// SPDX-License-Identifier: GPL-2.0-or-later #include #include "cache.h" #include "cache_dev.h" #include "backing_dev.h" #include "dm_pcache.h" struct kmem_cache *key_cache; static inline struct pcache_cache_info *get_cache_info_addr(struct pcache_cache *cache) { return cache->cache_info_addr + cache->info_index; } static void cache_info_write(struct pcache_cache *cache) { struct pcache_cache_info *cache_info = &cache->cache_info; cache_info->header.seq++; cache_info->header.crc = pcache_meta_crc(&cache_info->header, sizeof(struct pcache_cache_info)); memcpy_flushcache(get_cache_info_addr(cache), cache_info, sizeof(struct pcache_cache_info)); cache->info_index = (cache->info_index + 1) % PCACHE_META_INDEX_MAX; } static void cache_info_init_default(struct pcache_cache *cache); static int cache_info_init(struct pcache_cache *cache, struct pcache_cache_options *opts) { struct dm_pcache *pcache = CACHE_TO_PCACHE(cache); struct pcache_cache_info *cache_info_addr; cache_info_addr = pcache_meta_find_latest(&cache->cache_info_addr->header, sizeof(struct pcache_cache_info), PCACHE_CACHE_INFO_SIZE, &cache->cache_info); if (IS_ERR(cache_info_addr)) return PTR_ERR(cache_info_addr); if (cache_info_addr) { if (opts->data_crc != (cache->cache_info.flags & PCACHE_CACHE_FLAGS_DATA_CRC)) { pcache_dev_err(pcache, "invalid option for data_crc: %s, expected: %s", opts->data_crc ? "true" : "false", cache->cache_info.flags & PCACHE_CACHE_FLAGS_DATA_CRC ? "true" : "false"); return -EINVAL; } return 0; } /* init cache_info for new cache */ cache_info_init_default(cache); cache_mode_set(cache, opts->cache_mode); if (opts->data_crc) cache->cache_info.flags |= PCACHE_CACHE_FLAGS_DATA_CRC; return 0; } static void cache_info_set_gc_percent(struct pcache_cache_info *cache_info, u8 percent) { cache_info->flags &= ~PCACHE_CACHE_FLAGS_GC_PERCENT_MASK; cache_info->flags |= FIELD_PREP(PCACHE_CACHE_FLAGS_GC_PERCENT_MASK, percent); } int pcache_cache_set_gc_percent(struct pcache_cache *cache, u8 percent) { if (percent > PCACHE_CACHE_GC_PERCENT_MAX || percent < PCACHE_CACHE_GC_PERCENT_MIN) return -EINVAL; mutex_lock(&cache->cache_info_lock); cache_info_set_gc_percent(&cache->cache_info, percent); cache_info_write(cache); mutex_unlock(&cache->cache_info_lock); return 0; } void cache_pos_encode(struct pcache_cache *cache, struct pcache_cache_pos_onmedia *pos_onmedia_base, struct pcache_cache_pos *pos, u64 seq, u32 *index) { struct pcache_cache_pos_onmedia pos_onmedia; struct pcache_cache_pos_onmedia *pos_onmedia_addr = pos_onmedia_base + *index; pos_onmedia.cache_seg_id = pos->cache_seg->cache_seg_id; pos_onmedia.seg_off = pos->seg_off; pos_onmedia.header.seq = seq; pos_onmedia.header.crc = cache_pos_onmedia_crc(&pos_onmedia); memcpy_flushcache(pos_onmedia_addr, &pos_onmedia, sizeof(struct pcache_cache_pos_onmedia)); pmem_wmb(); *index = (*index + 1) % PCACHE_META_INDEX_MAX; } int cache_pos_decode(struct pcache_cache *cache, struct pcache_cache_pos_onmedia *pos_onmedia, struct pcache_cache_pos *pos, u64 *seq, u32 *index) { struct pcache_cache_pos_onmedia latest, *latest_addr; latest_addr = pcache_meta_find_latest(&pos_onmedia->header, sizeof(struct pcache_cache_pos_onmedia), sizeof(struct pcache_cache_pos_onmedia), &latest); if (IS_ERR(latest_addr)) return PTR_ERR(latest_addr); if (!latest_addr) return -EIO; pos->cache_seg = &cache->segments[latest.cache_seg_id]; pos->seg_off = latest.seg_off; *seq = latest.header.seq; *index = (latest_addr - pos_onmedia); return 0; } static inline void cache_info_set_seg_id(struct pcache_cache *cache, u32 seg_id) { cache->cache_info.seg_id = seg_id; } static int cache_init(struct dm_pcache *pcache) { struct pcache_cache *cache = &pcache->cache; struct pcache_backing_dev *backing_dev = &pcache->backing_dev; struct pcache_cache_dev *cache_dev = &pcache->cache_dev; int ret; cache->segments = kvcalloc(cache_dev->seg_num, sizeof(struct pcache_cache_segment), GFP_KERNEL); if (!cache->segments) { ret = -ENOMEM; goto err; } cache->seg_map = kvcalloc(BITS_TO_LONGS(cache_dev->seg_num), sizeof(unsigned long), GFP_KERNEL); if (!cache->seg_map) { ret = -ENOMEM; goto free_segments; } cache->backing_dev = backing_dev; cache->cache_dev = &pcache->cache_dev; cache->n_segs = cache_dev->seg_num; atomic_set(&cache->gc_errors, 0); spin_lock_init(&cache->seg_map_lock); spin_lock_init(&cache->key_head_lock); mutex_init(&cache->cache_info_lock); mutex_init(&cache->key_tail_lock); mutex_init(&cache->dirty_tail_lock); mutex_init(&cache->writeback_lock); INIT_DELAYED_WORK(&cache->writeback_work, cache_writeback_fn); INIT_DELAYED_WORK(&cache->gc_work, pcache_cache_gc_fn); INIT_WORK(&cache->clean_work, clean_fn); return 0; free_segments: kvfree(cache->segments); err: return ret; } static void cache_exit(struct pcache_cache *cache) { kvfree(cache->seg_map); kvfree(cache->segments); } static void cache_info_init_default(struct pcache_cache *cache) { struct pcache_cache_info *cache_info = &cache->cache_info; cache_info->header.seq = 0; cache_info->n_segs = cache->cache_dev->seg_num; cache_info_set_gc_percent(cache_info, PCACHE_CACHE_GC_PERCENT_DEFAULT); } static int cache_tail_init(struct pcache_cache *cache) { struct dm_pcache *pcache = CACHE_TO_PCACHE(cache); bool new_cache = !(cache->cache_info.flags & PCACHE_CACHE_FLAGS_INIT_DONE); if (new_cache) { __set_bit(0, cache->seg_map); cache->key_head.cache_seg = &cache->segments[0]; cache->key_head.seg_off = 0; cache_pos_copy(&cache->key_tail, &cache->key_head); cache_pos_copy(&cache->dirty_tail, &cache->key_head); cache_encode_dirty_tail(cache); cache_encode_key_tail(cache); } else { if (cache_decode_key_tail(cache) || cache_decode_dirty_tail(cache)) { pcache_dev_err(pcache, "Corrupted key tail or dirty tail.\n"); return -EIO; } } return 0; } static int get_seg_id(struct pcache_cache *cache, struct pcache_cache_segment *prev_cache_seg, bool new_cache, u32 *seg_id) { struct dm_pcache *pcache = CACHE_TO_PCACHE(cache); struct pcache_cache_dev *cache_dev = cache->cache_dev; int ret; if (new_cache) { ret = cache_dev_get_empty_segment_id(cache_dev, seg_id); if (ret) { pcache_dev_err(pcache, "no available segment\n"); goto err; } if (prev_cache_seg) cache_seg_set_next_seg(prev_cache_seg, *seg_id); else cache_info_set_seg_id(cache, *seg_id); } else { if (prev_cache_seg) { struct pcache_segment_info *prev_seg_info; prev_seg_info = &prev_cache_seg->cache_seg_info; if (!segment_info_has_next(prev_seg_info)) { ret = -EFAULT; goto err; } *seg_id = prev_cache_seg->cache_seg_info.next_seg; } else { *seg_id = cache->cache_info.seg_id; } } return 0; err: return ret; } static int cache_segs_init(struct pcache_cache *cache) { struct pcache_cache_segment *prev_cache_seg = NULL; struct pcache_cache_info *cache_info = &cache->cache_info; bool new_cache = !(cache->cache_info.flags & PCACHE_CACHE_FLAGS_INIT_DONE); u32 seg_id; int ret; u32 i; for (i = 0; i < cache_info->n_segs; i++) { ret = get_seg_id(cache, prev_cache_seg, new_cache, &seg_id); if (ret) goto err; ret = cache_seg_init(cache, seg_id, i, new_cache); if (ret) goto err; prev_cache_seg = &cache->segments[i]; } return 0; err: return ret; } static int cache_init_req_keys(struct pcache_cache *cache, u32 n_paral) { struct dm_pcache *pcache = CACHE_TO_PCACHE(cache); u32 n_subtrees; int ret; u32 i, cpu; /* Calculate number of cache trees based on the device size */ n_subtrees = DIV_ROUND_UP(cache->dev_size << SECTOR_SHIFT, PCACHE_CACHE_SUBTREE_SIZE); ret = cache_tree_init(cache, &cache->req_key_tree, n_subtrees); if (ret) goto err; cache->n_ksets = n_paral; cache->ksets = kvcalloc(cache->n_ksets, PCACHE_KSET_SIZE, GFP_KERNEL); if (!cache->ksets) { ret = -ENOMEM; goto req_tree_exit; } /* * Initialize each kset with a spinlock and delayed work for flushing. * Each kset is associated with one queue to ensure independent handling * of cache keys across multiple queues, maximizing multiqueue concurrency. */ for (i = 0; i < cache->n_ksets; i++) { struct pcache_cache_kset *kset = get_kset(cache, i); kset->cache = cache; spin_lock_init(&kset->kset_lock); INIT_DELAYED_WORK(&kset->flush_work, kset_flush_fn); } cache->data_heads = alloc_percpu(struct pcache_cache_data_head); if (!cache->data_heads) { ret = -ENOMEM; goto free_kset; } for_each_possible_cpu(cpu) { struct pcache_cache_data_head *h = per_cpu_ptr(cache->data_heads, cpu); h->head_pos.cache_seg = NULL; } /* * Replay persisted cache keys using cache_replay. * This function loads and replays cache keys from previously stored * ksets, allowing the cache to restore its state after a restart. */ ret = cache_replay(cache); if (ret) { pcache_dev_err(pcache, "failed to replay keys\n"); goto free_heads; } return 0; free_heads: free_percpu(cache->data_heads); free_kset: kvfree(cache->ksets); req_tree_exit: cache_tree_exit(&cache->req_key_tree); err: return ret; } static void cache_destroy_req_keys(struct pcache_cache *cache) { u32 i; for (i = 0; i < cache->n_ksets; i++) { struct pcache_cache_kset *kset = get_kset(cache, i); cancel_delayed_work_sync(&kset->flush_work); } free_percpu(cache->data_heads); kvfree(cache->ksets); cache_tree_exit(&cache->req_key_tree); } int pcache_cache_start(struct dm_pcache *pcache) { struct pcache_backing_dev *backing_dev = &pcache->backing_dev; struct pcache_cache *cache = &pcache->cache; struct pcache_cache_options *opts = &pcache->opts; int ret; ret = cache_init(pcache); if (ret) return ret; cache->cache_info_addr = CACHE_DEV_CACHE_INFO(cache->cache_dev); cache->cache_ctrl = CACHE_DEV_CACHE_CTRL(cache->cache_dev); backing_dev->cache = cache; cache->dev_size = backing_dev->dev_size; ret = cache_info_init(cache, opts); if (ret) goto cache_exit; ret = cache_segs_init(cache); if (ret) goto cache_exit; ret = cache_tail_init(cache); if (ret) goto cache_exit; ret = cache_init_req_keys(cache, num_online_cpus()); if (ret) goto cache_exit; ret = cache_writeback_init(cache); if (ret) goto destroy_keys; cache->cache_info.flags |= PCACHE_CACHE_FLAGS_INIT_DONE; cache_info_write(cache); queue_delayed_work(cache_get_wq(cache), &cache->gc_work, 0); return 0; destroy_keys: cache_destroy_req_keys(cache); cache_exit: cache_exit(cache); return ret; } void pcache_cache_stop(struct dm_pcache *pcache) { struct pcache_cache *cache = &pcache->cache; cache_flush(cache); cancel_delayed_work_sync(&cache->gc_work); flush_work(&cache->clean_work); cache_writeback_exit(cache); if (cache->req_key_tree.n_subtrees) cache_destroy_req_keys(cache); cache_exit(cache); } struct workqueue_struct *cache_get_wq(struct pcache_cache *cache) { struct dm_pcache *pcache = CACHE_TO_PCACHE(cache); return pcache->task_wq; } int pcache_cache_init(void) { key_cache = KMEM_CACHE(pcache_cache_key, 0); if (!key_cache) return -ENOMEM; return 0; } void pcache_cache_exit(void) { kmem_cache_destroy(key_cache); }