diff options
| author | Andrii Nakryiko <andrii@kernel.org> | 2024-01-24 11:42:58 -0800 |
|---|---|---|
| committer | Alexei Starovoitov <ast@kernel.org> | 2024-01-24 16:21:03 -0800 |
| commit | c8632acf193beac64bbdaebef013368c480bf74f (patch) | |
| tree | d9b85c5c1cc0518b3c7d98fbd814a4aa51b636d5 /tools/include/uapi/linux/bpf.h | |
| parent | c9f115564561af63db662791e9a35fcf1dfefd2a (diff) | |
| parent | 906ee42cb1be1152ef24465704cc89edc3f571c1 (diff) | |
Merge branch 'bpf-token'
Andrii Nakryiko says:
====================
BPF token
This patch set is a combination of three BPF token-related patch sets ([0],
[1], [2]) with fixes ([3]) to kernel-side token_fd passing APIs incorporated
into relevant patches, bpf_token_capable() changes requested by
Christian Brauner, and necessary libbpf and BPF selftests side adjustments.
This patch set introduces an ability to delegate a subset of BPF subsystem
functionality from privileged system-wide daemon (e.g., systemd or any other
container manager) through special mount options for userns-bound BPF FS to
a *trusted* unprivileged application. Trust is the key here. This
functionality is not about allowing unconditional unprivileged BPF usage.
Establishing trust, though, is completely up to the discretion of respective
privileged application that would create and mount a BPF FS instance with
delegation enabled, as different production setups can and do achieve it
through a combination of different means (signing, LSM, code reviews, etc),
and it's undesirable and infeasible for kernel to enforce any particular way
of validating trustworthiness of particular process.
The main motivation for this work is a desire to enable containerized BPF
applications to be used together with user namespaces. This is currently
impossible, as CAP_BPF, required for BPF subsystem usage, cannot be namespaced
or sandboxed, as a general rule. E.g., tracing BPF programs, thanks to BPF
helpers like bpf_probe_read_kernel() and bpf_probe_read_user() can safely read
arbitrary memory, and it's impossible to ensure that they only read memory of
processes belonging to any given namespace. This means that it's impossible to
have a mechanically verifiable namespace-aware CAP_BPF capability, and as such
another mechanism to allow safe usage of BPF functionality is necessary.
BPF FS delegation mount options and BPF token derived from such BPF FS instance
is such a mechanism. Kernel makes no assumption about what "trusted"
constitutes in any particular case, and it's up to specific privileged
applications and their surrounding infrastructure to decide that. What kernel
provides is a set of APIs to setup and mount special BPF FS instance and
derive BPF tokens from it. BPF FS and BPF token are both bound to its owning
userns and in such a way are constrained inside intended container. Users can
then pass BPF token FD to privileged bpf() syscall commands, like BPF map
creation and BPF program loading, to perform such operations without having
init userns privileges.
This version incorporates feedback and suggestions ([4]) received on earlier
iterations of BPF token approach, and instead of allowing to create BPF tokens
directly assuming capable(CAP_SYS_ADMIN), we instead enhance BPF FS to accept
a few new delegation mount options. If these options are used and BPF FS itself
is properly created, set up, and mounted inside the user namespaced container,
user application is able to derive a BPF token object from BPF FS instance, and
pass that token to bpf() syscall. As explained in patch #3, BPF token itself
doesn't grant access to BPF functionality, but instead allows kernel to do
namespaced capabilities checks (ns_capable() vs capable()) for CAP_BPF,
CAP_PERFMON, CAP_NET_ADMIN, and CAP_SYS_ADMIN, as applicable. So it forms one
half of a puzzle and allows container managers and sys admins to have safe and
flexible configuration options: determining which containers get delegation of
BPF functionality through BPF FS, and then which applications within such
containers are allowed to perform bpf() commands, based on namespaces
capabilities.
Previous attempt at addressing this very same problem ([5]) attempted to
utilize authoritative LSM approach, but was conclusively rejected by upstream
LSM maintainers. BPF token concept is not changing anything about LSM
approach, but can be combined with LSM hooks for very fine-grained security
policy. Some ideas about making BPF token more convenient to use with LSM (in
particular custom BPF LSM programs) was briefly described in recent LSF/MM/BPF
2023 presentation ([6]). E.g., an ability to specify user-provided data
(context), which in combination with BPF LSM would allow implementing a very
dynamic and fine-granular custom security policies on top of BPF token. In the
interest of minimizing API surface area and discussions this was relegated to
follow up patches, as it's not essential to the fundamental concept of
delegatable BPF token.
It should be noted that BPF token is conceptually quite similar to the idea of
/dev/bpf device file, proposed by Song a while ago ([7]). The biggest
difference is the idea of using virtual anon_inode file to hold BPF token and
allowing multiple independent instances of them, each (potentially) with its
own set of restrictions. And also, crucially, BPF token approach is not using
any special stateful task-scoped flags. Instead, bpf() syscall accepts
token_fd parameters explicitly for each relevant BPF command. This addresses
main concerns brought up during the /dev/bpf discussion, and fits better with
overall BPF subsystem design.
Second part of this patch set adds full support for BPF token in libbpf's BPF
object high-level API. Good chunk of the changes rework libbpf feature
detection internals, which are the most affected by BPF token presence.
Besides internal refactorings, libbpf allows to pass location of BPF FS from
which BPF token should be created by libbpf. This can be done explicitly though
a new bpf_object_open_opts.bpf_token_path field. But we also add implicit BPF
token creation logic to BPF object load step, even without any explicit
involvement of the user. If the environment is setup properly, BPF token will
be created transparently and used implicitly. This allows for all existing
application to gain BPF token support by just linking with latest version of
libbpf library. No source code modifications are required. All that under
assumption that privileged container management agent properly set up default
BPF FS instance at /sys/bpf/fs to allow BPF token creation.
libbpf adds support to override default BPF FS location for BPF token creation
through LIBBPF_BPF_TOKEN_PATH envvar knowledge. This allows admins or container
managers to mount BPF token-enabled BPF FS at non-standard location without the
need to coordinate with applications. LIBBPF_BPF_TOKEN_PATH can also be used
to disable BPF token implicit creation by setting it to an empty value.
[0] https://patchwork.kernel.org/project/netdevbpf/list/?series=805707&state=*
[1] https://patchwork.kernel.org/project/netdevbpf/list/?series=810260&state=*
[2] https://patchwork.kernel.org/project/netdevbpf/list/?series=809800&state=*
[3] https://patchwork.kernel.org/project/netdevbpf/patch/20231219053150.336991-1-andrii@kernel.org/
[4] https://lore.kernel.org/bpf/20230704-hochverdient-lehne-eeb9eeef785e@brauner/
[5] https://lore.kernel.org/bpf/20230412043300.360803-1-andrii@kernel.org/
[6] http://vger.kernel.org/bpfconf2023_material/Trusted_unprivileged_BPF_LSFMM2023.pdf
[7] https://lore.kernel.org/bpf/20190627201923.2589391-2-songliubraving@fb.com/
v1->v2:
- disable BPF token creation in init userns, and simplify
bpf_token_capable() logic (Christian);
- use kzalloc/kfree instead of kvzalloc/kvfree (Linus);
- few more selftest cases to validate LSM and BPF token interations.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
====================
Link: https://lore.kernel.org/r/20240124022127.2379740-1-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Diffstat (limited to 'tools/include/uapi/linux/bpf.h')
| -rw-r--r-- | tools/include/uapi/linux/bpf.h | 55 |
1 files changed, 55 insertions, 0 deletions
diff --git a/tools/include/uapi/linux/bpf.h b/tools/include/uapi/linux/bpf.h index 1fef6d5a1330..d96708380e52 100644 --- a/tools/include/uapi/linux/bpf.h +++ b/tools/include/uapi/linux/bpf.h @@ -847,6 +847,36 @@ union bpf_iter_link_info { * Returns zero on success. On error, -1 is returned and *errno* * is set appropriately. * + * BPF_TOKEN_CREATE + * Description + * Create BPF token with embedded information about what + * BPF-related functionality it allows: + * - a set of allowed bpf() syscall commands; + * - a set of allowed BPF map types to be created with + * BPF_MAP_CREATE command, if BPF_MAP_CREATE itself is allowed; + * - a set of allowed BPF program types and BPF program attach + * types to be loaded with BPF_PROG_LOAD command, if + * BPF_PROG_LOAD itself is allowed. + * + * BPF token is created (derived) from an instance of BPF FS, + * assuming it has necessary delegation mount options specified. + * This BPF token can be passed as an extra parameter to various + * bpf() syscall commands to grant BPF subsystem functionality to + * unprivileged processes. + * + * When created, BPF token is "associated" with the owning + * user namespace of BPF FS instance (super block) that it was + * derived from, and subsequent BPF operations performed with + * BPF token would be performing capabilities checks (i.e., + * CAP_BPF, CAP_PERFMON, CAP_NET_ADMIN, CAP_SYS_ADMIN) within + * that user namespace. Without BPF token, such capabilities + * have to be granted in init user namespace, making bpf() + * syscall incompatible with user namespace, for the most part. + * + * Return + * A new file descriptor (a nonnegative integer), or -1 if an + * error occurred (in which case, *errno* is set appropriately). + * * NOTES * eBPF objects (maps and programs) can be shared between processes. * @@ -901,6 +931,8 @@ enum bpf_cmd { BPF_ITER_CREATE, BPF_LINK_DETACH, BPF_PROG_BIND_MAP, + BPF_TOKEN_CREATE, + __MAX_BPF_CMD, }; enum bpf_map_type { @@ -951,6 +983,7 @@ enum bpf_map_type { BPF_MAP_TYPE_BLOOM_FILTER, BPF_MAP_TYPE_USER_RINGBUF, BPF_MAP_TYPE_CGRP_STORAGE, + __MAX_BPF_MAP_TYPE }; /* Note that tracing related programs such as @@ -995,6 +1028,7 @@ enum bpf_prog_type { BPF_PROG_TYPE_SK_LOOKUP, BPF_PROG_TYPE_SYSCALL, /* a program that can execute syscalls */ BPF_PROG_TYPE_NETFILTER, + __MAX_BPF_PROG_TYPE }; enum bpf_attach_type { @@ -1333,6 +1367,9 @@ enum { /* Flag for value_type_btf_obj_fd, the fd is available */ BPF_F_VTYPE_BTF_OBJ_FD = (1U << 15), + +/* BPF token FD is passed in a corresponding command's token_fd field */ + BPF_F_TOKEN_FD = (1U << 16), }; /* Flags for BPF_PROG_QUERY. */ @@ -1411,6 +1448,10 @@ union bpf_attr { * type data for * btf_vmlinux_value_type_id. */ + /* BPF token FD to use with BPF_MAP_CREATE operation. + * If provided, map_flags should have BPF_F_TOKEN_FD flag set. + */ + __s32 map_token_fd; }; struct { /* anonymous struct used by BPF_MAP_*_ELEM commands */ @@ -1480,6 +1521,10 @@ union bpf_attr { * truncated), or smaller (if log buffer wasn't filled completely). */ __u32 log_true_size; + /* BPF token FD to use with BPF_PROG_LOAD operation. + * If provided, prog_flags should have BPF_F_TOKEN_FD flag set. + */ + __s32 prog_token_fd; }; struct { /* anonymous struct used by BPF_OBJ_* commands */ @@ -1592,6 +1637,11 @@ union bpf_attr { * truncated), or smaller (if log buffer wasn't filled completely). */ __u32 btf_log_true_size; + __u32 btf_flags; + /* BPF token FD to use with BPF_BTF_LOAD operation. + * If provided, btf_flags should have BPF_F_TOKEN_FD flag set. + */ + __s32 btf_token_fd; }; struct { @@ -1722,6 +1772,11 @@ union bpf_attr { __u32 flags; /* extra flags */ } prog_bind_map; + struct { /* struct used by BPF_TOKEN_CREATE command */ + __u32 flags; + __u32 bpffs_fd; + } token_create; + } __attribute__((aligned(8))); /* The description below is an attempt at providing documentation to eBPF |
