summaryrefslogtreecommitdiff
path: root/rust/kernel
diff options
context:
space:
mode:
authorMiguel Ojeda <ojeda@kernel.org>2025-07-15 23:42:55 +0200
committerMiguel Ojeda <ojeda@kernel.org>2025-07-15 23:42:55 +0200
commit8ecb65b7b68ea48350833ba59c1257718e859768 (patch)
tree272d420304019cdb4998b970663608c8d7bf1f01 /rust/kernel
parent7c098cd5eaae557934f4e4ea0b2809a9972f6a5a (diff)
parentd49ac7744f578bcc8708a845cce24d3b91f86260 (diff)
Merge tag 'alloc-next-v6.17-2025-07-15' of https://github.com/Rust-for-Linux/linux into rust-next
Pull alloc and DMA updates from Danilo Krummrich: Box: - Implement Borrow / BorrowMut for Box<T, A>. Vec: - Implement Default for Vec<T, A>. - Implement Borrow / BorrowMut for Vec<T, A>. DMA: - Clarify wording and be consistent in 'coherent' nomenclature. - Convert the read!() / write!() macros to return a Result. - Add as_slice() / write() methods in CoherentAllocation. - Fix doc-comment of dma_handle(). - Expose count() and size() in CoherentAllocation and add the corresponding type invariants. - Implement CoherentAllocation::dma_handle_with_offset(). - Require mutable reference for as_slice_mut() and write(). MAINTAINERS: - Add Vlastimil Babka, Liam R. Howlett, Uladzislau Rezki and Lorenzo Stoakes as reviewers (thanks everyone). * tag 'alloc-next-v6.17-2025-07-15' of https://github.com/Rust-for-Linux/linux: MAINTAINERS: add mm folks as reviewers to rust alloc rust: dma: require mutable reference for as_slice_mut() and write() rust: dma: add dma_handle_with_offset method to CoherentAllocation rust: dma: expose the count and size of CoherentAllocation rust: dma: fix doc-comment of dma_handle() rust: dma: add as_slice/write functions for CoherentAllocation rust: dma: convert the read/write macros to return Result rust: dma: clarify wording and be consistent in `coherent` nomenclature rust: alloc: implement `Borrow` and `BorrowMut` for `KBox` rust: alloc: implement `Borrow` and `BorrowMut` for `Vec` rust: vec: impl Default for Vec with any allocator
Diffstat (limited to 'rust/kernel')
-rw-r--r--rust/kernel/alloc/kbox.rs57
-rw-r--r--rust/kernel/alloc/kvec.rs55
-rw-r--r--rust/kernel/dma.rs199
3 files changed, 276 insertions, 35 deletions
diff --git a/rust/kernel/alloc/kbox.rs b/rust/kernel/alloc/kbox.rs
index bffe72f44cb3..856d05aa60f1 100644
--- a/rust/kernel/alloc/kbox.rs
+++ b/rust/kernel/alloc/kbox.rs
@@ -6,6 +6,7 @@
use super::allocator::{KVmalloc, Kmalloc, Vmalloc};
use super::{AllocError, Allocator, Flags};
use core::alloc::Layout;
+use core::borrow::{Borrow, BorrowMut};
use core::fmt;
use core::marker::PhantomData;
use core::mem::ManuallyDrop;
@@ -504,6 +505,62 @@ where
}
}
+/// # Examples
+///
+/// ```
+/// # use core::borrow::Borrow;
+/// # use kernel::alloc::KBox;
+/// struct Foo<B: Borrow<u32>>(B);
+///
+/// // Owned instance.
+/// let owned = Foo(1);
+///
+/// // Owned instance using `KBox`.
+/// let owned_kbox = Foo(KBox::new(1, GFP_KERNEL)?);
+///
+/// let i = 1;
+/// // Borrowed from `i`.
+/// let borrowed = Foo(&i);
+/// # Ok::<(), Error>(())
+/// ```
+impl<T, A> Borrow<T> for Box<T, A>
+where
+ T: ?Sized,
+ A: Allocator,
+{
+ fn borrow(&self) -> &T {
+ self.deref()
+ }
+}
+
+/// # Examples
+///
+/// ```
+/// # use core::borrow::BorrowMut;
+/// # use kernel::alloc::KBox;
+/// struct Foo<B: BorrowMut<u32>>(B);
+///
+/// // Owned instance.
+/// let owned = Foo(1);
+///
+/// // Owned instance using `KBox`.
+/// let owned_kbox = Foo(KBox::new(1, GFP_KERNEL)?);
+///
+/// let mut i = 1;
+/// // Borrowed from `i`.
+/// let borrowed = Foo(&mut i);
+/// # Ok::<(), Error>(())
+/// ```
+impl<T, A> BorrowMut<T> for Box<T, A>
+where
+ T: ?Sized,
+ A: Allocator,
+{
+ fn borrow_mut(&mut self) -> &mut T {
+ self.deref_mut()
+ }
+}
+
impl<T, A> fmt::Display for Box<T, A>
where
T: ?Sized + fmt::Display,
diff --git a/rust/kernel/alloc/kvec.rs b/rust/kernel/alloc/kvec.rs
index 0477041cbc03..3c72e0bdddb8 100644
--- a/rust/kernel/alloc/kvec.rs
+++ b/rust/kernel/alloc/kvec.rs
@@ -8,6 +8,7 @@ use super::{
AllocError, Allocator, Box, Flags,
};
use core::{
+ borrow::{Borrow, BorrowMut},
fmt,
marker::PhantomData,
mem::{ManuallyDrop, MaybeUninit},
@@ -851,7 +852,7 @@ where
}
}
-impl<T> Default for KVec<T> {
+impl<T, A: Allocator> Default for Vec<T, A> {
#[inline]
fn default() -> Self {
Self::new()
@@ -890,6 +891,58 @@ where
}
}
+/// # Examples
+///
+/// ```
+/// # use core::borrow::Borrow;
+/// struct Foo<B: Borrow<[u32]>>(B);
+///
+/// // Owned array.
+/// let owned_array = Foo([1, 2, 3]);
+///
+/// // Owned vector.
+/// let owned_vec = Foo(KVec::from_elem(0, 3, GFP_KERNEL)?);
+///
+/// let arr = [1, 2, 3];
+/// // Borrowed slice from `arr`.
+/// let borrowed_slice = Foo(&arr[..]);
+/// # Ok::<(), Error>(())
+/// ```
+impl<T, A> Borrow<[T]> for Vec<T, A>
+where
+ A: Allocator,
+{
+ fn borrow(&self) -> &[T] {
+ self.as_slice()
+ }
+}
+
+/// # Examples
+///
+/// ```
+/// # use core::borrow::BorrowMut;
+/// struct Foo<B: BorrowMut<[u32]>>(B);
+///
+/// // Owned array.
+/// let owned_array = Foo([1, 2, 3]);
+///
+/// // Owned vector.
+/// let owned_vec = Foo(KVec::from_elem(0, 3, GFP_KERNEL)?);
+///
+/// let mut arr = [1, 2, 3];
+/// // Borrowed slice from `arr`.
+/// let borrowed_slice = Foo(&mut arr[..]);
+/// # Ok::<(), Error>(())
+/// ```
+impl<T, A> BorrowMut<[T]> for Vec<T, A>
+where
+ A: Allocator,
+{
+ fn borrow_mut(&mut self) -> &mut [T] {
+ self.as_mut_slice()
+ }
+}
+
impl<T: Eq, A> Eq for Vec<T, A> where A: Allocator {}
impl<T, I: SliceIndex<[T]>, A> Index<I> for Vec<T, A>
diff --git a/rust/kernel/dma.rs b/rust/kernel/dma.rs
index 8e317005decd..1f7bae643416 100644
--- a/rust/kernel/dma.rs
+++ b/rust/kernel/dma.rs
@@ -89,7 +89,7 @@ pub mod attrs {
/// Forces contiguous allocation of the buffer in physical memory.
pub const DMA_ATTR_FORCE_CONTIGUOUS: Attrs = Attrs(bindings::DMA_ATTR_FORCE_CONTIGUOUS);
- /// This is a hint to the DMA-mapping subsystem that it's probably not worth the time to try
+ /// Hints DMA-mapping subsystem that it's probably not worth the time to try
/// to allocate memory to in a way that gives better TLB efficiency.
pub const DMA_ATTR_ALLOC_SINGLE_PAGES: Attrs = Attrs(bindings::DMA_ATTR_ALLOC_SINGLE_PAGES);
@@ -97,7 +97,7 @@ pub mod attrs {
/// `__GFP_NOWARN`).
pub const DMA_ATTR_NO_WARN: Attrs = Attrs(bindings::DMA_ATTR_NO_WARN);
- /// Used to indicate that the buffer is fully accessible at an elevated privilege level (and
+ /// Indicates that the buffer is fully accessible at an elevated privilege level (and
/// ideally inaccessible or at least read-only at lesser-privileged levels).
pub const DMA_ATTR_PRIVILEGED: Attrs = Attrs(bindings::DMA_ATTR_PRIVILEGED);
}
@@ -105,7 +105,7 @@ pub mod attrs {
/// An abstraction of the `dma_alloc_coherent` API.
///
/// This is an abstraction around the `dma_alloc_coherent` API which is used to allocate and map
-/// large consistent DMA regions.
+/// large coherent DMA regions.
///
/// A [`CoherentAllocation`] instance contains a pointer to the allocated region (in the
/// processor's virtual address space) and the device address which can be given to the device
@@ -114,9 +114,11 @@ pub mod attrs {
///
/// # Invariants
///
-/// For the lifetime of an instance of [`CoherentAllocation`], the `cpu_addr` is a valid pointer
-/// to an allocated region of consistent memory and `dma_handle` is the DMA address base of
-/// the region.
+/// - For the lifetime of an instance of [`CoherentAllocation`], the `cpu_addr` is a valid pointer
+/// to an allocated region of coherent memory and `dma_handle` is the DMA address base of the
+/// region.
+/// - The size in bytes of the allocation is equal to `size_of::<T> * count`.
+/// - `size_of::<T> * count` fits into a `usize`.
// TODO
//
// DMA allocations potentially carry device resources (e.g.IOMMU mappings), hence for soundness
@@ -138,7 +140,7 @@ pub struct CoherentAllocation<T: AsBytes + FromBytes> {
}
impl<T: AsBytes + FromBytes> CoherentAllocation<T> {
- /// Allocates a region of `size_of::<T> * count` of consistent memory.
+ /// Allocates a region of `size_of::<T> * count` of coherent memory.
///
/// # Examples
///
@@ -179,9 +181,12 @@ impl<T: AsBytes + FromBytes> CoherentAllocation<T> {
if ret.is_null() {
return Err(ENOMEM);
}
- // INVARIANT: We just successfully allocated a coherent region which is accessible for
- // `count` elements, hence the cpu address is valid. We also hold a refcounted reference
- // to the device.
+ // INVARIANT:
+ // - We just successfully allocated a coherent region which is accessible for
+ // `count` elements, hence the cpu address is valid. We also hold a refcounted reference
+ // to the device.
+ // - The allocated `size` is equal to `size_of::<T> * count`.
+ // - The allocated `size` fits into a `usize`.
Ok(Self {
dev: dev.into(),
dma_handle,
@@ -201,6 +206,21 @@ impl<T: AsBytes + FromBytes> CoherentAllocation<T> {
CoherentAllocation::alloc_attrs(dev, count, gfp_flags, Attrs(0))
}
+ /// Returns the number of elements `T` in this allocation.
+ ///
+ /// Note that this is not the size of the allocation in bytes, which is provided by
+ /// [`Self::size`].
+ pub fn count(&self) -> usize {
+ self.count
+ }
+
+ /// Returns the size in bytes of this allocation.
+ pub fn size(&self) -> usize {
+ // INVARIANT: The type invariant of `Self` guarantees that `size_of::<T> * count` fits into
+ // a `usize`.
+ self.count * core::mem::size_of::<T>()
+ }
+
/// Returns the base address to the allocated region in the CPU's virtual address space.
pub fn start_ptr(&self) -> *const T {
self.cpu_addr
@@ -212,12 +232,113 @@ impl<T: AsBytes + FromBytes> CoherentAllocation<T> {
self.cpu_addr
}
- /// Returns a DMA handle which may given to the device as the DMA address base of
+ /// Returns a DMA handle which may be given to the device as the DMA address base of
/// the region.
pub fn dma_handle(&self) -> bindings::dma_addr_t {
self.dma_handle
}
+ /// Returns a DMA handle starting at `offset` (in units of `T`) which may be given to the
+ /// device as the DMA address base of the region.
+ ///
+ /// Returns `EINVAL` if `offset` is not within the bounds of the allocation.
+ pub fn dma_handle_with_offset(&self, offset: usize) -> Result<bindings::dma_addr_t> {
+ if offset >= self.count {
+ Err(EINVAL)
+ } else {
+ // INVARIANT: The type invariant of `Self` guarantees that `size_of::<T> * count` fits
+ // into a `usize`, and `offset` is inferior to `count`.
+ Ok(self.dma_handle + (offset * core::mem::size_of::<T>()) as bindings::dma_addr_t)
+ }
+ }
+
+ /// Common helper to validate a range applied from the allocated region in the CPU's virtual
+ /// address space.
+ fn validate_range(&self, offset: usize, count: usize) -> Result {
+ if offset.checked_add(count).ok_or(EOVERFLOW)? > self.count {
+ return Err(EINVAL);
+ }
+ Ok(())
+ }
+
+ /// Returns the data from the region starting from `offset` as a slice.
+ /// `offset` and `count` are in units of `T`, not the number of bytes.
+ ///
+ /// For ringbuffer type of r/w access or use-cases where the pointer to the live data is needed,
+ /// [`CoherentAllocation::start_ptr`] or [`CoherentAllocation::start_ptr_mut`] could be used
+ /// instead.
+ ///
+ /// # Safety
+ ///
+ /// * Callers must ensure that the device does not read/write to/from memory while the returned
+ /// slice is live.
+ /// * Callers must ensure that this call does not race with a write to the same region while
+ /// the returned slice is live.
+ pub unsafe fn as_slice(&self, offset: usize, count: usize) -> Result<&[T]> {
+ self.validate_range(offset, count)?;
+ // SAFETY:
+ // - The pointer is valid due to type invariant on `CoherentAllocation`,
+ // we've just checked that the range and index is within bounds. The immutability of the
+ // data is also guaranteed by the safety requirements of the function.
+ // - `offset + count` can't overflow since it is smaller than `self.count` and we've checked
+ // that `self.count` won't overflow early in the constructor.
+ Ok(unsafe { core::slice::from_raw_parts(self.cpu_addr.add(offset), count) })
+ }
+
+ /// Performs the same functionality as [`CoherentAllocation::as_slice`], except that a mutable
+ /// slice is returned.
+ ///
+ /// # Safety
+ ///
+ /// * Callers must ensure that the device does not read/write to/from memory while the returned
+ /// slice is live.
+ /// * Callers must ensure that this call does not race with a read or write to the same region
+ /// while the returned slice is live.
+ pub unsafe fn as_slice_mut(&mut self, offset: usize, count: usize) -> Result<&mut [T]> {
+ self.validate_range(offset, count)?;
+ // SAFETY:
+ // - The pointer is valid due to type invariant on `CoherentAllocation`,
+ // we've just checked that the range and index is within bounds. The immutability of the
+ // data is also guaranteed by the safety requirements of the function.
+ // - `offset + count` can't overflow since it is smaller than `self.count` and we've checked
+ // that `self.count` won't overflow early in the constructor.
+ Ok(unsafe { core::slice::from_raw_parts_mut(self.cpu_addr.add(offset), count) })
+ }
+
+ /// Writes data to the region starting from `offset`. `offset` is in units of `T`, not the
+ /// number of bytes.
+ ///
+ /// # Safety
+ ///
+ /// * Callers must ensure that the device does not read/write to/from memory while the returned
+ /// slice is live.
+ /// * Callers must ensure that this call does not race with a read or write to the same region
+ /// that overlaps with this write.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # fn test(alloc: &mut kernel::dma::CoherentAllocation<u8>) -> Result {
+ /// let somedata: [u8; 4] = [0xf; 4];
+ /// let buf: &[u8] = &somedata;
+ /// // SAFETY: There is no concurrent HW operation on the device and no other R/W access to the
+ /// // region.
+ /// unsafe { alloc.write(buf, 0)?; }
+ /// # Ok::<(), Error>(()) }
+ /// ```
+ pub unsafe fn write(&mut self, src: &[T], offset: usize) -> Result {
+ self.validate_range(offset, src.len())?;
+ // SAFETY:
+ // - The pointer is valid due to type invariant on `CoherentAllocation`
+ // and we've just checked that the range and index is within bounds.
+ // - `offset + count` can't overflow since it is smaller than `self.count` and we've checked
+ // that `self.count` won't overflow early in the constructor.
+ unsafe {
+ core::ptr::copy_nonoverlapping(src.as_ptr(), self.cpu_addr.add(offset), src.len())
+ };
+ Ok(())
+ }
+
/// Returns a pointer to an element from the region with bounds checking. `offset` is in
/// units of `T`, not the number of bytes.
///
@@ -328,20 +449,24 @@ unsafe impl<T: AsBytes + FromBytes + Send> Send for CoherentAllocation<T> {}
#[macro_export]
macro_rules! dma_read {
($dma:expr, $idx: expr, $($field:tt)*) => {{
- let item = $crate::dma::CoherentAllocation::item_from_index(&$dma, $idx)?;
- // SAFETY: `item_from_index` ensures that `item` is always a valid pointer and can be
- // dereferenced. The compiler also further validates the expression on whether `field`
- // is a member of `item` when expanded by the macro.
- unsafe {
- let ptr_field = ::core::ptr::addr_of!((*item) $($field)*);
- $crate::dma::CoherentAllocation::field_read(&$dma, ptr_field)
- }
+ (|| -> ::core::result::Result<_, $crate::error::Error> {
+ let item = $crate::dma::CoherentAllocation::item_from_index(&$dma, $idx)?;
+ // SAFETY: `item_from_index` ensures that `item` is always a valid pointer and can be
+ // dereferenced. The compiler also further validates the expression on whether `field`
+ // is a member of `item` when expanded by the macro.
+ unsafe {
+ let ptr_field = ::core::ptr::addr_of!((*item) $($field)*);
+ ::core::result::Result::Ok(
+ $crate::dma::CoherentAllocation::field_read(&$dma, ptr_field)
+ )
+ }
+ })()
}};
($dma:ident [ $idx:expr ] $($field:tt)* ) => {
- $crate::dma_read!($dma, $idx, $($field)*);
+ $crate::dma_read!($dma, $idx, $($field)*)
};
($($dma:ident).* [ $idx:expr ] $($field:tt)* ) => {
- $crate::dma_read!($($dma).*, $idx, $($field)*);
+ $crate::dma_read!($($dma).*, $idx, $($field)*)
};
}
@@ -368,24 +493,30 @@ macro_rules! dma_read {
#[macro_export]
macro_rules! dma_write {
($dma:ident [ $idx:expr ] $($field:tt)*) => {{
- $crate::dma_write!($dma, $idx, $($field)*);
+ $crate::dma_write!($dma, $idx, $($field)*)
}};
($($dma:ident).* [ $idx:expr ] $($field:tt)* ) => {{
- $crate::dma_write!($($dma).*, $idx, $($field)*);
+ $crate::dma_write!($($dma).*, $idx, $($field)*)
}};
($dma:expr, $idx: expr, = $val:expr) => {
- let item = $crate::dma::CoherentAllocation::item_from_index(&$dma, $idx)?;
- // SAFETY: `item_from_index` ensures that `item` is always a valid item.
- unsafe { $crate::dma::CoherentAllocation::field_write(&$dma, item, $val) }
+ (|| -> ::core::result::Result<_, $crate::error::Error> {
+ let item = $crate::dma::CoherentAllocation::item_from_index(&$dma, $idx)?;
+ // SAFETY: `item_from_index` ensures that `item` is always a valid item.
+ unsafe { $crate::dma::CoherentAllocation::field_write(&$dma, item, $val) }
+ ::core::result::Result::Ok(())
+ })()
};
($dma:expr, $idx: expr, $(.$field:ident)* = $val:expr) => {
- let item = $crate::dma::CoherentAllocation::item_from_index(&$dma, $idx)?;
- // SAFETY: `item_from_index` ensures that `item` is always a valid pointer and can be
- // dereferenced. The compiler also further validates the expression on whether `field`
- // is a member of `item` when expanded by the macro.
- unsafe {
- let ptr_field = ::core::ptr::addr_of_mut!((*item) $(.$field)*);
- $crate::dma::CoherentAllocation::field_write(&$dma, ptr_field, $val)
- }
+ (|| -> ::core::result::Result<_, $crate::error::Error> {
+ let item = $crate::dma::CoherentAllocation::item_from_index(&$dma, $idx)?;
+ // SAFETY: `item_from_index` ensures that `item` is always a valid pointer and can be
+ // dereferenced. The compiler also further validates the expression on whether `field`
+ // is a member of `item` when expanded by the macro.
+ unsafe {
+ let ptr_field = ::core::ptr::addr_of_mut!((*item) $(.$field)*);
+ $crate::dma::CoherentAllocation::field_write(&$dma, ptr_field, $val)
+ }
+ ::core::result::Result::Ok(())
+ })()
};
}