summaryrefslogtreecommitdiff
path: root/lib/aarch64/xlat_tables.c
AgeCommit message (Collapse)Author
2016-04-13Refactor the xlat_tables library codeSoby Mathew
The AArch32 long descriptor format and the AArch64 descriptor format correspond to each other which allows possible sharing of xlat_tables library code between AArch64 and AArch32. This patch refactors the xlat_tables library code to seperate the common functionality from architecture specific code. Prior to this patch, all of the xlat_tables library code were in `lib/aarch64/xlat_tables.c` file. The refactored code is now in `lib/xlat_tables/` directory. The AArch64 specific programming for xlat_tables is in `lib/xlat_tables/aarch64/xlat_tables.c` and the rest of the code common to AArch64 and AArch32 is in `lib/xlat_tables/xlat_tables_common.c`. Also the data types used in xlat_tables library APIs are reworked to make it compatible between AArch64 and AArch32. The `lib/aarch64/xlat_tables.c` file now includes the new xlat_tables library files to retain compatibility for existing platform ports. The macros related to xlat_tables library are also moved from `include/lib/aarch64/arch.h` to the header `include/lib/xlat_tables.h`. NOTE: THE `lib/aarch64/xlat_tables.c` FILE IS DEPRECATED AND PLATFORM PORTS ARE EXPECTED TO INCLUDE THE NEW XLAT_TABLES LIBRARY FILES IN THEIR MAKEFILES. Change-Id: I3d17217d24aaf3a05a4685d642a31d4d56255a0f
2016-03-11Merge pull request #542 from sandrine-bailleux-arm/km/pt-zerodanh-arm
Initialize all translation table entries
2016-03-07Initialize all translation table entriesKristina Martsenko
The current translation table code maps in a series of regions, zeroing the unmapped table entries before and in between the mapped regions. It doesn't, however, zero the unmapped entries after the last mapped region, leaving those entries at whatever value that memory has initially. This is bad because those values can look like valid translation table entries, pointing to valid physical addresses. The CPU is allowed to do speculative reads from any such addresses. If the addresses point to device memory, the results can be unpredictable. This patch zeroes the translation table entries following the last mapped region, ensuring all table entries are either valid or zero (invalid). In addition, it limits the value of ADDR_SPACE_SIZE to those allowed by the architecture and supported by the current code (see D4.2.5 in the Architecture Reference Manual). This simplifies this patch a lot and ensures existing code doesn't do unexpected things. Change-Id: Ic28b6c3f89d73ef58fa80319a9466bb2c7131c21
2016-03-03Extend memory attributes to map non-cacheable memorySandrine Bailleux
At the moment, the memory translation library allows to create memory mappings of 2 types: - Device nGnRE memory (named MT_DEVICE in the library); - Normal, Inner Write-back non-transient, Outer Write-back non-transient memory (named MT_MEMORY in the library). As a consequence, the library code treats the memory type field as a boolean: everything that is not device memory is normal memory and vice-versa. In reality, the ARMv8 architecture allows up to 8 types of memory to be used at a single time for a given exception level. This patch reworks the memory attributes such that the memory type is now defined as an integer ranging from 0 to 7 instead of a boolean. This makes it possible to extend the list of memory types supported by the memory translation library. The priority system dictating memory attributes for overlapping memory regions has been extended to cope with these changes but the algorithm at its core has been preserved. When a memory region is re-mapped with different memory attributes, the memory translation library examines the former attributes and updates them only if the new attributes create a more restrictive mapping. This behaviour is unchanged, only the manipulation of the value has been modified to cope with the new format. This patch also introduces a new type of memory mapping in the memory translation library: MT_NON_CACHEABLE, meaning Normal, Inner Non-cacheable, Outer Non-cacheable memory. This can be useful to map a non-cacheable memory region, such as a DMA buffer for example. The rules around the Execute-Never (XN) bit in a translation table for an MT_NON_CACHEABLE memory mapping have been aligned on the rules used for MT_MEMORY mappings: - If the memory is read-only then it is also executable (XN = 0); - If the memory is read-write then it is not executable (XN = 1). The shareability field for MT_NON_CACHEABLE mappings is always set as 'Outer-Shareable'. Note that this is not strictly needed since shareability is only relevant if the memory is a Normal Cacheable memory type, but this is to align with the existing device memory mappings setup. All Device and Normal Non-cacheable memory regions are always treated as Outer Shareable, regardless of the translation table shareability attributes. This patch also removes the 'ATTR_SO' and 'ATTR_SO_INDEX' #defines. They were introduced to map memory as Device nGnRnE (formerly called "Strongly-Ordered" memory in the ARMv7 architecture) but were not used anywhere in the code base. Removing them avoids any confusion about the memory types supported by the library. Upstream platforms do not currently use the MT_NON_CACHEABLE memory type. NOTE: THIS CHANGE IS SOURCE COMPATIBLE BUT PLATFORMS THAT RELY ON THE BINARY VALUES OF `mmap_attr_t` or the `attr` argument of `mmap_add_region()` MAY BE BROKEN. Change-Id: I717d6ed79b4c845a04e34132432f98b93d661d79
2016-02-01Use tf_printf() for debug logs from xlat_tables.cSoby Mathew
The debug prints used to debug translation table setup in xlat_tables.c used the `printf()` standard library function instead of the stack optimized `tf_printf()` API. DEBUG_XLAT_TABLE option was used to enable debug logs within xlat_tables.c and it configured a much larger stack size for the platform in case it was enabled. This patch modifies these debug prints within xlat_tables.c to use tf_printf() and modifies the format specifiers to be compatible with tf_printf(). The debug prints are now enabled if the VERBOSE prints are enabled in Trusted Firmware via LOG_LEVEL build option. The much larger stack size definition when DEBUG_XLAT_TABLE is defined is no longer required and the platform ports are modified to remove this stack size definition. Change-Id: I2f7d77ea12a04b827fa15e2adc3125b1175e4c23
2016-01-14Remove direct usage of __attribute__((foo))Soren Brinkmann
Migrate all direct usage of __attribute__ to usage of their corresponding macros from cdefs.h. e.g.: - __attribute__((unused)) -> __unused Signed-off-by: Soren Brinkmann <soren.brinkmann@xilinx.com>
2015-03-16Add macro to calculate number of elements in an arrayVikram Kanigiri
This patch defines the ARRAY_SIZE macro for calculating number of elements in an array and uses it where appropriate. Change-Id: I72746a9229f0b259323972b498b9a3999731bc9b
2014-07-28Simplify management of SCTLR_EL3 and SCTLR_EL1Achin Gupta
This patch reworks the manner in which the M,A, C, SA, I, WXN & EE bits of SCTLR_EL3 & SCTLR_EL1 are managed. The EE bit is cleared immediately after reset in EL3. The I, A and SA bits are set next in EL3 and immediately upon entry in S-EL1. These bits are no longer managed in the blX_arch_setup() functions. They do not have to be saved and restored either. The M, WXN and optionally the C bit are set in the enable_mmu_elX() function. This is done during both the warm and cold boot paths. Fixes ARM-software/tf-issues#226 Change-Id: Ie894d1a07b8697c116960d858cd138c50bc7a069
2014-07-19Make enablement of the MMU more flexibleAchin Gupta
This patch adds a 'flags' parameter to each exception level specific function responsible for enabling the MMU. At present only a single flag which indicates whether the data cache should also be enabled is implemented. Subsequent patches will use this flag when enabling the MMU in the warm boot paths. Change-Id: I0eafae1e678c9ecc604e680851093f1680e9cefa
2014-07-09Calculate TCR bits based on VA and PALin Ma
Currently the TCR bits are hardcoded in xlat_tables.c. In order to map higher physical address into low virtual address, the TCR bits need to be configured accordingly. This patch is to save the max VA and PA and calculate the TCR.PS/IPS and t0sz bits in init_xlat_tables function. Change-Id: Ia7a58e5372b20200153057d457f4be5ddbb7dae4
2014-06-02Enable mapping higher physical addressLin Ma
Current ATF uses a direct physical-to-virtual mapping, that is, a physical address is mapped to the same address in the virtual space. For example, physical address 0x8000_0000 is mapped to 0x8000_0000 virtual. This approach works fine for FVP as all its physical addresses fall into 0 to 4GB range. But for other platform where all I/O addresses are 48-bit long, If we follow the same direct mapping, we would need virtual address range from 0 to 0x8fff_ffff_ffff, which is about 144TB. This requires a significant amount of memory for MMU tables and it is not necessary to use that much virtual space in ATF. The patch is to enable mapping a physical address range to an arbitrary virtual address range (instead of flat mapping) Changed "base" to "base_va" and added "base_pa" in mmap_region_t and modified functions such as mmap_add_region and init_xlation_table etc. Fixes ARM-software/tf-issues#158
2014-05-23Add enable mmu platform porting interfacesDan Handley
Previously, the enable_mmu_elX() functions were implicitly part of the platform porting layer since they were included by generic code. These functions have been placed behind 2 new platform functions, bl31_plat_enable_mmu() and bl32_plat_enable_mmu(). These are weakly defined so that they can be optionally overridden by platform ports. Also, the enable_mmu_elX() functions have been moved to lib/aarch64/xlat_tables.c for optional re-use by platform ports. These functions are tightly coupled with the translation table initialization code. Fixes ARM-software/tf-issues#152 Change-Id: I0a2251ce76acfa3c27541f832a9efaa49135cc1c
2014-05-23Split platform.h into separate headersDan Handley
Previously, platform.h contained many declarations and definitions used for different purposes. This file has been split so that: * Platform definitions used by common code that must be defined by the platform are now in platform_def.h. The exact include path is exported through $PLAT_INCLUDES in the platform makefile. * Platform definitions specific to the FVP platform are now in /plat/fvp/fvp_def.h. * Platform API declarations specific to the FVP platform are now in /plat/fvp/fvp_private.h. * The remaining platform API declarations that must be ported by each platform are still in platform.h but this file has been moved to /include/plat/common since this can be shared by all platforms. Change-Id: Ieb3bb22fbab3ee8027413c6b39a783534aee474a
2014-05-20Address issue 156: 64-bit addresses get truncatedLin Ma
Addresses were declared as "unsigned int" in drivers/arm/peripherals/pl011/pl011.h and in function init_xlation_table. Changed to use "unsigned long" instead Fixes ARM-software/tf-issues#156
2014-05-06Always use named structs in header filesDan Handley
Add tag names to all unnamed structs in header files. This allows forward declaration of structs, which is necessary to reduce header file nesting (to be implemented in a subsequent commit). Also change the typedef names across the codebase to use the _t suffix to be more conformant with the Linux coding style. The coding style actually prefers us not to use typedefs at all but this is considered a step too far for Trusted Firmware. Also change the IO framework structs defintions to use typedef'd structs to be consistent with the rest of the codebase. Change-Id: I722b2c86fc0d92e4da3b15e5cab20373dd26786f
2014-05-06Move include and source files to logical locationsDan Handley
Move almost all system include files to a logical sub-directory under ./include. The only remaining system include directories not under ./include are specific to the platform. Move the corresponding source files to match the include directory structure. Also remove pm.h as it is no longer used. Change-Id: Ie5ea6368ec5fad459f3e8a802ad129135527f0b3