// SPDX-License-Identifier: GPL-2.0-or-later #include "cache.h" #include "backing_dev.h" #include "cache_dev.h" #include "dm_pcache.h" struct pcache_cache_kset_onmedia pcache_empty_kset = { 0 }; void cache_key_init(struct pcache_cache_tree *cache_tree, struct pcache_cache_key *key) { kref_init(&key->ref); key->cache_tree = cache_tree; INIT_LIST_HEAD(&key->list_node); RB_CLEAR_NODE(&key->rb_node); } struct pcache_cache_key *cache_key_alloc(struct pcache_cache_tree *cache_tree, gfp_t gfp_mask) { struct pcache_cache_key *key; key = mempool_alloc(&cache_tree->key_pool, gfp_mask); if (!key) return NULL; memset(key, 0, sizeof(struct pcache_cache_key)); cache_key_init(cache_tree, key); return key; } /** * cache_key_get - Increment the reference count of a cache key. * @key: Pointer to the pcache_cache_key structure. * * This function increments the reference count of the specified cache key, * ensuring that it is not freed while still in use. */ void cache_key_get(struct pcache_cache_key *key) { kref_get(&key->ref); } /** * cache_key_destroy - Free a cache key structure when its reference count drops to zero. * @ref: Pointer to the kref structure. * * This function is called when the reference count of the cache key reaches zero. * It frees the allocated cache key back to the slab cache. */ static void cache_key_destroy(struct kref *ref) { struct pcache_cache_key *key = container_of(ref, struct pcache_cache_key, ref); struct pcache_cache_tree *cache_tree = key->cache_tree; mempool_free(key, &cache_tree->key_pool); } void cache_key_put(struct pcache_cache_key *key) { kref_put(&key->ref, cache_key_destroy); } void cache_pos_advance(struct pcache_cache_pos *pos, u32 len) { /* Ensure enough space remains in the current segment */ BUG_ON(cache_seg_remain(pos) < len); pos->seg_off += len; } static void cache_key_encode(struct pcache_cache *cache, struct pcache_cache_key_onmedia *key_onmedia, struct pcache_cache_key *key) { key_onmedia->off = key->off; key_onmedia->len = key->len; key_onmedia->cache_seg_id = key->cache_pos.cache_seg->cache_seg_id; key_onmedia->cache_seg_off = key->cache_pos.seg_off; key_onmedia->seg_gen = key->seg_gen; key_onmedia->flags = key->flags; if (cache_data_crc_on(cache)) key_onmedia->data_crc = cache_key_data_crc(key); } int cache_key_decode(struct pcache_cache *cache, struct pcache_cache_key_onmedia *key_onmedia, struct pcache_cache_key *key) { struct dm_pcache *pcache = CACHE_TO_PCACHE(cache); key->off = key_onmedia->off; key->len = key_onmedia->len; key->cache_pos.cache_seg = &cache->segments[key_onmedia->cache_seg_id]; key->cache_pos.seg_off = key_onmedia->cache_seg_off; key->seg_gen = key_onmedia->seg_gen; key->flags = key_onmedia->flags; if (cache_data_crc_on(cache) && key_onmedia->data_crc != cache_key_data_crc(key)) { pcache_dev_err(pcache, "key: %llu:%u seg %u:%u data_crc error: %x, expected: %x\n", key->off, key->len, key->cache_pos.cache_seg->cache_seg_id, key->cache_pos.seg_off, cache_key_data_crc(key), key_onmedia->data_crc); return -EIO; } return 0; } static void append_last_kset(struct pcache_cache *cache, u32 next_seg) { struct pcache_cache_kset_onmedia kset_onmedia = { 0 }; kset_onmedia.flags |= PCACHE_KSET_FLAGS_LAST; kset_onmedia.next_cache_seg_id = next_seg; kset_onmedia.magic = PCACHE_KSET_MAGIC; kset_onmedia.crc = cache_kset_crc(&kset_onmedia); memcpy_flushcache(get_key_head_addr(cache), &kset_onmedia, sizeof(struct pcache_cache_kset_onmedia)); pmem_wmb(); cache_pos_advance(&cache->key_head, sizeof(struct pcache_cache_kset_onmedia)); } int cache_kset_close(struct pcache_cache *cache, struct pcache_cache_kset *kset) { struct pcache_cache_kset_onmedia *kset_onmedia; u32 kset_onmedia_size; int ret; kset_onmedia = &kset->kset_onmedia; if (!kset_onmedia->key_num) return 0; kset_onmedia_size = struct_size(kset_onmedia, data, kset_onmedia->key_num); spin_lock(&cache->key_head_lock); again: /* Reserve space for the last kset */ if (cache_seg_remain(&cache->key_head) < kset_onmedia_size + sizeof(struct pcache_cache_kset_onmedia)) { struct pcache_cache_segment *next_seg; next_seg = get_cache_segment(cache); if (!next_seg) { ret = -EBUSY; goto out; } /* clear outdated kset in next seg */ memcpy_flushcache(next_seg->segment.data, &pcache_empty_kset, sizeof(struct pcache_cache_kset_onmedia)); append_last_kset(cache, next_seg->cache_seg_id); cache->key_head.cache_seg = next_seg; cache->key_head.seg_off = 0; goto again; } kset_onmedia->magic = PCACHE_KSET_MAGIC; kset_onmedia->crc = cache_kset_crc(kset_onmedia); /* clear outdated kset after current kset */ memcpy_flushcache(get_key_head_addr(cache) + kset_onmedia_size, &pcache_empty_kset, sizeof(struct pcache_cache_kset_onmedia)); /* write current kset into segment */ memcpy_flushcache(get_key_head_addr(cache), kset_onmedia, kset_onmedia_size); pmem_wmb(); /* reset kset_onmedia */ memset(kset_onmedia, 0, sizeof(struct pcache_cache_kset_onmedia)); cache_pos_advance(&cache->key_head, kset_onmedia_size); ret = 0; out: spin_unlock(&cache->key_head_lock); return ret; } /** * cache_key_append - Append a cache key to the related kset. * @cache: Pointer to the pcache_cache structure. * @key: Pointer to the cache key structure to append. * @force_close: Need to close current kset if true. * * This function appends a cache key to the appropriate kset. If the kset * is full, it closes the kset. If not, it queues a flush work to write * the kset to media. * * Returns 0 on success, or a negative error code on failure. */ int cache_key_append(struct pcache_cache *cache, struct pcache_cache_key *key, bool force_close) { struct pcache_cache_kset *kset; struct pcache_cache_kset_onmedia *kset_onmedia; struct pcache_cache_key_onmedia *key_onmedia; u32 kset_id = get_kset_id(cache, key->off); int ret = 0; kset = get_kset(cache, kset_id); kset_onmedia = &kset->kset_onmedia; spin_lock(&kset->kset_lock); key_onmedia = &kset_onmedia->data[kset_onmedia->key_num]; cache_key_encode(cache, key_onmedia, key); /* Check if the current kset has reached the maximum number of keys */ if (++kset_onmedia->key_num == PCACHE_KSET_KEYS_MAX || force_close) { /* If full, close the kset */ ret = cache_kset_close(cache, kset); if (ret) { kset_onmedia->key_num--; goto out; } } else { /* If not full, queue a delayed work to flush the kset */ queue_delayed_work(cache_get_wq(cache), &kset->flush_work, 1 * HZ); } out: spin_unlock(&kset->kset_lock); return ret; } /** * cache_subtree_walk - Traverse the cache tree. * @ctx: Pointer to the context structure for traversal. * * This function traverses the cache tree starting from the specified node. * It calls the appropriate callback functions based on the relationships * between the keys in the cache tree. * * Returns 0 on success, or a negative error code on failure. */ int cache_subtree_walk(struct pcache_cache_subtree_walk_ctx *ctx) { struct pcache_cache_key *key_tmp, *key; struct rb_node *node_tmp; int ret = SUBTREE_WALK_RET_OK; key = ctx->key; node_tmp = ctx->start_node; while (node_tmp) { if (ctx->walk_done && ctx->walk_done(ctx)) break; key_tmp = CACHE_KEY(node_tmp); /* * If key_tmp ends before the start of key, continue to the next node. * |----------| * |=====| */ if (cache_key_lend(key_tmp) <= cache_key_lstart(key)) { if (ctx->after) { ret = ctx->after(key, key_tmp, ctx); if (ret) goto out; } goto next; } /* * If key_tmp starts after the end of key, stop traversing. * |--------| * |====| */ if (cache_key_lstart(key_tmp) >= cache_key_lend(key)) { if (ctx->before) { ret = ctx->before(key, key_tmp, ctx); if (ret) goto out; } break; } /* Handle overlapping keys */ if (cache_key_lstart(key_tmp) >= cache_key_lstart(key)) { /* * If key_tmp encompasses key. * |----------------| key_tmp * |===========| key */ if (cache_key_lend(key_tmp) >= cache_key_lend(key)) { if (ctx->overlap_tail) { ret = ctx->overlap_tail(key, key_tmp, ctx); if (ret) goto out; } break; } /* * If key_tmp is contained within key. * |----| key_tmp * |==========| key */ if (ctx->overlap_contain) { ret = ctx->overlap_contain(key, key_tmp, ctx); if (ret) goto out; } goto next; } /* * If key_tmp starts before key ends but ends after key. * |-----------| key_tmp * |====| key */ if (cache_key_lend(key_tmp) > cache_key_lend(key)) { if (ctx->overlap_contained) { ret = ctx->overlap_contained(key, key_tmp, ctx); if (ret) goto out; } break; } /* * If key_tmp starts before key and ends within key. * |--------| key_tmp * |==========| key */ if (ctx->overlap_head) { ret = ctx->overlap_head(key, key_tmp, ctx); if (ret) goto out; } next: node_tmp = rb_next(node_tmp); } out: if (ctx->walk_finally) ret = ctx->walk_finally(ctx, ret); return ret; } /** * cache_subtree_search - Search for a key in the cache tree. * @cache_subtree: Pointer to the cache tree structure. * @key: Pointer to the cache key to search for. * @parentp: Pointer to store the parent node of the found node. * @newp: Pointer to store the location where the new node should be inserted. * @delete_key_list: List to collect invalid keys for deletion. * * This function searches the cache tree for a specific key and returns * the node that is the predecessor of the key, or first node if the key is * less than all keys in the tree. If any invalid keys are found during * the search, they are added to the delete_key_list for later cleanup. * * Returns a pointer to the previous node. */ struct rb_node *cache_subtree_search(struct pcache_cache_subtree *cache_subtree, struct pcache_cache_key *key, struct rb_node **parentp, struct rb_node ***newp, struct list_head *delete_key_list) { struct rb_node **new, *parent = NULL; struct pcache_cache_key *key_tmp; struct rb_node *prev_node = NULL; new = &(cache_subtree->root.rb_node); while (*new) { key_tmp = container_of(*new, struct pcache_cache_key, rb_node); if (cache_key_invalid(key_tmp)) list_add(&key_tmp->list_node, delete_key_list); parent = *new; if (key_tmp->off >= key->off) { new = &((*new)->rb_left); } else { prev_node = *new; new = &((*new)->rb_right); } } if (!prev_node) prev_node = rb_first(&cache_subtree->root); if (parentp) *parentp = parent; if (newp) *newp = new; return prev_node; } static struct pcache_cache_key *get_pre_alloc_key(struct pcache_cache_subtree_walk_ctx *ctx) { struct pcache_cache_key *key; if (ctx->pre_alloc_key) { key = ctx->pre_alloc_key; ctx->pre_alloc_key = NULL; return key; } return cache_key_alloc(ctx->cache_tree, GFP_NOWAIT); } /** * fixup_overlap_tail - Adjust the key when it overlaps at the tail. * @key: Pointer to the new cache key being inserted. * @key_tmp: Pointer to the existing key that overlaps. * @ctx: Pointer to the context for walking the cache tree. * * This function modifies the existing key (key_tmp) when there is an * overlap at the tail with the new key. If the modified key becomes * empty, it is deleted. */ static int fixup_overlap_tail(struct pcache_cache_key *key, struct pcache_cache_key *key_tmp, struct pcache_cache_subtree_walk_ctx *ctx) { /* * |----------------| key_tmp * |===========| key */ BUG_ON(cache_key_empty(key)); if (cache_key_empty(key_tmp)) { cache_key_delete(key_tmp); return SUBTREE_WALK_RET_RESEARCH; } cache_key_cutfront(key_tmp, cache_key_lend(key) - cache_key_lstart(key_tmp)); if (key_tmp->len == 0) { cache_key_delete(key_tmp); return SUBTREE_WALK_RET_RESEARCH; } return SUBTREE_WALK_RET_OK; } /** * fixup_overlap_contain - Handle case where new key completely contains an existing key. * @key: Pointer to the new cache key being inserted. * @key_tmp: Pointer to the existing key that is being contained. * @ctx: Pointer to the context for walking the cache tree. * * This function deletes the existing key (key_tmp) when the new key * completely contains it. It returns SUBTREE_WALK_RET_RESEARCH to indicate that the * tree structure may have changed, necessitating a re-insertion of * the new key. */ static int fixup_overlap_contain(struct pcache_cache_key *key, struct pcache_cache_key *key_tmp, struct pcache_cache_subtree_walk_ctx *ctx) { /* * |----| key_tmp * |==========| key */ BUG_ON(cache_key_empty(key)); cache_key_delete(key_tmp); return SUBTREE_WALK_RET_RESEARCH; } /** * fixup_overlap_contained - Handle overlap when a new key is contained in an existing key. * @key: The new cache key being inserted. * @key_tmp: The existing cache key that overlaps with the new key. * @ctx: Context for the cache tree walk. * * This function adjusts the existing key if the new key is contained * within it. If the existing key is empty, it indicates a placeholder key * that was inserted during a miss read. This placeholder will later be * updated with real data from the backing_dev, making it no longer an empty key. * * If we delete key or insert a key, the structure of the entire cache tree may change, * requiring a full research of the tree to find a new insertion point. */ static int fixup_overlap_contained(struct pcache_cache_key *key, struct pcache_cache_key *key_tmp, struct pcache_cache_subtree_walk_ctx *ctx) { struct pcache_cache_tree *cache_tree = ctx->cache_tree; /* * |-----------| key_tmp * |====| key */ BUG_ON(cache_key_empty(key)); if (cache_key_empty(key_tmp)) { /* If key_tmp is empty, don't split it; * it's a placeholder key for miss reads that will be updated later. */ cache_key_cutback(key_tmp, cache_key_lend(key_tmp) - cache_key_lstart(key)); if (key_tmp->len == 0) { cache_key_delete(key_tmp); return SUBTREE_WALK_RET_RESEARCH; } } else { struct pcache_cache_key *key_fixup; bool need_research = false; key_fixup = get_pre_alloc_key(ctx); if (!key_fixup) return SUBTREE_WALK_RET_NEED_KEY; cache_key_copy(key_fixup, key_tmp); /* Split key_tmp based on the new key's range */ cache_key_cutback(key_tmp, cache_key_lend(key_tmp) - cache_key_lstart(key)); if (key_tmp->len == 0) { cache_key_delete(key_tmp); need_research = true; } /* Create a new portion for key_fixup */ cache_key_cutfront(key_fixup, cache_key_lend(key) - cache_key_lstart(key_tmp)); if (key_fixup->len == 0) { cache_key_put(key_fixup); } else { /* Insert the new key into the cache */ cache_key_insert(cache_tree, key_fixup, false); need_research = true; } if (need_research) return SUBTREE_WALK_RET_RESEARCH; } return SUBTREE_WALK_RET_OK; } /** * fixup_overlap_head - Handle overlap when a new key overlaps with the head of an existing key. * @key: The new cache key being inserted. * @key_tmp: The existing cache key that overlaps with the new key. * @ctx: Context for the cache tree walk. * * This function adjusts the existing key if the new key overlaps * with the beginning of it. If the resulting key length is zero * after the adjustment, the key is deleted. This indicates that * the key no longer holds valid data and requires the tree to be * re-researched for a new insertion point. */ static int fixup_overlap_head(struct pcache_cache_key *key, struct pcache_cache_key *key_tmp, struct pcache_cache_subtree_walk_ctx *ctx) { /* * |--------| key_tmp * |==========| key */ BUG_ON(cache_key_empty(key)); /* Adjust key_tmp by cutting back based on the new key's start */ cache_key_cutback(key_tmp, cache_key_lend(key_tmp) - cache_key_lstart(key)); if (key_tmp->len == 0) { /* If the adjusted key_tmp length is zero, delete it */ cache_key_delete(key_tmp); return SUBTREE_WALK_RET_RESEARCH; } return SUBTREE_WALK_RET_OK; } /** * cache_key_insert - Insert a new cache key into the cache tree. * @cache_tree: Pointer to the cache_tree structure. * @key: The cache key to insert. * @fixup: Indicates if this is a new key being inserted. * * This function searches for the appropriate location to insert * a new cache key into the cache tree. It handles key overlaps * and ensures any invalid keys are removed before insertion. */ void cache_key_insert(struct pcache_cache_tree *cache_tree, struct pcache_cache_key *key, bool fixup) { struct pcache_cache *cache = cache_tree->cache; struct pcache_cache_subtree_walk_ctx walk_ctx = { 0 }; struct rb_node **new, *parent = NULL; struct pcache_cache_subtree *cache_subtree; struct pcache_cache_key *key_tmp = NULL, *key_next; struct rb_node *prev_node = NULL; LIST_HEAD(delete_key_list); int ret; cache_subtree = get_subtree(cache_tree, key->off); key->cache_subtree = cache_subtree; search: prev_node = cache_subtree_search(cache_subtree, key, &parent, &new, &delete_key_list); if (!list_empty(&delete_key_list)) { /* Remove invalid keys from the delete list */ list_for_each_entry_safe(key_tmp, key_next, &delete_key_list, list_node) { list_del_init(&key_tmp->list_node); cache_key_delete(key_tmp); } goto search; } if (fixup) { /* Set up the context with the cache, start node, and new key */ walk_ctx.cache_tree = cache_tree; walk_ctx.start_node = prev_node; walk_ctx.key = key; /* Assign overlap handling functions for different scenarios */ walk_ctx.overlap_tail = fixup_overlap_tail; walk_ctx.overlap_head = fixup_overlap_head; walk_ctx.overlap_contain = fixup_overlap_contain; walk_ctx.overlap_contained = fixup_overlap_contained; ret = cache_subtree_walk(&walk_ctx); switch (ret) { case SUBTREE_WALK_RET_OK: break; case SUBTREE_WALK_RET_RESEARCH: goto search; case SUBTREE_WALK_RET_NEED_KEY: spin_unlock(&cache_subtree->tree_lock); pcache_dev_debug(CACHE_TO_PCACHE(cache), "allocate pre_alloc_key with GFP_NOIO"); walk_ctx.pre_alloc_key = cache_key_alloc(cache_tree, GFP_NOIO); spin_lock(&cache_subtree->tree_lock); goto search; default: BUG(); } } if (walk_ctx.pre_alloc_key) cache_key_put(walk_ctx.pre_alloc_key); /* Link and insert the new key into the red-black tree */ rb_link_node(&key->rb_node, parent, new); rb_insert_color(&key->rb_node, &cache_subtree->root); } /** * clean_fn - Cleanup function to remove invalid keys from the cache tree. * @work: Pointer to the work_struct associated with the cleanup. * * This function cleans up invalid keys from the cache tree in the background * after a cache segment has been invalidated during cache garbage collection. * It processes a maximum of PCACHE_CLEAN_KEYS_MAX keys per iteration and holds * the tree lock to ensure thread safety. */ void clean_fn(struct work_struct *work) { struct pcache_cache *cache = container_of(work, struct pcache_cache, clean_work); struct pcache_cache_subtree *cache_subtree; struct rb_node *node; struct pcache_cache_key *key; int i, count; for (i = 0; i < cache->req_key_tree.n_subtrees; i++) { cache_subtree = &cache->req_key_tree.subtrees[i]; again: if (pcache_is_stopping(CACHE_TO_PCACHE(cache))) return; /* Delete up to PCACHE_CLEAN_KEYS_MAX keys in one iteration */ count = 0; spin_lock(&cache_subtree->tree_lock); node = rb_first(&cache_subtree->root); while (node) { key = CACHE_KEY(node); node = rb_next(node); if (cache_key_invalid(key)) { count++; cache_key_delete(key); } if (count >= PCACHE_CLEAN_KEYS_MAX) { /* Unlock and pause before continuing cleanup */ spin_unlock(&cache_subtree->tree_lock); usleep_range(1000, 2000); goto again; } } spin_unlock(&cache_subtree->tree_lock); } } /* * kset_flush_fn - Flush work for a cache kset. * * This function is called when a kset flush work is queued from * cache_key_append(). If the kset is full, it will be closed * immediately. If not, the flush work will be queued for later closure. * * If cache_kset_close detects that a new segment is required to store * the kset and there are no available segments, it will return an error. * In this scenario, a retry will be attempted. */ void kset_flush_fn(struct work_struct *work) { struct pcache_cache_kset *kset = container_of(work, struct pcache_cache_kset, flush_work.work); struct pcache_cache *cache = kset->cache; int ret; if (pcache_is_stopping(CACHE_TO_PCACHE(cache))) return; spin_lock(&kset->kset_lock); ret = cache_kset_close(cache, kset); spin_unlock(&kset->kset_lock); if (ret) { /* Failed to flush kset, schedule a retry. */ queue_delayed_work(cache_get_wq(cache), &kset->flush_work, msecs_to_jiffies(100)); } } static int kset_replay(struct pcache_cache *cache, struct pcache_cache_kset_onmedia *kset_onmedia) { struct pcache_cache_key_onmedia *key_onmedia; struct pcache_cache_subtree *cache_subtree; struct pcache_cache_key *key; int ret; int i; for (i = 0; i < kset_onmedia->key_num; i++) { key_onmedia = &kset_onmedia->data[i]; key = cache_key_alloc(&cache->req_key_tree, GFP_NOIO); ret = cache_key_decode(cache, key_onmedia, key); if (ret) { cache_key_put(key); goto err; } __set_bit(key->cache_pos.cache_seg->cache_seg_id, cache->seg_map); /* Check if the segment generation is valid for insertion. */ if (key->seg_gen < key->cache_pos.cache_seg->gen) { cache_key_put(key); } else { cache_subtree = get_subtree(&cache->req_key_tree, key->off); spin_lock(&cache_subtree->tree_lock); cache_key_insert(&cache->req_key_tree, key, true); spin_unlock(&cache_subtree->tree_lock); } cache_seg_get(key->cache_pos.cache_seg); } return 0; err: return ret; } int cache_replay(struct pcache_cache *cache) { struct dm_pcache *pcache = CACHE_TO_PCACHE(cache); struct pcache_cache_pos pos_tail; struct pcache_cache_pos *pos; struct pcache_cache_kset_onmedia *kset_onmedia; u32 to_copy, count = 0; int ret = 0; kset_onmedia = kzalloc(PCACHE_KSET_ONMEDIA_SIZE_MAX, GFP_KERNEL); if (!kset_onmedia) return -ENOMEM; cache_pos_copy(&pos_tail, &cache->key_tail); pos = &pos_tail; /* * In cache replaying stage, there is no other one will access * cache->seg_map, so we can set bit here without cache->seg_map_lock. */ __set_bit(pos->cache_seg->cache_seg_id, cache->seg_map); while (true) { to_copy = min(PCACHE_KSET_ONMEDIA_SIZE_MAX, PCACHE_SEG_SIZE - pos->seg_off); ret = copy_mc_to_kernel(kset_onmedia, cache_pos_addr(pos), to_copy); if (ret) { ret = -EIO; goto out; } if (kset_onmedia->magic != PCACHE_KSET_MAGIC || kset_onmedia->crc != cache_kset_crc(kset_onmedia)) { break; } /* Process the last kset and prepare for the next segment. */ if (kset_onmedia->flags & PCACHE_KSET_FLAGS_LAST) { struct pcache_cache_segment *next_seg; pcache_dev_debug(pcache, "last kset replay, next: %u\n", kset_onmedia->next_cache_seg_id); next_seg = &cache->segments[kset_onmedia->next_cache_seg_id]; pos->cache_seg = next_seg; pos->seg_off = 0; __set_bit(pos->cache_seg->cache_seg_id, cache->seg_map); continue; } /* Replay the kset and check for errors. */ ret = kset_replay(cache, kset_onmedia); if (ret) goto out; /* Advance the position after processing the kset. */ cache_pos_advance(pos, get_kset_onmedia_size(kset_onmedia)); if (++count > 512) { cond_resched(); count = 0; } } /* Update the key_head position after replaying. */ spin_lock(&cache->key_head_lock); cache_pos_copy(&cache->key_head, pos); spin_unlock(&cache->key_head_lock); out: kfree(kset_onmedia); return ret; } int cache_tree_init(struct pcache_cache *cache, struct pcache_cache_tree *cache_tree, u32 n_subtrees) { int ret; u32 i; cache_tree->cache = cache; cache_tree->n_subtrees = n_subtrees; ret = mempool_init_slab_pool(&cache_tree->key_pool, 1024, key_cache); if (ret) goto err; /* * Allocate and initialize the subtrees array. * Each element is a cache tree structure that contains * an RB tree root and a spinlock for protecting its contents. */ cache_tree->subtrees = kvcalloc(cache_tree->n_subtrees, sizeof(struct pcache_cache_subtree), GFP_KERNEL); if (!cache_tree->subtrees) { ret = -ENOMEM; goto key_pool_exit; } for (i = 0; i < cache_tree->n_subtrees; i++) { struct pcache_cache_subtree *cache_subtree = &cache_tree->subtrees[i]; cache_subtree->root = RB_ROOT; spin_lock_init(&cache_subtree->tree_lock); } return 0; key_pool_exit: mempool_exit(&cache_tree->key_pool); err: return ret; } void cache_tree_clear(struct pcache_cache_tree *cache_tree) { struct pcache_cache_subtree *cache_subtree; struct rb_node *node; struct pcache_cache_key *key; u32 i; for (i = 0; i < cache_tree->n_subtrees; i++) { cache_subtree = &cache_tree->subtrees[i]; spin_lock(&cache_subtree->tree_lock); node = rb_first(&cache_subtree->root); while (node) { key = CACHE_KEY(node); node = rb_next(node); cache_key_delete(key); } spin_unlock(&cache_subtree->tree_lock); } } void cache_tree_exit(struct pcache_cache_tree *cache_tree) { cache_tree_clear(cache_tree); kvfree(cache_tree->subtrees); mempool_exit(&cache_tree->key_pool); }