * user can issue separate page faults per EU and per CS * * XXX: Multiplier required as compute UMD are getting PF queue errors * without it. Follow on why this multiplier is required. */ #define PF_MULTIPLIER 8 pf_queue->size = (total_num_eus + XE_NUM_HW_ENGINES) * xe_pagefault_entry_size() * PF_MULTIPLIER; pf_queue->size = roundup_pow_of_two(pf_queue->size); #undef PF_MULTIPLIER drm_dbg(&xe->drm, "xe_pagefault_entry_size=%d, total_num_eus=%d, pf_queue->size=%u", xe_pagefault_entry_size(), total_num_eus, pf_queue->size); spin_lock_init(&pf_queue->lock); INIT_WORK(&pf_queue->worker, xe_pagefault_queue_work); pf_queue->data = drmm_kzalloc(&xe->drm, pf_queue->size, GFP_KERNEL); if (!pf_queue->data) return -ENOMEM; return 0; } static void xe_pagefault_fini(void *arg) { struct xe_device *xe = arg; destroy_workqueue(xe->usm.pf_wq); } /** * xe_pagefault_init() - Page fault init * @xe: xe device instance * * Initialize Xe page fault state. Must be done after reading fuses. * * Return: 0 on Success, errno on failure */ int xe_pagefault_init(struct xe_device *xe) { int err, i; if (!xe->info.has_usm) return 0; xe->usm.pf_wq = alloc_workqueue("xe_page_fault_work_queue", WQ_UNBOUND | WQ_HIGHPRI, XE_PAGEFAULT_QUEUE_COUNT); if (!xe->usm.pf_wq) return -ENOMEM; for (i = 0; i < XE_PAGEFAULT_QUEUE_COUNT; ++i) { err = xe_pagefault_queue_init(xe, xe->usm.pf_queue + i); if (err) goto err_out; } return devm_add_action_or_reset(xe->drm.dev, xe_pagefault_fini, xe); err_out: destroy_workqueue(xe->usm.pf_wq); return err; } static void xe_pagefault_queue_reset(struct xe_device *xe, struct xe_gt *gt, struct xe_pagefault_queue *pf_queue) { u32 i; /* Driver load failure guard / USM not enabled guard */ if (!pf_queue->data) return; /* Squash all pending faults on the GT */ spin_lock_irq(&pf_queue->lock); for (i = pf_queue->tail; i != pf_queue->head; i = (i + xe_pagefault_entry_size()) % pf_queue->size) { struct xe_pagefault *pf = pf_queue->data + i; if (pf->gt == gt) pf->gt = NULL; } spin_unlock_irq(&pf_queue->lock); } /** * xe_pagefault_reset() - Page fault reset for a GT * @xe: xe device instance * @gt: GT being reset * * Reset the Xe page fault state for a GT; that is, squash any pending faults on * the GT. */ void xe_pagefault_reset(struct xe_device *xe, struct xe_gt *gt) { int i; for (i = 0; i < XE_PAGEFAULT_QUEUE_COUNT; ++i) xe_pagefault_queue_reset(xe, gt, xe->usm.pf_queue + i); } static bool xe_pagefault_queue_full(struct xe_pagefault_queue *pf_queue) { lockdep_assert_held(&pf_queue->lock); return CIRC_SPACE(pf_queue->head, pf_queue->tail, pf_queue->size) <= xe_pagefault_entry_size(); } /** * xe_pagefault_handler() - Page fault handler * @xe: xe device instance * @pf: Page fault * * Sink the page fault to a queue (i.e., a memory buffer) and queue a worker to * service it. Safe to be called from IRQ or process context. Reclaim safe. * * Return: 0 on success, errno on failure */ int xe_pagefault_handler(struct xe_device *xe, struct xe_pagefault *pf) { struct xe_pagefault_queue *pf_queue = xe->usm.pf_queue + (pf->consumer.asid % XE_PAGEFAULT_QUEUE_COUNT); unsigned long flags; bool full; spin_lock_irqsave(&pf_queue->lock, flags); full = xe_pagefault_queue_full(pf_queue); if (!full) { memcpy(pf_queue->data + pf_queue->head, pf, sizeof(*pf)); pf_queue->head = (pf_queue->head + xe_pagefault_entry_size()) % pf_queue->size; queue_work(xe->usm.pf_wq, &pf_queue->worker); } else { drm_warn(&xe->drm, "PageFault Queue (%d) full, shouldn't be possible\n", pf->consumer.asid % XE_PAGEFAULT_QUEUE_COUNT); } spin_unlock_irqrestore(&pf_queue->lock, flags); return full ? -ENOSPC : 0; }