// SPDX-License-Identifier: GPL-2.0-only OR BSD-2-Clause /* Copyright (C) 2024 Nokia * * Author: Koen De Schepper * Author: Olga Albisser * Author: Henrik Steen * Author: Olivier Tilmans * Author: Chia-Yu Chang * * DualPI Improved with a Square (dualpi2): * - Supports congestion controls that comply with the Prague requirements * in RFC9331 (e.g. TCP-Prague) * - Supports coupled dual-queue with PI2 as defined in RFC9332 * - Supports ECN L4S-identifier (IP.ECN==0b*1) * * note: Although DCTCP and BBRv3 can use shallow-threshold ECN marks, * they do not meet the 'Prague L4S Requirements' listed in RFC 9331 * Section 4, so they can only be used with DualPI2 in a datacenter * context. * * References: * - RFC9332: https://datatracker.ietf.org/doc/html/rfc9332 * - De Schepper, Koen, et al. "PI 2: A linearized AQM for both classic and * scalable TCP." in proc. ACM CoNEXT'16, 2016. */ #include #include #include #include #include #include #include #include #include #include #include #include /* 32b enable to support flows with windows up to ~8.6 * 1e9 packets * i.e., twice the maximal snd_cwnd. * MAX_PROB must be consistent with the RNG in dualpi2_roll(). */ #define MAX_PROB U32_MAX /* alpha/beta values exchanged over netlink are in units of 256ns */ #define ALPHA_BETA_SHIFT 8 /* Scaled values of alpha/beta must fit in 32b to avoid overflow in later * computations. Consequently (see and dualpi2_scale_alpha_beta()), their * netlink-provided values can use at most 31b, i.e. be at most (2^23)-1 * (~4MHz) as those are given in 1/256th. This enable to tune alpha/beta to * control flows whose maximal RTTs can be in usec up to few secs. */ #define ALPHA_BETA_MAX ((1U << 31) - 1) /* Internal alpha/beta are in units of 64ns. * This enables to use all alpha/beta values in the allowed range without loss * of precision due to rounding when scaling them internally, e.g., * scale_alpha_beta(1) will not round down to 0. */ #define ALPHA_BETA_GRANULARITY 6 #define ALPHA_BETA_SCALING (ALPHA_BETA_SHIFT - ALPHA_BETA_GRANULARITY) /* We express the weights (wc, wl) in %, i.e., wc + wl = 100 */ #define MAX_WC 100 struct dualpi2_sched_data { struct Qdisc *l_queue; /* The L4S Low latency queue (L-queue) */ struct Qdisc *sch; /* The Classic queue (C-queue) */ /* Registered tc filters */ struct tcf_proto __rcu *tcf_filters; struct tcf_block *tcf_block; /* PI2 parameters */ u64 pi2_target; /* Target delay in nanoseconds */ u32 pi2_tupdate; /* Timer frequency in nanoseconds */ u32 pi2_prob; /* Base PI probability */ u32 pi2_alpha; /* Gain factor for the integral rate response */ u32 pi2_beta; /* Gain factor for the proportional response */ struct hrtimer pi2_timer; /* prob update timer */ /* Step AQM (L-queue only) parameters */ u32 step_thresh; /* Step threshold */ bool step_in_packets; /* Step thresh in packets (1) or time (0) */ /* C-queue starvation protection */ s32 c_protection_credit; /* Credit (sign indicates which queue) */ s32 c_protection_init; /* Reset value of the credit */ u8 c_protection_wc; /* C-queue weight (between 0 and MAX_WC) */ u8 c_protection_wl; /* L-queue weight (MAX_WC - wc) */ /* General dualQ parameters */ u32 memory_limit; /* Memory limit of both queues */ u8 coupling_factor;/* Coupling factor (k) between both queues */ u8 ecn_mask; /* Mask to match packets into L-queue */ u32 min_qlen_step; /* Minimum queue length to apply step thresh */ bool drop_early; /* Drop at enqueue (1) instead of dequeue (0) */ bool drop_overload; /* Drop (1) on overload, or overflow (0) */ bool split_gso; /* Split aggregated skb (1) or leave as is (0) */ /* Statistics */ u64 c_head_ts; /* Enqueue timestamp of the C-queue head */ u64 l_head_ts; /* Enqueue timestamp of the L-queue head */ u64 last_qdelay; /* Q delay val at the last probability update */ u32 packets_in_c; /* Enqueue packet counter of the C-queue */ u32 packets_in_l; /* Enqueue packet counter of the L-queue */ u32 maxq; /* Maximum queue size of the C-queue */ u32 ecn_mark; /* ECN mark pkt counter due to PI probability */ u32 step_marks; /* ECN mark pkt counter due to step AQM */ u32 memory_used; /* Memory used of both queues */ u32 max_memory_used;/* Maximum used memory */ /* Deferred drop statistics */ u32 deferred_drops_cnt; /* Packets dropped */ u32 deferred_drops_len; /* Bytes dropped */ }; struct dualpi2_skb_cb { u64 ts; /* Timestamp at enqueue */ u8 apply_step:1, /* Can we apply the step threshold */ classified:2, /* Packet classification results */ ect:2; /* Packet ECT codepoint */ }; enum dualpi2_classification_results { DUALPI2_C_CLASSIC = 0, /* C-queue */ DUALPI2_C_L4S = 1, /* L-queue (scale mark/classic drop) */ DUALPI2_C_LLLL = 2, /* L-queue (no drops/marks) */ __DUALPI2_C_MAX /* Keep last*/ }; static struct dualpi2_skb_cb *dualpi2_skb_cb(struct sk_buff *skb) { qdisc_cb_private_validate(skb, sizeof(struct dualpi2_skb_cb)); return (struct dualpi2_skb_cb *)qdisc_skb_cb(skb)->data; } static u64 dualpi2_sojourn_time(struct sk_buff *skb, u64 reference) { return reference - dualpi2_skb_cb(skb)->ts; } static u64 head_enqueue_time(struct Qdisc *q) { struct sk_buff *skb = qdisc_peek_head(q); return skb ? dualpi2_skb_cb(skb)->ts : 0; } static u32 dualpi2_scale_alpha_beta(u32 param) { u64 tmp = ((u64)param * MAX_PROB >> ALPHA_BETA_SCALING); do_div(tmp, NSEC_PER_SEC); return tmp; } static u32 dualpi2_unscale_alpha_beta(u32 param) { u64 tmp = ((u64)param * NSEC_PER_SEC << ALPHA_BETA_SCALING); do_div(tmp, MAX_PROB); return tmp; } static ktime_t next_pi2_timeout(struct dualpi2_sched_data *q) { return ktime_add_ns(ktime_get_ns(), q->pi2_tupdate); } static bool skb_is_l4s(struct sk_buff *skb) { return dualpi2_skb_cb(skb)->classified == DUALPI2_C_L4S; } static bool skb_in_l_queue(struct sk_buff *skb) { return dualpi2_skb_cb(skb)->classified != DUALPI2_C_CLASSIC; } static bool skb_apply_step(struct sk_buff *skb, struct dualpi2_sched_data *q) { return skb_is_l4s(skb) && qdisc_qlen(q->l_queue) >= q->min_qlen_step; } static bool dualpi2_mark(struct dualpi2_sched_data *q, struct sk_buff *skb) { if (INET_ECN_set_ce(skb)) { q->ecn_mark++; return true; } return false; } static void dualpi2_reset_c_protection(struct dualpi2_sched_data *q) { q->c_protection_credit = q->c_protection_init; } /* This computes the initial credit value and WRR weight for the L queue (wl) * from the weight of the C queue (wc). * If wl > wc, the scheduler will start with the L queue when reset. */ static void dualpi2_calculate_c_protection(struct Qdisc *sch, struct dualpi2_sched_data *q, u32 wc) { q->c_protection_wc = wc; q->c_protection_wl = MAX_WC - wc; q->c_protection_init = (s32)psched_mtu(qdisc_dev(sch)) * ((int)q->c_protection_wc - (int)q->c_protection_wl); dualpi2_reset_c_protection(q); } static bool dualpi2_roll(u32 prob) { return get_random_u32() <= prob; } /* Packets in the C-queue are subject to a marking probability pC, which is the * square of the internal PI probability (i.e., have an overall lower mark/drop * probability). If the qdisc is overloaded, ignore ECT values and only drop. * * Note that this marking scheme is also applied to L4S packets during overload. * Return true if packet dropping is required in C queue */ static bool dualpi2_classic_marking(struct dualpi2_sched_data *q, struct sk_buff *skb, u32 prob, bool overload) { if (dualpi2_roll(prob) && dualpi2_roll(prob)) { if (overload || dualpi2_skb_cb(skb)->ect == INET_ECN_NOT_ECT) return true; dualpi2_mark(q, skb); } return false; } /* Packets in the L-queue are subject to a marking probability pL given by the * internal PI probability scaled by the coupling factor. * * On overload (i.e., @local_l_prob is >= 100%): * - if the qdisc is configured to trade losses to preserve latency (i.e., * @q->drop_overload), apply classic drops first before marking. * - otherwise, preserve the "no loss" property of ECN at the cost of queueing * delay, eventually resulting in taildrop behavior once sch->limit is * reached. * Return true if packet dropping is required in L queue */ static bool dualpi2_scalable_marking(struct dualpi2_sched_data *q, struct sk_buff *skb, u64 local_l_prob, u32 prob, bool overload) { if (overload) { /* Apply classic drop */ if (!q->drop_overload || !(dualpi2_roll(prob) && dualpi2_roll(prob))) goto mark; return true; } /* We can safely cut the upper 32b as overload==false */ if (dualpi2_roll(local_l_prob)) { /* Non-ECT packets could have classified as L4S by filters. */ if (dualpi2_skb_cb(skb)->ect == INET_ECN_NOT_ECT) return true; mark: dualpi2_mark(q, skb); } return false; } /* Decide whether a given packet must be dropped (or marked if ECT), according * to the PI2 probability. * * Never mark/drop if we have a standing queue of less than 2 MTUs. */ static bool must_drop(struct Qdisc *sch, struct dualpi2_sched_data *q, struct sk_buff *skb) { u64 local_l_prob; bool overload; u32 prob; if (sch->qstats.backlog < 2 * psched_mtu(qdisc_dev(sch))) return false; prob = READ_ONCE(q->pi2_prob); local_l_prob = (u64)prob * q->coupling_factor; overload = local_l_prob > MAX_PROB; switch (dualpi2_skb_cb(skb)->classified) { case DUALPI2_C_CLASSIC: return dualpi2_classic_marking(q, skb, prob, overload); case DUALPI2_C_L4S: return dualpi2_scalable_marking(q, skb, local_l_prob, prob, overload); default: /* DUALPI2_C_LLLL */ return false; } } static void dualpi2_read_ect(struct sk_buff *skb) { struct dualpi2_skb_cb *cb = dualpi2_skb_cb(skb); int wlen = skb_network_offset(skb); switch (skb_protocol(skb, true)) { case htons(ETH_P_IP): wlen += sizeof(struct iphdr); if (!pskb_may_pull(skb, wlen) || skb_try_make_writable(skb, wlen)) goto not_ecn; cb->ect = ipv4_get_dsfield(ip_hdr(skb)) & INET_ECN_MASK; break; case htons(ETH_P_IPV6): wlen += sizeof(struct ipv6hdr); if (!pskb_may_pull(skb, wlen) || skb_try_make_writable(skb, wlen)) goto not_ecn; cb->ect = ipv6_get_dsfield(ipv6_hdr(skb)) & INET_ECN_MASK; break; default: goto not_ecn; } return; not_ecn: /* Non pullable/writable packets can only be dropped hence are * classified as not ECT. */ cb->ect = INET_ECN_NOT_ECT; } static int dualpi2_skb_classify(struct dualpi2_sched_data *q, struct sk_buff *skb) { struct dualpi2_skb_cb *cb = dualpi2_skb_cb(skb); struct tcf_result res; struct tcf_proto *fl; int result; dualpi2_read_ect(skb); if (cb->ect & q->ecn_mask) { cb->classified = DUALPI2_C_L4S; return NET_XMIT_SUCCESS; } if (TC_H_MAJ(skb->priority) == q->sch->handle && TC_H_MIN(skb->priority) < __DUALPI2_C_MAX) { cb->classified = TC_H_MIN(skb->priority); return NET_XMIT_SUCCESS; } fl = rcu_dereference_bh(q->tcf_filters); if (!fl) { cb->classified = DUALPI2_C_CLASSIC; return NET_XMIT_SUCCESS; } result = tcf_classify(skb, NULL, fl, &res, false); if (result >= 0) { #ifdef CONFIG_NET_CLS_ACT switch (result) { case TC_ACT_STOLEN: case TC_ACT_QUEUED: case TC_ACT_TRAP: return NET_XMIT_SUCCESS | __NET_XMIT_STOLEN; case TC_ACT_SHOT: return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS; } #endif cb->classified = TC_H_MIN(res.classid) < __DUALPI2_C_MAX ? TC_H_MIN(res.classid) : DUALPI2_C_CLASSIC; } return NET_XMIT_SUCCESS; } static int dualpi2_enqueue_skb(struct sk_buff *skb, struct Qdisc *sch, struct sk_buff **to_free) { struct dualpi2_sched_data *q = qdisc_priv(sch); struct dualpi2_skb_cb *cb; if (unlikely(qdisc_qlen(sch) >= sch->limit) || unlikely((u64)q->memory_used + skb->truesize > q->memory_limit)) { qdisc_qstats_overlimit(sch); if (skb_in_l_queue(skb)) qdisc_qstats_overlimit(q->l_queue); return qdisc_drop_reason(skb, sch, to_free, SKB_DROP_REASON_QDISC_OVERLIMIT); } if (q->drop_early && must_drop(sch, q, skb)) { qdisc_drop_reason(skb, sch, to_free, SKB_DROP_REASON_QDISC_CONGESTED); return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS; } cb = dualpi2_skb_cb(skb); cb->ts = ktime_get_ns(); q->memory_used += skb->truesize; if (q->memory_used > q->max_memory_used) q->max_memory_used = q->memory_used; if (qdisc_qlen(sch) > q->maxq) q->maxq = qdisc_qlen(sch); if (skb_in_l_queue(skb)) { /* Apply step thresh if skb is L4S && L-queue len >= min_qlen */ dualpi2_skb_cb(skb)->apply_step = skb_apply_step(skb, q); /* Keep the overall qdisc stats consistent */ ++sch->q.qlen; qdisc_qstats_backlog_inc(sch, skb); ++q->packets_in_l; if (!q->l_head_ts) q->l_head_ts = cb->ts; return qdisc_enqueue_tail(skb, q->l_queue); } ++q->packets_in_c; if (!q->c_head_ts) q->c_head_ts = cb->ts; return qdisc_enqueue_tail(skb, sch); } /* By default, dualpi2 will split GSO skbs into independent skbs and enqueue * each of those individually. This yields the following benefits, at the * expense of CPU usage: * - Finer-grained AQM actions as the sub-packets of a burst no longer share the * same fate (e.g., the random mark/drop probability is applied individually) * - Improved precision of the starvation protection/WRR scheduler at dequeue, * as the size of the dequeued packets will be smaller. */ static int dualpi2_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *sch, struct sk_buff **to_free) { struct dualpi2_sched_data *q = qdisc_priv(sch); int err; err = dualpi2_skb_classify(q, skb); if (err != NET_XMIT_SUCCESS) { if (err & __NET_XMIT_BYPASS) qdisc_qstats_drop(sch); __qdisc_drop(skb, to_free); return err; } if (q->split_gso && skb_is_gso(skb)) { netdev_features_t features; struct sk_buff *nskb, *next; int cnt, byte_len, orig_len; int err; features = netif_skb_features(skb); nskb = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); if (IS_ERR_OR_NULL(nskb)) return qdisc_drop(skb, sch, to_free); cnt = 1; byte_len = 0; orig_len = qdisc_pkt_len(skb); skb_list_walk_safe(nskb, nskb, next) { skb_mark_not_on_list(nskb); /* Iterate through GSO fragments of an skb: * (1) Set pkt_len from the single GSO fragments * (2) Copy classified and ect values of an skb * (3) Enqueue fragment & set ts in dualpi2_enqueue_skb */ qdisc_skb_cb(nskb)->pkt_len = nskb->len; dualpi2_skb_cb(nskb)->classified = dualpi2_skb_cb(skb)->classified; dualpi2_skb_cb(nskb)->ect = dualpi2_skb_cb(skb)->ect; err = dualpi2_enqueue_skb(nskb, sch, to_free); if (err == NET_XMIT_SUCCESS) { /* Compute the backlog adjustment that needs * to be propagated in the qdisc tree to reflect * all new skbs successfully enqueued. */ ++cnt; byte_len += nskb->len; } } if (cnt > 1) { /* The caller will add the original skb stats to its * backlog, compensate this if any nskb is enqueued. */ --cnt; byte_len -= orig_len; } qdisc_tree_reduce_backlog(sch, -cnt, -byte_len); consume_skb(skb); return err; } return dualpi2_enqueue_skb(skb, sch, to_free); } /* Select the queue from which the next packet can be dequeued, ensuring that * neither queue can starve the other with a WRR scheduler. * * The sign of the WRR credit determines the next queue, while the size of * the dequeued packet determines the magnitude of the WRR credit change. If * either queue is empty, the WRR credit is kept unchanged. * * As the dequeued packet can be dropped later, the caller has to perform the * qdisc_bstats_update() calls. */ static struct sk_buff *dequeue_packet(struct Qdisc *sch, struct dualpi2_sched_data *q, int *credit_change, u64 now) { struct sk_buff *skb = NULL; int c_len; *credit_change = 0; c_len = qdisc_qlen(sch) - qdisc_qlen(q->l_queue); if (qdisc_qlen(q->l_queue) && (!c_len || q->c_protection_credit <= 0)) { skb = __qdisc_dequeue_head(&q->l_queue->q); WRITE_ONCE(q->l_head_ts, head_enqueue_time(q->l_queue)); if (c_len) *credit_change = q->c_protection_wc; qdisc_qstats_backlog_dec(q->l_queue, skb); /* Keep the global queue size consistent */ --sch->q.qlen; q->memory_used -= skb->truesize; } else if (c_len) { skb = __qdisc_dequeue_head(&sch->q); WRITE_ONCE(q->c_head_ts, head_enqueue_time(sch)); if (qdisc_qlen(q->l_queue)) *credit_change = ~((s32)q->c_protection_wl) + 1; q->memory_used -= skb->truesize; } else { dualpi2_reset_c_protection(q); return NULL; } *credit_change *= qdisc_pkt_len(skb); qdisc_qstats_backlog_dec(sch, skb); return skb; } static int do_step_aqm(struct dualpi2_sched_data *q, struct sk_buff *skb, u64 now) { u64 qdelay = 0; if (q->step_in_packets) qdelay = qdisc_qlen(q->l_queue); else qdelay = dualpi2_sojourn_time(skb, now); if (dualpi2_skb_cb(skb)->apply_step && qdelay > q->step_thresh) { if (!dualpi2_skb_cb(skb)->ect) { /* Drop this non-ECT packet */ return 1; } if (dualpi2_mark(q, skb)) ++q->step_marks; } qdisc_bstats_update(q->l_queue, skb); return 0; } static void drop_and_retry(struct dualpi2_sched_data *q, struct sk_buff *skb, struct Qdisc *sch, enum skb_drop_reason reason) { ++q->deferred_drops_cnt; q->deferred_drops_len += qdisc_pkt_len(skb); kfree_skb_reason(skb, reason); qdisc_qstats_drop(sch); } static struct sk_buff *dualpi2_qdisc_dequeue(struct Qdisc *sch) { struct dualpi2_sched_data *q = qdisc_priv(sch); struct sk_buff *skb; int credit_change; u64 now; now = ktime_get_ns(); while ((skb = dequeue_packet(sch, q, &credit_change, now))) { if (!q->drop_early && must_drop(sch, q, skb)) { drop_and_retry(q, skb, sch, SKB_DROP_REASON_QDISC_CONGESTED); continue; } if (skb_in_l_queue(skb) && do_step_aqm(q, skb, now)) { qdisc_qstats_drop(q->l_queue); drop_and_retry(q, skb, sch, SKB_DROP_REASON_DUALPI2_STEP_DROP); continue; } q->c_protection_credit += credit_change; qdisc_bstats_update(sch, skb); break; } if (q->deferred_drops_cnt) { qdisc_tree_reduce_backlog(sch, q->deferred_drops_cnt, q->deferred_drops_len); q->deferred_drops_cnt = 0; q->deferred_drops_len = 0; } return skb; } static s64 __scale_delta(u64 diff) { do_div(diff, 1 << ALPHA_BETA_GRANULARITY); return diff; } static void get_queue_delays(struct dualpi2_sched_data *q, u64 *qdelay_c, u64 *qdelay_l) { u64 now, qc, ql; now = ktime_get_ns(); qc = READ_ONCE(q->c_head_ts); ql = READ_ONCE(q->l_head_ts); *qdelay_c = qc ? now - qc : 0; *qdelay_l = ql ? now - ql : 0; } static u32 calculate_probability(struct Qdisc *sch) { struct dualpi2_sched_data *q = qdisc_priv(sch); u32 new_prob; u64 qdelay_c; u64 qdelay_l; u64 qdelay; s64 delta; get_queue_delays(q, &qdelay_c, &qdelay_l); qdelay = max(qdelay_l, qdelay_c); /* Alpha and beta take at most 32b, i.e, the delay difference would * overflow for queuing delay differences > ~4.2sec. */ delta = ((s64)qdelay - (s64)q->pi2_target) * q->pi2_alpha; delta += ((s64)qdelay - (s64)q->last_qdelay) * q->pi2_beta; q->last_qdelay = qdelay; /* Bound new_prob between 0 and MAX_PROB */ if (delta > 0) { new_prob = __scale_delta(delta) + q->pi2_prob; if (new_prob < q->pi2_prob) new_prob = MAX_PROB; } else { new_prob = q->pi2_prob - __scale_delta(~delta + 1); if (new_prob > q->pi2_prob) new_prob = 0; } /* If we do not drop on overload, ensure we cap the L4S probability to * 100% to keep window fairness when overflowing. */ if (!q->drop_overload) return min_t(u32, new_prob, MAX_PROB / q->coupling_factor); return new_prob; } static u32 get_memory_limit(struct Qdisc *sch, u32 limit) { /* Apply rule of thumb, i.e., doubling the packet length, * to further include per packet overhead in memory_limit. */ u64 memlim = mul_u32_u32(limit, 2 * psched_mtu(qdisc_dev(sch))); if (upper_32_bits(memlim)) return U32_MAX; else return lower_32_bits(memlim); } static u32 convert_us_to_nsec(u32 us) { u64 ns = mul_u32_u32(us, NSEC_PER_USEC); if (upper_32_bits(ns)) return U32_MAX; return lower_32_bits(ns); } static u32 convert_ns_to_usec(u64 ns) { do_div(ns, NSEC_PER_USEC); if (upper_32_bits(ns)) return U32_MAX; return lower_32_bits(ns); } static enum hrtimer_restart dualpi2_timer(struct hrtimer *timer) { struct dualpi2_sched_data *q = timer_container_of(q, timer, pi2_timer); struct Qdisc *sch = q->sch; spinlock_t *root_lock; /* to lock qdisc for probability calculations */ rcu_read_lock(); root_lock = qdisc_lock(qdisc_root_sleeping(sch)); spin_lock(root_lock); WRITE_ONCE(q->pi2_prob, calculate_probability(sch)); hrtimer_set_expires(&q->pi2_timer, next_pi2_timeout(q)); spin_unlock(root_lock); rcu_read_unlock(); return HRTIMER_RESTART; } static struct netlink_range_validation dualpi2_alpha_beta_range = { .min = 1, .max = ALPHA_BETA_MAX, }; static const struct nla_policy dualpi2_policy[TCA_DUALPI2_MAX + 1] = { [TCA_DUALPI2_LIMIT] = NLA_POLICY_MIN(NLA_U32, 1), [TCA_DUALPI2_MEMORY_LIMIT] = NLA_POLICY_MIN(NLA_U32, 1), [TCA_DUALPI2_TARGET] = { .type = NLA_U32 }, [TCA_DUALPI2_TUPDATE] = NLA_POLICY_MIN(NLA_U32, 1), [TCA_DUALPI2_ALPHA] = NLA_POLICY_FULL_RANGE(NLA_U32, &dualpi2_alpha_beta_range), [TCA_DUALPI2_BETA] = NLA_POLICY_FULL_RANGE(NLA_U32, &dualpi2_alpha_beta_range), [TCA_DUALPI2_STEP_THRESH_PKTS] = { .type = NLA_U32 }, [TCA_DUALPI2_STEP_THRESH_US] = { .type = NLA_U32 }, [TCA_DUALPI2_MIN_QLEN_STEP] = { .type = NLA_U32 }, [TCA_DUALPI2_COUPLING] = NLA_POLICY_MIN(NLA_U8, 1), [TCA_DUALPI2_DROP_OVERLOAD] = NLA_POLICY_MAX(NLA_U8, TCA_DUALPI2_DROP_OVERLOAD_MAX), [TCA_DUALPI2_DROP_EARLY] = NLA_POLICY_MAX(NLA_U8, TCA_DUALPI2_DROP_EARLY_MAX), [TCA_DUALPI2_C_PROTECTION] = NLA_POLICY_RANGE(NLA_U8, 0, MAX_WC), [TCA_DUALPI2_ECN_MASK] = NLA_POLICY_RANGE(NLA_U8, TC_DUALPI2_ECN_MASK_L4S_ECT, TCA_DUALPI2_ECN_MASK_MAX), [TCA_DUALPI2_SPLIT_GSO] = NLA_POLICY_MAX(NLA_U8, TCA_DUALPI2_SPLIT_GSO_MAX), }; static int dualpi2_change(struct Qdisc *sch, struct nlattr *opt, struct netlink_ext_ack *extack) { struct nlattr *tb[TCA_DUALPI2_MAX + 1]; struct dualpi2_sched_data *q; int old_backlog; int old_qlen; int err; if (!opt || !nla_len(opt)) { NL_SET_ERR_MSG_MOD(extack, "Dualpi2 options are required"); return -EINVAL; } err = nla_parse_nested(tb, TCA_DUALPI2_MAX, opt, dualpi2_policy, extack); if (err < 0) return err; if (tb[TCA_DUALPI2_STEP_THRESH_PKTS] && tb[TCA_DUALPI2_STEP_THRESH_US]) { NL_SET_ERR_MSG_MOD(extack, "multiple step thresh attributes"); return -EINVAL; } q = qdisc_priv(sch); sch_tree_lock(sch); if (tb[TCA_DUALPI2_LIMIT]) { u32 limit = nla_get_u32(tb[TCA_DUALPI2_LIMIT]); WRITE_ONCE(sch->limit, limit); WRITE_ONCE(q->memory_limit, get_memory_limit(sch, limit)); } if (tb[TCA_DUALPI2_MEMORY_LIMIT]) WRITE_ONCE(q->memory_limit, nla_get_u32(tb[TCA_DUALPI2_MEMORY_LIMIT])); if (tb[TCA_DUALPI2_TARGET]) { u64 target = nla_get_u32(tb[TCA_DUALPI2_TARGET]); WRITE_ONCE(q->pi2_target, target * NSEC_PER_USEC); } if (tb[TCA_DUALPI2_TUPDATE]) { u64 tupdate = nla_get_u32(tb[TCA_DUALPI2_TUPDATE]); WRITE_ONCE(q->pi2_tupdate, convert_us_to_nsec(tupdate)); } if (tb[TCA_DUALPI2_ALPHA]) { u32 alpha = nla_get_u32(tb[TCA_DUALPI2_ALPHA]); WRITE_ONCE(q->pi2_alpha, dualpi2_scale_alpha_beta(alpha)); } if (tb[TCA_DUALPI2_BETA]) { u32 beta = nla_get_u32(tb[TCA_DUALPI2_BETA]); WRITE_ONCE(q->pi2_beta, dualpi2_scale_alpha_beta(beta)); } if (tb[TCA_DUALPI2_STEP_THRESH_PKTS]) { u32 step_th = nla_get_u32(tb[TCA_DUALPI2_STEP_THRESH_PKTS]); WRITE_ONCE(q->step_in_packets, true); WRITE_ONCE(q->step_thresh, step_th); } else if (tb[TCA_DUALPI2_STEP_THRESH_US]) { u32 step_th = nla_get_u32(tb[TCA_DUALPI2_STEP_THRESH_US]); WRITE_ONCE(q->step_in_packets, false); WRITE_ONCE(q->step_thresh, convert_us_to_nsec(step_th)); } if (tb[TCA_DUALPI2_MIN_QLEN_STEP]) WRITE_ONCE(q->min_qlen_step, nla_get_u32(tb[TCA_DUALPI2_MIN_QLEN_STEP])); if (tb[TCA_DUALPI2_COUPLING]) { u8 coupling = nla_get_u8(tb[TCA_DUALPI2_COUPLING]); WRITE_ONCE(q->coupling_factor, coupling); } if (tb[TCA_DUALPI2_DROP_OVERLOAD]) { u8 drop_overload = nla_get_u8(tb[TCA_DUALPI2_DROP_OVERLOAD]); WRITE_ONCE(q->drop_overload, (bool)drop_overload); } if (tb[TCA_DUALPI2_DROP_EARLY]) { u8 drop_early = nla_get_u8(tb[TCA_DUALPI2_DROP_EARLY]); WRITE_ONCE(q->drop_early, (bool)drop_early); } if (tb[TCA_DUALPI2_C_PROTECTION]) { u8 wc = nla_get_u8(tb[TCA_DUALPI2_C_PROTECTION]); dualpi2_calculate_c_protection(sch, q, wc); } if (tb[TCA_DUALPI2_ECN_MASK]) { u8 ecn_mask = nla_get_u8(tb[TCA_DUALPI2_ECN_MASK]); WRITE_ONCE(q->ecn_mask, ecn_mask); } if (tb[TCA_DUALPI2_SPLIT_GSO]) { u8 split_gso = nla_get_u8(tb[TCA_DUALPI2_SPLIT_GSO]); WRITE_ONCE(q->split_gso, (bool)split_gso); } old_qlen = qdisc_qlen(sch); old_backlog = sch->qstats.backlog; while (qdisc_qlen(sch) > sch->limit || q->memory_used > q->memory_limit) { struct sk_buff *skb = qdisc_dequeue_internal(sch, true); q->memory_used -= skb->truesize; qdisc_qstats_backlog_dec(sch, skb); rtnl_qdisc_drop(skb, sch); } qdisc_tree_reduce_backlog(sch, old_qlen - qdisc_qlen(sch), old_backlog - sch->qstats.backlog); sch_tree_unlock(sch); return 0; } /* Default alpha/beta values give a 10dB stability margin with max_rtt=100ms. */ static void dualpi2_reset_default(struct Qdisc *sch) { struct dualpi2_sched_data *q = qdisc_priv(sch); q->sch->limit = 10000; /* Max 125ms at 1Gbps */ q->memory_limit = get_memory_limit(sch, q->sch->limit); q->pi2_target = 15 * NSEC_PER_MSEC; q->pi2_tupdate = 16 * NSEC_PER_MSEC; q->pi2_alpha = dualpi2_scale_alpha_beta(41); /* ~0.16 Hz * 256 */ q->pi2_beta = dualpi2_scale_alpha_beta(819); /* ~3.20 Hz * 256 */ q->step_thresh = 1 * NSEC_PER_MSEC; q->step_in_packets = false; dualpi2_calculate_c_protection(q->sch, q, 10); /* wc=10%, wl=90% */ q->ecn_mask = TC_DUALPI2_ECN_MASK_L4S_ECT; /* INET_ECN_ECT_1 */ q->min_qlen_step = 0; /* Always apply step mark in L-queue */ q->coupling_factor = 2; /* window fairness for equal RTTs */ q->drop_overload = TC_DUALPI2_DROP_OVERLOAD_DROP; /* Drop overload */ q->drop_early = TC_DUALPI2_DROP_EARLY_DROP_DEQUEUE; /* Drop dequeue */ q->split_gso = TC_DUALPI2_SPLIT_GSO_SPLIT_GSO; /* Split GSO */ } static int dualpi2_init(struct Qdisc *sch, struct nlattr *opt, struct netlink_ext_ack *extack) { struct dualpi2_sched_data *q = qdisc_priv(sch); int err; q->l_queue = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops, TC_H_MAKE(sch->handle, 1), extack); if (!q->l_queue) return -ENOMEM; err = tcf_block_get(&q->tcf_block, &q->tcf_filters, sch, extack); if (err) return err; q->sch = sch; dualpi2_reset_default(sch); hrtimer_setup(&q->pi2_timer, dualpi2_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); if (opt && nla_len(opt)) { err = dualpi2_change(sch, opt, extack); if (err) return err; } hrtimer_start(&q->pi2_timer, next_pi2_timeout(q), HRTIMER_MODE_ABS_PINNED); return 0; } static int dualpi2_dump(struct Qdisc *sch, struct sk_buff *skb) { struct dualpi2_sched_data *q = qdisc_priv(sch); struct nlattr *opts; bool step_in_pkts; u32 step_th; step_in_pkts = READ_ONCE(q->step_in_packets); step_th = READ_ONCE(q->step_thresh); opts = nla_nest_start_noflag(skb, TCA_OPTIONS); if (!opts) goto nla_put_failure; if (step_in_pkts && (nla_put_u32(skb, TCA_DUALPI2_LIMIT, READ_ONCE(sch->limit)) || nla_put_u32(skb, TCA_DUALPI2_MEMORY_LIMIT, READ_ONCE(q->memory_limit)) || nla_put_u32(skb, TCA_DUALPI2_TARGET, convert_ns_to_usec(READ_ONCE(q->pi2_target))) || nla_put_u32(skb, TCA_DUALPI2_TUPDATE, convert_ns_to_usec(READ_ONCE(q->pi2_tupdate))) || nla_put_u32(skb, TCA_DUALPI2_ALPHA, dualpi2_unscale_alpha_beta(READ_ONCE(q->pi2_alpha))) || nla_put_u32(skb, TCA_DUALPI2_BETA, dualpi2_unscale_alpha_beta(READ_ONCE(q->pi2_beta))) || nla_put_u32(skb, TCA_DUALPI2_STEP_THRESH_PKTS, step_th) || nla_put_u32(skb, TCA_DUALPI2_MIN_QLEN_STEP, READ_ONCE(q->min_qlen_step)) || nla_put_u8(skb, TCA_DUALPI2_COUPLING, READ_ONCE(q->coupling_factor)) || nla_put_u8(skb, TCA_DUALPI2_DROP_OVERLOAD, READ_ONCE(q->drop_overload)) || nla_put_u8(skb, TCA_DUALPI2_DROP_EARLY, READ_ONCE(q->drop_early)) || nla_put_u8(skb, TCA_DUALPI2_C_PROTECTION, READ_ONCE(q->c_protection_wc)) || nla_put_u8(skb, TCA_DUALPI2_ECN_MASK, READ_ONCE(q->ecn_mask)) || nla_put_u8(skb, TCA_DUALPI2_SPLIT_GSO, READ_ONCE(q->split_gso)))) goto nla_put_failure; if (!step_in_pkts && (nla_put_u32(skb, TCA_DUALPI2_LIMIT, READ_ONCE(sch->limit)) || nla_put_u32(skb, TCA_DUALPI2_MEMORY_LIMIT, READ_ONCE(q->memory_limit)) || nla_put_u32(skb, TCA_DUALPI2_TARGET, convert_ns_to_usec(READ_ONCE(q->pi2_target))) || nla_put_u32(skb, TCA_DUALPI2_TUPDATE, convert_ns_to_usec(READ_ONCE(q->pi2_tupdate))) || nla_put_u32(skb, TCA_DUALPI2_ALPHA, dualpi2_unscale_alpha_beta(READ_ONCE(q->pi2_alpha))) || nla_put_u32(skb, TCA_DUALPI2_BETA, dualpi2_unscale_alpha_beta(READ_ONCE(q->pi2_beta))) || nla_put_u32(skb, TCA_DUALPI2_STEP_THRESH_US, convert_ns_to_usec(step_th)) || nla_put_u32(skb, TCA_DUALPI2_MIN_QLEN_STEP, READ_ONCE(q->min_qlen_step)) || nla_put_u8(skb, TCA_DUALPI2_COUPLING, READ_ONCE(q->coupling_factor)) || nla_put_u8(skb, TCA_DUALPI2_DROP_OVERLOAD, READ_ONCE(q->drop_overload)) || nla_put_u8(skb, TCA_DUALPI2_DROP_EARLY, READ_ONCE(q->drop_early)) || nla_put_u8(skb, TCA_DUALPI2_C_PROTECTION, READ_ONCE(q->c_protection_wc)) || nla_put_u8(skb, TCA_DUALPI2_ECN_MASK, READ_ONCE(q->ecn_mask)) || nla_put_u8(skb, TCA_DUALPI2_SPLIT_GSO, READ_ONCE(q->split_gso)))) goto nla_put_failure; return nla_nest_end(skb, opts); nla_put_failure: nla_nest_cancel(skb, opts); return -1; } static int dualpi2_dump_stats(struct Qdisc *sch, struct gnet_dump *d) { struct dualpi2_sched_data *q = qdisc_priv(sch); struct tc_dualpi2_xstats st = { .prob = READ_ONCE(q->pi2_prob), .packets_in_c = q->packets_in_c, .packets_in_l = q->packets_in_l, .maxq = q->maxq, .ecn_mark = q->ecn_mark, .credit = q->c_protection_credit, .step_marks = q->step_marks, .memory_used = q->memory_used, .max_memory_used = q->max_memory_used, .memory_limit = q->memory_limit, }; u64 qc, ql; get_queue_delays(q, &qc, &ql); st.delay_l = convert_ns_to_usec(ql); st.delay_c = convert_ns_to_usec(qc); return gnet_stats_copy_app(d, &st, sizeof(st)); } /* Reset both L-queue and C-queue, internal packet counters, PI probability, * C-queue protection credit, and timestamps, while preserving current * configuration of DUALPI2. */ static void dualpi2_reset(struct Qdisc *sch) { struct dualpi2_sched_data *q = qdisc_priv(sch); qdisc_reset_queue(sch); qdisc_reset_queue(q->l_queue); q->c_head_ts = 0; q->l_head_ts = 0; q->pi2_prob = 0; q->packets_in_c = 0; q->packets_in_l = 0; q->maxq = 0; q->ecn_mark = 0; q->step_marks = 0; q->memory_used = 0; q->max_memory_used = 0; dualpi2_reset_c_protection(q); } static void dualpi2_destroy(struct Qdisc *sch) { struct dualpi2_sched_data *q = qdisc_priv(sch); q->pi2_tupdate = 0; hrtimer_cancel(&q->pi2_timer); if (q->l_queue) qdisc_put(q->l_queue); tcf_block_put(q->tcf_block); } static struct Qdisc *dualpi2_leaf(struct Qdisc *sch, unsigned long arg) { return NULL; } static unsigned long dualpi2_find(struct Qdisc *sch, u32 classid) { return 0; } static unsigned long dualpi2_bind(struct Qdisc *sch, unsigned long parent, u32 classid) { return 0; } static void dualpi2_unbind(struct Qdisc *q, unsigned long cl) { } static struct tcf_block *dualpi2_tcf_block(struct Qdisc *sch, unsigned long cl, struct netlink_ext_ack *extack) { struct dualpi2_sched_data *q = qdisc_priv(sch); if (cl) return NULL; return q->tcf_block; } static void dualpi2_walk(struct Qdisc *sch, struct qdisc_walker *arg) { unsigned int i; if (arg->stop) return; /* We statically define only 2 queues */ for (i = 0; i < 2; i++) { if (arg->count < arg->skip) { arg->count++; continue; } if (arg->fn(sch, i + 1, arg) < 0) { arg->stop = 1; break; } arg->count++; } } /* Minimal class support to handle tc filters */ static const struct Qdisc_class_ops dualpi2_class_ops = { .leaf = dualpi2_leaf, .find = dualpi2_find, .tcf_block = dualpi2_tcf_block, .bind_tcf = dualpi2_bind, .unbind_tcf = dualpi2_unbind, .walk = dualpi2_walk, }; static struct Qdisc_ops dualpi2_qdisc_ops __read_mostly = { .id = "dualpi2", .cl_ops = &dualpi2_class_ops, .priv_size = sizeof(struct dualpi2_sched_data), .enqueue = dualpi2_qdisc_enqueue, .dequeue = dualpi2_qdisc_dequeue, .peek = qdisc_peek_dequeued, .init = dualpi2_init, .destroy = dualpi2_destroy, .reset = dualpi2_reset, .change = dualpi2_change, .dump = dualpi2_dump, .dump_stats = dualpi2_dump_stats, .owner = THIS_MODULE, }; static int __init dualpi2_module_init(void) { return register_qdisc(&dualpi2_qdisc_ops); } static void __exit dualpi2_module_exit(void) { unregister_qdisc(&dualpi2_qdisc_ops); } module_init(dualpi2_module_init); module_exit(dualpi2_module_exit); MODULE_DESCRIPTION("Dual Queue with Proportional Integral controller Improved with a Square (dualpi2) scheduler"); MODULE_AUTHOR("Koen De Schepper "); MODULE_AUTHOR("Chia-Yu Chang "); MODULE_AUTHOR("Olga Albisser "); MODULE_AUTHOR("Henrik Steen "); MODULE_AUTHOR("Olivier Tilmans "); MODULE_LICENSE("Dual BSD/GPL"); MODULE_VERSION("1.0");