Age | Commit message (Collapse) | Author |
|
Fix trivial ICC_SRE_EL2 register spelling typo in booting.rst.
Signed-off-by: Lorenzo Pieralisi <lpieralisi@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Will Deacon <will@kernel.org>
CC: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20250610120935.852034-1-lpieralisi@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
|
|
Pull kvm updates from Paolo Bonzini:
"As far as x86 goes this pull request "only" includes TDX host support.
Quotes are appropriate because (at 6k lines and 100+ commits) it is
much bigger than the rest, which will come later this week and
consists mostly of bugfixes and selftests. s390 changes will also come
in the second batch.
ARM:
- Add large stage-2 mapping (THP) support for non-protected guests
when pKVM is enabled, clawing back some performance.
- Enable nested virtualisation support on systems that support it,
though it is disabled by default.
- Add UBSAN support to the standalone EL2 object used in nVHE/hVHE
and protected modes.
- Large rework of the way KVM tracks architecture features and links
them with the effects of control bits. While this has no functional
impact, it ensures correctness of emulation (the data is
automatically extracted from the published JSON files), and helps
dealing with the evolution of the architecture.
- Significant changes to the way pKVM tracks ownership of pages,
avoiding page table walks by storing the state in the hypervisor's
vmemmap. This in turn enables the THP support described above.
- New selftest checking the pKVM ownership transition rules
- Fixes for FEAT_MTE_ASYNC being accidentally advertised to guests
even if the host didn't have it.
- Fixes for the address translation emulation, which happened to be
rather buggy in some specific contexts.
- Fixes for the PMU emulation in NV contexts, decoupling PMCR_EL0.N
from the number of counters exposed to a guest and addressing a
number of issues in the process.
- Add a new selftest for the SVE host state being corrupted by a
guest.
- Keep HCR_EL2.xMO set at all times for systems running with the
kernel at EL2, ensuring that the window for interrupts is slightly
bigger, and avoiding a pretty bad erratum on the AmpereOne HW.
- Add workaround for AmpereOne's erratum AC04_CPU_23, which suffers
from a pretty bad case of TLB corruption unless accesses to HCR_EL2
are heavily synchronised.
- Add a per-VM, per-ITS debugfs entry to dump the state of the ITS
tables in a human-friendly fashion.
- and the usual random cleanups.
LoongArch:
- Don't flush tlb if the host supports hardware page table walks.
- Add KVM selftests support.
RISC-V:
- Add vector registers to get-reg-list selftest
- VCPU reset related improvements
- Remove scounteren initialization from VCPU reset
- Support VCPU reset from userspace using set_mpstate() ioctl
x86:
- Initial support for TDX in KVM.
This finally makes it possible to use the TDX module to run
confidential guests on Intel processors. This is quite a large
series, including support for private page tables (managed by the
TDX module and mirrored in KVM for efficiency), forwarding some
TDVMCALLs to userspace, and handling several special VM exits from
the TDX module.
This has been in the works for literally years and it's not really
possible to describe everything here, so I'll defer to the various
merge commits up to and including commit 7bcf7246c42a ('Merge
branch 'kvm-tdx-finish-initial' into HEAD')"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (248 commits)
x86/tdx: mark tdh_vp_enter() as __flatten
Documentation: virt/kvm: remove unreferenced footnote
RISC-V: KVM: lock the correct mp_state during reset
KVM: arm64: Fix documentation for vgic_its_iter_next()
KVM: arm64: np-guest CMOs with PMD_SIZE fixmap
KVM: arm64: Stage-2 huge mappings for np-guests
KVM: arm64: Add a range to pkvm_mappings
KVM: arm64: Convert pkvm_mappings to interval tree
KVM: arm64: Add a range to __pkvm_host_test_clear_young_guest()
KVM: arm64: Add a range to __pkvm_host_wrprotect_guest()
KVM: arm64: Add a range to __pkvm_host_unshare_guest()
KVM: arm64: Add a range to __pkvm_host_share_guest()
KVM: arm64: Introduce for_each_hyp_page
KVM: arm64: Handle huge mappings for np-guest CMOs
KVM: arm64: nv: Release faulted-in VNCR page from mmu_lock critical section
KVM: arm64: nv: Handle TLBI S1E2 for VNCR invalidation with mmu_lock held
KVM: arm64: nv: Hold mmu_lock when invalidating VNCR SW-TLB before translating
RISC-V: KVM: add KVM_CAP_RISCV_MP_STATE_RESET
RISC-V: KVM: Remove scounteren initialization
KVM: RISC-V: remove unnecessary SBI reset state
...
|
|
* for-next/sme-fixes: (35 commits)
arm64/fpsimd: Allow CONFIG_ARM64_SME to be selected
arm64/fpsimd: ptrace: Gracefully handle errors
arm64/fpsimd: ptrace: Mandate SVE payload for streaming-mode state
arm64/fpsimd: ptrace: Do not present register data for inactive mode
arm64/fpsimd: ptrace: Save task state before generating SVE header
arm64/fpsimd: ptrace/prctl: Ensure VL changes leave task in a valid state
arm64/fpsimd: ptrace/prctl: Ensure VL changes do not resurrect stale data
arm64/fpsimd: Make clone() compatible with ZA lazy saving
arm64/fpsimd: Clear PSTATE.SM during clone()
arm64/fpsimd: Consistently preserve FPSIMD state during clone()
arm64/fpsimd: Remove redundant task->mm check
arm64/fpsimd: signal: Use SMSTOP behaviour in setup_return()
arm64/fpsimd: Add task_smstop_sm()
arm64/fpsimd: Factor out {sve,sme}_state_size() helpers
arm64/fpsimd: Clarify sve_sync_*() functions
arm64/fpsimd: ptrace: Consistently handle partial writes to NT_ARM_(S)SVE
arm64/fpsimd: signal: Consistently read FPSIMD context
arm64/fpsimd: signal: Mandate SVE payload for streaming-mode state
arm64/fpsimd: signal: Clear PSTATE.SM when restoring FPSIMD frame only
arm64/fpsimd: Do not discard modified SVE state
...
|
|
On AmpereOne AC04, updates to HCR_EL2 can rarely corrupt simultaneous
translations for data addresses initiated by load/store instructions.
Only instruction initiated translations are vulnerable, not translations
from prefetches for example. A DSB before the store to HCR_EL2 is
sufficient to prevent older instructions from hitting the window for
corruption, and an ISB after is sufficient to prevent younger
instructions from hitting the window for corruption.
Signed-off-by: D Scott Phillips <scott@os.amperecomputing.com>
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20250513184514.2678288-1-scott@os.amperecomputing.com
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
Currently, vec_set_vector_length() can manipulate a task into an invalid
state as a result of a prctl/ptrace syscall which changes the SVE/SME
vector length, resulting in several problems:
(1) When changing the SVE vector length, if the task initially has
PSTATE.ZA==1, and sve_alloc() fails to allocate memory, the task
will be left with PSTATE.ZA==1 and sve_state==NULL. This is not a
legitimate state, and could result in a subsequent null pointer
dereference.
(2) When changing the SVE vector length, if the task initially has
PSTATE.SM==1, the task will be left with PSTATE.SM==1 and
fp_type==FP_STATE_FPSIMD. Streaming mode state always needs to be
saved in SVE format, so this is not a legitimate state.
Attempting to restore this state may cause a task to erroneously
inherit stale streaming mode predicate registers and FFR contents,
behaving non-deterministically and potentially leaving information
from another task.
While in this state, reads of the NT_ARM_SSVE regset will indicate
that the registers are not stored in SVE format. For the NT_ARM_SSVE
regset specifically, debuggers interpret this as meaning that
PSTATE.SM==0.
(3) When changing the SME vector length, if the task initially has
PSTATE.SM==1, the lower 128 bits of task's streaming mode vector
state will be migrated to non-streaming mode, rather than these bits
being zeroed as is usually the case for changes to PSTATE.SM.
To fix the first issue, we can eagerly allocate the new sve_state and
sme_state before modifying the task. This makes it possible to handle
memory allocation failure without modifying the task state at all, and
removes the need to clear TIF_SVE and TIF_SME.
To fix the second issue, we either need to clear PSTATE.SM or not change
the saved fp_type. Given we're going to eagerly allocate sve_state and
sme_state, the simplest option is to preserve PSTATE.SM and the saves
fp_type, and consistently truncate the SVE state. This ensures that the
task always stays in a valid state, and by virtue of not exiting
streaming mode, this also sidesteps the third issue.
I believe these changes should not be problematic for realistic usage:
* When the SVE/SME vector length is changed via prctl(), syscall entry
will have cleared PSTATE.SM. Unless the task's state has been
manipulated via ptrace after entry, the task will have PSTATE.SM==0.
* When the SVE/SME vector length is changed via a write to the
NT_ARM_SVE or NT_ARM_SSVE regsets, PSTATE.SM will be forced
immediately after the length change, and new vector state will be
copied from userspace.
* When the SME vector length is changed via a write to the NT_ARM_ZA
regset, the (S)SVE state is clobbered today, so anyone who cares about
the specific state would need to install this after writing to the
NT_ARM_ZA regset.
As we need to free the old SVE state while TIF_SVE may still be set, we
cannot use sve_free(), and using kfree() directly makes it clear that
the free pairs with the subsequent assignment. As this leaves sve_free()
unused, I've removed the existing sve_free() and renamed __sve_free() to
mirror sme_free().
Fixes: 8bd7f91c03d8 ("arm64/sme: Implement traps and syscall handling for SME")
Fixes: baa8515281b3 ("arm64/fpsimd: Track the saved FPSIMD state type separately to TIF_SVE")
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David Spickett <david.spickett@arm.com>
Cc: Luis Machado <luis.machado@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Brown <broonie@kernel.org>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20250508132644.1395904-16-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
Linux is intended to be compatible with userspace written to Arm's
AAPCS64 procedure call standard [1,2]. For the Scalable Matrix Extension
(SME), AAPCS64 was extended with a "ZA lazy saving scheme", where SME's
ZA tile is lazily callee-saved and caller-restored. In this scheme,
TPIDR2_EL0 indicates whether the ZA tile is live or has been saved by
pointing to a "TPIDR2 block" in memory, which has a "za_save_buffer"
pointer. This scheme has been implemented in GCC and LLVM, with
necessary runtime support implemented in glibc and bionic.
AAPCS64 does not specify how the ZA lazy saving scheme is expected to
interact with thread creation mechanisms such as fork() and
pthread_create(), which would be implemented in terms of the Linux clone
syscall. The behaviour implemented by Linux and glibc/bionic doesn't
always compose safely, as explained below.
Currently the clone syscall is implemented such that PSTATE.ZA and the
ZA tile are always inherited by the new task, and TPIDR2_EL0 is
inherited unless the 'flags' argument includes CLONE_SETTLS,
in which case TPIDR2_EL0 is set to 0/NULL. This doesn't make much sense:
(a) TPIDR2_EL0 is part of the calling convention, and changes as control
is passed between functions. It is *NOT* used for thread local
storage, despite superficial similarity to TPIDR_EL0, which is is
used as the TLS register.
(b) TPIDR2_EL0 and PSTATE.ZA are tightly coupled in the procedure call
standard, and some combinations of states are illegal. In general,
manipulating the two independently is not guaranteed to be safe.
In practice, code which is compliant with the procedure call standard
may issue a clone syscall while in the "ZA dormant" state, where
PSTATE.ZA==1 and TPIDR2_EL0 is non-null and indicates that ZA needs to
be saved. This can cause a variety of problems, including:
* If the implementation of pthread_create() passes CLONE_SETTLS, the
new thread will start with PSTATE.ZA==1 and TPIDR2==NULL. Per the
procedure call standard this is not a legitimate state for most
functions. This can cause data corruption (e.g. as code may rely on
PSTATE.ZA being 0 to guarantee that an SMSTART ZA instruction will
zero the ZA tile contents), and may result in other undefined
behaviour.
* If the implementation of pthread_create() does not pass CLONE_SETTLS, the
new thread will start with PSTATE.ZA==1 and TPIDR2 pointing to a
TPIDR2 block on the parent thread's stack. This can result in a
variety of problems, e.g.
- The child may write back to the parent's za_save_buffer, corrupting
its contents.
- The child may read from the TPIDR2 block after the parent has reused
this memory for something else, and consequently the child may abort
or clobber arbitrary memory.
Ideally we'd require that userspace ensures that a task is in the "ZA
off" state (with PSTATE.ZA==0 and TPIDR2_EL0==NULL) prior to issuing a
clone syscall, and have the kernel force this state for new threads.
Unfortunately, contemporary C libraries do not do this, and simply
forcing this state within the implementation of clone would break
fork().
Instead, we can bodge around this by considering the CLONE_VM flag, and
manipulate PSTATE.ZA and TPIDR2_EL0 as a pair. CLONE_VM indicates that
the new task will run in the same address space as its parent, and in
that case it doesn't make sense to inherit a stale pointer to the
parent's TPIDR2 block:
* For fork(), CLONE_VM will not be set, and it is safe to inherit both
PSTATE.ZA and TPIDR2_EL0 as the new task will have its own copy of the
address space, and cannot clobber its parent's stack.
* For pthread_create() and vfork(), CLONE_VM will be set, and discarding
PSTATE.ZA and TPIDR2_EL0 for the new task doesn't break any existing
assumptions in userspace.
Implement this behaviour for clone(). We currently inherit PSTATE.ZA in
arch_dup_task_struct(), but this does not have access to the clone
flags, so move this logic under copy_thread(). Documentation is updated
to describe the new behaviour.
[1] https://github.com/ARM-software/abi-aa/releases/download/2025Q1/aapcs64.pdf
[2] https://github.com/ARM-software/abi-aa/blob/c51addc3dc03e73a016a1e4edf25440bcac76431/aapcs64/aapcs64.rst
Suggested-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Daniel Kiss <daniel.kiss@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Brown <broonie@kernel.org>
Cc: Richard Sandiford <richard.sandiford@arm.com>
Cc: Sander De Smalen <sander.desmalen@arm.com>
Cc: Tamas Petz <tamas.petz@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yury Khrustalev <yury.khrustalev@arm.com>
Acked-by: Yury Khrustalev <yury.khrustalev@arm.com>
Link: https://lore.kernel.org/r/20250508132644.1395904-14-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
The KVM PV ABI recently added a feature that allows the VM to discover
the set of physical CPU implementations, identified by a tuple of
{MIDR_EL1, REVIDR_EL1, AIDR_EL1}. Unlike other KVM PV features, the
expectation is that the VMM implements the hypercall instead of KVM as
it has the authoritative view of where the VM gets scheduled.
To do this the VMM needs to know the values of these registers on any
CPU in the system. While MIDR_EL1 and REVIDR_EL1 are already exposed,
AIDR_EL1 is not. Provide it in sysfs along with the other identification
registers.
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Link: https://lore.kernel.org/r/20250403231626.3181116-1-oliver.upton@linux.dev
Signed-off-by: Will Deacon <will@kernel.org>
|
|
Linux is intended to be compatible with userspace written to Arm's
AAPCS64 procedure call standard [1,2]. For the Scalable Matrix Extension
(SME), AAPCS64 was extended with a "ZA lazy saving scheme", where SME's
ZA tile is lazily callee-saved and caller-restored. In this scheme,
TPIDR2_EL0 indicates whether the ZA tile is live or has been saved by
pointing to a "TPIDR2 block" in memory, which has a "za_save_buffer"
pointer. This scheme has been implemented in GCC and LLVM, with
necessary runtime support implemented in glibc.
AAPCS64 does not specify how the ZA lazy saving scheme is expected to
interact with signal handling, and the behaviour that AAPCS64 currently
recommends for (sig)setjmp() and (sig)longjmp() does not always compose
safely with signal handling, as explained below.
When Linux delivers a signal, it creates signal frames which contain the
original values of PSTATE.ZA, the ZA tile, and TPIDR_EL2. Between saving
the original state and entering the signal handler, Linux clears
PSTATE.ZA, but leaves TPIDR2_EL0 unchanged. Consequently a signal
handler can be entered with PSTATE.ZA=0 (meaning accesses to ZA will
trap), while TPIDR_EL0 is non-null (which may indicate that ZA needs to
be lazily saved, depending on the contents of the TPIDR2 block). While
in this state, libc and/or compiler runtime code, such as longjmp(), may
attempt to save ZA. As PSTATE.ZA=0, these accesses will trap, causing
the kernel to inject a SIGILL. Note that by virtue of lazy saving
occurring in libc and/or C runtime code, this can be triggered by
application/library code which is unaware of SME.
To avoid the problem above, the kernel must ensure that signal handlers
are entered with PSTATE.ZA and TPIDR2_EL0 configured in a manner which
complies with the ZA lazy saving scheme. Practically speaking, the only
choice is to enter signal handlers with PSTATE.ZA=0 and TPIDR2_EL0=NULL.
This change should not impact SME code which does not follow the ZA lazy
saving scheme (and hence does not use TPIDR2_EL0).
An alternative approach that was considered is to have the signal
handler inherit the original values of both PSTATE.ZA and TPIDR2_EL0,
relying on lazy save/restore sequences being idempotent and capable of
racing safely. This is not safe as signal handlers must be assumed to
have a "private ZA" interface, and therefore cannot be entered with
PSTATE.ZA=1 and TPIDR2_EL0=NULL, but it is legitimate for signals to be
taken from this state.
With the kernel fixed to clear TPIDR2_EL0, there are a couple of
remaining issues (largely masked by the first issue) that must be fixed
in userspace:
(1) When a (sig)setjmp() + (sig)longjmp() pair cross a signal boundary,
ZA state may be discarded when it needs to be preserved.
Currently, the ZA lazy saving scheme recommends that setjmp() does
not save ZA, and recommends that longjmp() is responsible for saving
ZA. A call to longjmp() in a signal handler will not have visibility
of ZA state that existed prior to entry to the signal, and when a
longjmp() is used to bypass a usual signal return, unsaved ZA state
will be discarded erroneously.
To fix this, it is necessary for setjmp() to eagerly save ZA state,
and for longjmp() to configure PSTATE.ZA=0 and TPIDR2_EL0=NULL. This
works regardless of whether a signal boundary is crossed.
(2) When a C++ exception is thrown and crosses a signal boundary before
it is caught, ZA state may be discarded when it needs to be
preserved.
AAPCS64 requires that exception handlers are entered with
PSTATE.{SM,ZA}={0,0} and TPIDR2_EL0=NULL, with exception unwind code
expected to perform any necessary save of ZA state.
Where it is necessary to perform an exception unwind across an
exception boundary, the unwind code must recover any necessary ZA
state (along with TPIDR2) from signal frames.
Fix the kernel as described above, with setup_return() clearing
TPIDR2_EL0 when delivering a signal. Folk on CC are working on fixes for
the remaining userspace issues, including updates/fixes to the AAPCS64
specification and glibc.
[1] https://github.com/ARM-software/abi-aa/releases/download/2025Q1/aapcs64.pdf
[2] https://github.com/ARM-software/abi-aa/blob/c51addc3dc03e73a016a1e4edf25440bcac76431/aapcs64/aapcs64.rst
Fixes: 39782210eb7e ("arm64/sme: Implement ZA signal handling")
Fixes: 39e54499280f ("arm64/signal: Include TPIDR2 in the signal context")
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Daniel Kiss <daniel.kiss@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Brown <broonie@kernel.org>
Cc: Richard Sandiford <richard.sandiford@arm.com>
Cc: Sander De Smalen <sander.desmalen@arm.com>
Cc: Tamas Petz <tamas.petz@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yury Khrustalev <yury.khrustalev@arm.com>
Link: https://lore.kernel.org/r/20250417190113.3778111-1-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- The series "Enable strict percpu address space checks" from Uros
Bizjak uses x86 named address space qualifiers to provide
compile-time checking of percpu area accesses.
This has caused a small amount of fallout - two or three issues were
reported. In all cases the calling code was found to be incorrect.
- The series "Some cleanup for memcg" from Chen Ridong implements some
relatively monir cleanups for the memcontrol code.
- The series "mm: fixes for device-exclusive entries (hmm)" from David
Hildenbrand fixes a boatload of issues which David found then using
device-exclusive PTE entries when THP is enabled. More work is
needed, but this makes thins better - our own HMM selftests now
succeed.
- The series "mm: zswap: remove z3fold and zbud" from Yosry Ahmed
remove the z3fold and zbud implementations. They have been deprecated
for half a year and nobody has complained.
- The series "mm: further simplify VMA merge operation" from Lorenzo
Stoakes implements numerous simplifications in this area. No runtime
effects are anticipated.
- The series "mm/madvise: remove redundant mmap_lock operations from
process_madvise()" from SeongJae Park rationalizes the locking in the
madvise() implementation. Performance gains of 20-25% were observed
in one MADV_DONTNEED microbenchmark.
- The series "Tiny cleanup and improvements about SWAP code" from
Baoquan He contains a number of touchups to issues which Baoquan
noticed when working on the swap code.
- The series "mm: kmemleak: Usability improvements" from Catalin
Marinas implements a couple of improvements to the kmemleak
user-visible output.
- The series "mm/damon/paddr: fix large folios access and schemes
handling" from Usama Arif provides a couple of fixes for DAMON's
handling of large folios.
- The series "mm/damon/core: fix wrong and/or useless damos_walk()
behaviors" from SeongJae Park fixes a few issues with the accuracy of
kdamond's walking of DAMON regions.
- The series "expose mapping wrprotect, fix fb_defio use" from Lorenzo
Stoakes changes the interaction between framebuffer deferred-io and
core MM. No functional changes are anticipated - this is preparatory
work for the future removal of page structure fields.
- The series "mm/damon: add support for hugepage_size DAMOS filter"
from Usama Arif adds a DAMOS filter which permits the filtering by
huge page sizes.
- The series "mm: permit guard regions for file-backed/shmem mappings"
from Lorenzo Stoakes extends the guard region feature from its
present "anon mappings only" state. The feature now covers shmem and
file-backed mappings.
- The series "mm: batched unmap lazyfree large folios during
reclamation" from Barry Song cleans up and speeds up the unmapping
for pte-mapped large folios.
- The series "reimplement per-vma lock as a refcount" from Suren
Baghdasaryan puts the vm_lock back into the vma. Our reasons for
pulling it out were largely bogus and that change made the code more
messy. This patchset provides small (0-10%) improvements on one
microbenchmark.
- The series "Docs/mm/damon: misc DAMOS filters documentation fixes and
improves" from SeongJae Park does some maintenance work on the DAMON
docs.
- The series "hugetlb/CMA improvements for large systems" from Frank
van der Linden addresses a pile of issues which have been observed
when using CMA on large machines.
- The series "mm/damon: introduce DAMOS filter type for unmapped pages"
from SeongJae Park enables users of DMAON/DAMOS to filter my the
page's mapped/unmapped status.
- The series "zsmalloc/zram: there be preemption" from Sergey
Senozhatsky teaches zram to run its compression and decompression
operations preemptibly.
- The series "selftests/mm: Some cleanups from trying to run them" from
Brendan Jackman fixes a pile of unrelated issues which Brendan
encountered while runnimg our selftests.
- The series "fs/proc/task_mmu: add guard region bit to pagemap" from
Lorenzo Stoakes permits userspace to use /proc/pid/pagemap to
determine whether a particular page is a guard page.
- The series "mm, swap: remove swap slot cache" from Kairui Song
removes the swap slot cache from the allocation path - it simply
wasn't being effective.
- The series "mm: cleanups for device-exclusive entries (hmm)" from
David Hildenbrand implements a number of unrelated cleanups in this
code.
- The series "mm: Rework generic PTDUMP configs" from Anshuman Khandual
implements a number of preparatoty cleanups to the GENERIC_PTDUMP
Kconfig logic.
- The series "mm/damon: auto-tune aggregation interval" from SeongJae
Park implements a feedback-driven automatic tuning feature for
DAMON's aggregation interval tuning.
- The series "Fix lazy mmu mode" from Ryan Roberts fixes some issues in
powerpc, sparc and x86 lazy MMU implementations. Ryan did this in
preparation for implementing lazy mmu mode for arm64 to optimize
vmalloc.
- The series "mm/page_alloc: Some clarifications for migratetype
fallback" from Brendan Jackman reworks some commentary to make the
code easier to follow.
- The series "page_counter cleanup and size reduction" from Shakeel
Butt cleans up the page_counter code and fixes a size increase which
we accidentally added late last year.
- The series "Add a command line option that enables control of how
many threads should be used to allocate huge pages" from Thomas
Prescher does that. It allows the careful operator to significantly
reduce boot time by tuning the parallalization of huge page
initialization.
- The series "Fix calculations in trace_balance_dirty_pages() for cgwb"
from Tang Yizhou fixes the tracing output from the dirty page
balancing code.
- The series "mm/damon: make allow filters after reject filters useful
and intuitive" from SeongJae Park improves the handling of allow and
reject filters. Behaviour is made more consistent and the documention
is updated accordingly.
- The series "Switch zswap to object read/write APIs" from Yosry Ahmed
updates zswap to the new object read/write APIs and thus permits the
removal of some legacy code from zpool and zsmalloc.
- The series "Some trivial cleanups for shmem" from Baolin Wang does as
it claims.
- The series "fs/dax: Fix ZONE_DEVICE page reference counts" from
Alistair Popple regularizes the weird ZONE_DEVICE page refcount
handling in DAX, permittig the removal of a number of special-case
checks.
- The series "refactor mremap and fix bug" from Lorenzo Stoakes is a
preparatoty refactoring and cleanup of the mremap() code.
- The series "mm: MM owner tracking for large folios (!hugetlb) +
CONFIG_NO_PAGE_MAPCOUNT" from David Hildenbrand reworks the manner in
which we determine whether a large folio is known to be mapped
exclusively into a single MM.
- The series "mm/damon: add sysfs dirs for managing DAMOS filters based
on handling layers" from SeongJae Park adds a couple of new sysfs
directories to ease the management of DAMON/DAMOS filters.
- The series "arch, mm: reduce code duplication in mem_init()" from
Mike Rapoport consolidates many per-arch implementations of
mem_init() into code generic code, where that is practical.
- The series "mm/damon/sysfs: commit parameters online via
damon_call()" from SeongJae Park continues the cleaning up of sysfs
access to DAMON internal data.
- The series "mm: page_ext: Introduce new iteration API" from Luiz
Capitulino reworks the page_ext initialization to fix a boot-time
crash which was observed with an unusual combination of compile and
cmdline options.
- The series "Buddy allocator like (or non-uniform) folio split" from
Zi Yan reworks the code to split a folio into smaller folios. The
main benefit is lessened memory consumption: fewer post-split folios
are generated.
- The series "Minimize xa_node allocation during xarry split" from Zi
Yan reduces the number of xarray xa_nodes which are generated during
an xarray split.
- The series "drivers/base/memory: Two cleanups" from Gavin Shan
performs some maintenance work on the drivers/base/memory code.
- The series "Add tracepoints for lowmem reserves, watermarks and
totalreserve_pages" from Martin Liu adds some more tracepoints to the
page allocator code.
- The series "mm/madvise: cleanup requests validations and
classifications" from SeongJae Park cleans up some warts which
SeongJae observed during his earlier madvise work.
- The series "mm/hwpoison: Fix regressions in memory failure handling"
from Shuai Xue addresses two quite serious regressions which Shuai
has observed in the memory-failure implementation.
- The series "mm: reliable huge page allocator" from Johannes Weiner
makes huge page allocations cheaper and more reliable by reducing
fragmentation.
- The series "Minor memcg cleanups & prep for memdescs" from Matthew
Wilcox is preparatory work for the future implementation of memdescs.
- The series "track memory used by balloon drivers" from Nico Pache
introduces a way to track memory used by our various balloon drivers.
- The series "mm/damon: introduce DAMOS filter type for active pages"
from Nhat Pham permits users to filter for active/inactive pages,
separately for file and anon pages.
- The series "Adding Proactive Memory Reclaim Statistics" from Hao Jia
separates the proactive reclaim statistics from the direct reclaim
statistics.
- The series "mm/vmscan: don't try to reclaim hwpoison folio" from
Jinjiang Tu fixes our handling of hwpoisoned pages within the reclaim
code.
* tag 'mm-stable-2025-03-30-16-52' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (431 commits)
mm/page_alloc: remove unnecessary __maybe_unused in order_to_pindex()
x86/mm: restore early initialization of high_memory for 32-bits
mm/vmscan: don't try to reclaim hwpoison folio
mm/hwpoison: introduce folio_contain_hwpoisoned_page() helper
cgroup: docs: add pswpin and pswpout items in cgroup v2 doc
mm: vmscan: split proactive reclaim statistics from direct reclaim statistics
selftests/mm: speed up split_huge_page_test
selftests/mm: uffd-unit-tests support for hugepages > 2M
docs/mm/damon/design: document active DAMOS filter type
mm/damon: implement a new DAMOS filter type for active pages
fs/dax: don't disassociate zero page entries
MM documentation: add "Unaccepted" meminfo entry
selftests/mm: add commentary about 9pfs bugs
fork: use __vmalloc_node() for stack allocation
docs/mm: Physical Memory: Populate the "Zones" section
xen: balloon: update the NR_BALLOON_PAGES state
hv_balloon: update the NR_BALLOON_PAGES state
balloon_compaction: update the NR_BALLOON_PAGES state
meminfo: add a per node counter for balloon drivers
mm: remove references to folio in __memcg_kmem_uncharge_page()
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
"Nothing major this time around.
Apart from the usual perf/PMU updates, some page table cleanups, the
notable features are average CPU frequency based on the AMUv1
counters, CONFIG_HOTPLUG_SMT and MOPS instructions (memcpy/memset) in
the uaccess routines.
Perf and PMUs:
- Support for the 'Rainier' CPU PMU from Arm
- Preparatory driver changes and cleanups that pave the way for BRBE
support
- Support for partial virtualisation of the Apple-M1 PMU
- Support for the second event filter in Arm CSPMU designs
- Minor fixes and cleanups (CMN and DWC PMUs)
- Enable EL2 requirements for FEAT_PMUv3p9
Power, CPU topology:
- Support for AMUv1-based average CPU frequency
- Run-time SMT control wired up for arm64 (CONFIG_HOTPLUG_SMT). It
adds a generic topology_is_primary_thread() function overridden by
x86 and powerpc
New(ish) features:
- MOPS (memcpy/memset) support for the uaccess routines
Security/confidential compute:
- Fix the DMA address for devices used in Realms with Arm CCA. The
CCA architecture uses the address bit to differentiate between
shared and private addresses
- Spectre-BHB: assume CPUs Linux doesn't know about vulnerable by
default
Memory management clean-ups:
- Drop the P*D_TABLE_BIT definition in preparation for 128-bit PTEs
- Some minor page table accessor clean-ups
- PIE/POE (permission indirection/overlay) helpers clean-up
Kselftests:
- MTE: skip hugetlb tests if MTE is not supported on such mappings
and user correct naming for sync/async tag checking modes
Miscellaneous:
- Add a PKEY_UNRESTRICTED definition as 0 to uapi (toolchain people
request)
- Sysreg updates for new register fields
- CPU type info for some Qualcomm Kryo cores"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (72 commits)
arm64: mm: Don't use %pK through printk
perf/arm_cspmu: Fix missing io.h include
arm64: errata: Add newer ARM cores to the spectre_bhb_loop_affected() lists
arm64: cputype: Add MIDR_CORTEX_A76AE
arm64: errata: Add KRYO 2XX/3XX/4XX silver cores to Spectre BHB safe list
arm64: errata: Assume that unknown CPUs _are_ vulnerable to Spectre BHB
arm64: errata: Add QCOM_KRYO_4XX_GOLD to the spectre_bhb_k24_list
arm64/sysreg: Enforce whole word match for open/close tokens
arm64/sysreg: Fix unbalanced closing block
arm64: Kconfig: Enable HOTPLUG_SMT
arm64: topology: Support SMT control on ACPI based system
arch_topology: Support SMT control for OF based system
cpu/SMT: Provide a default topology_is_primary_thread()
arm64/mm: Define PTDESC_ORDER
perf/arm_cspmu: Add PMEVFILT2R support
perf/arm_cspmu: Generalise event filtering
perf/arm_cspmu: Move register definitons to header
arm64/kernel: Always use level 2 or higher for early mappings
arm64/mm: Drop PXD_TABLE_BIT
arm64/mm: Check pmd_table() in pmd_trans_huge()
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull irq driver updates from Thomas Gleixner:
- Support for hard indices on RISC-V. The hart index identifies a hart
(core) within a specific interrupt domain in RISC-V's Priviledged
Architecture.
- Rework of the RISC-V MSI driver
This moves the driver over to the generic MSI library and solves the
affinity problem of unmaskable PCI/MSI controllers. Unmaskable
PCI/MSI controllers are prone to lose interrupts when the MSI message
is updated to change the affinity because the message write consists
of three 32-bit subsequent writes, which update address and data. As
these writes are non-atomic versus the device raising an interrupt,
the device can observe a half written update and issue an interrupt
on the wrong vector. This is mitiated by a carefully orchestrated
step by step update and the observation of an eventually pending
interrupt on the CPU which issues the update. The algorithm follows
the well established method of the X86 MSI driver.
- A new driver for the RISC-V Sophgo SG2042 MSI controller
- Overhaul of the Renesas RZQ2L driver
Simplification of the probe function by using devm_*() mechanisms,
which avoid the endless list of error prone gotos in the failure
paths.
- Expand the Renesas RZV2H driver to support RZ/G3E SoCs
- A workaround for Rockchip 3568002 erratum in the GIC-V3 driver to
ensure that the addressing is limited to the lower 32-bit of the
physical address space.
- Add support for the Allwinner AS23 NMI controller
- Expand the IMX irqsteer driver to handle up to 960 input interrupts
- The usual small updates, cleanups and device tree changes
* tag 'irq-drivers-2025-03-23' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (40 commits)
irqchip/imx-irqsteer: Support up to 960 input interrupts
irqchip/sunxi-nmi: Support Allwinner A523 NMI controller
dt-bindings: irq: sun7i-nmi: Document the Allwinner A523 NMI controller
irqchip/davinci-cp-intc: Remove public header
irqchip/renesas-rzv2h: Add RZ/G3E support
irqchip/renesas-rzv2h: Update macros ICU_TSSR_TSSEL_{MASK,PREP}
irqchip/renesas-rzv2h: Update TSSR_TIEN macro
irqchip/renesas-rzv2h: Add field_width to struct rzv2h_hw_info
irqchip/renesas-rzv2h: Add max_tssel to struct rzv2h_hw_info
irqchip/renesas-rzv2h: Add struct rzv2h_hw_info with t_offs variable
irqchip/renesas-rzv2h: Use devm_pm_runtime_enable()
irqchip/renesas-rzv2h: Use devm_reset_control_get_exclusive_deasserted()
irqchip/renesas-rzv2h: Simplify rzv2h_icu_init()
irqchip/renesas-rzv2h: Drop irqchip from struct rzv2h_icu_priv
irqchip/renesas-rzv2h: Fix wrong variable usage in rzv2h_tint_set_type()
dt-bindings: interrupt-controller: renesas,rzv2h-icu: Document RZ/G3E SoC
riscv: sophgo: dts: Add msi controller for SG2042
irqchip: Add the Sophgo SG2042 MSI interrupt controller
dt-bindings: interrupt-controller: Add Sophgo SG2042 MSI
arm64: dts: rockchip: rk356x: Move PCIe MSI to use GIC ITS instead of MBI
...
|
|
Pull documentation updates from Jonathan Corbet:
"It has been a reasonably busy cycle for docs...
- Significant changes throughout the tree to bring Python code up to
current standards and raise the minimum Python required to 3.9
Much of this is preparatory to replacing the ancient Perl
scripts/kernel-doc horror with a slightly less horrifying Python
implementation, expected for 6.16
- Update the minimum Sphinx required to 3.4.3, allowing us to remove
a bunch of older compatibility code
- Rework and improve the generation of the ABI documentation
(All of the above done by Mauro)
- Lots of translation updates. Alex Shi and Yanteng Si are taking on
responsibility for the Chinese translations going forward; that
work will still get to you via docs-next
- Try to standardize the format for indicating a developer's
affiliation in commit tags
- Clarify the TAB's role in CoC enforcement actions
- Try to spell out the rules for when a commit tag can name another
developer without their explicit permission
Plus lots of other typo fixes and updates"
* tag 'docs-6.15' of git://git.lwn.net/linux: (98 commits)
docs/zh_CN: fix spelling mistake
docs/Chinese: change the disclaimer words
docs/zh_CN: Add snp-tdx-threat-model index Chinese translation
docs: driver-api: firmware: clarify userspace requirements
docs: clarify rules wrt tagging other people
docs: Remove outdated highuid.rst documentation
Documentation: dma-buf: heaps: Add heap name definitions
docs/.../submit-checklist: Use Documentation/admin-guide/abi.rst for cross-ref of README
docs: Correct installation instruction
Documentation: kcsan: fix "Plain Accesses and Data Races" URL in kcsan.rst
Documentation/CoC: Spell out the TAB role in enforcement decisions
Documentation: ocxl.rst: Update consortium site
scripts: get_feat.pl: substitute s390x with s390
scripts/kernel-doc: drop dead code for Wcontents_before_sections
scripts/kernel-doc: don't add not needed new lines
docs: driver-api/infiniband.rst: fix Kerneldoc markup
drivers: firewire: firewire-cdev.h: fix identation on a kernel-doc markup
drivers: media: intel-ipu3.h: fix identation on a kernel-doc markup
include/asm-generic/io.h: fix kerneldoc markup
Docs/arch/arm64: Fix spelling in amu.rst
...
|
|
Both GENERIC_PTDUMP and PTDUMP_CORE are not user selectable config
options. Just drop these from documentation.
Link: https://lkml.kernel.org/r/20250226122404.1927473-4-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Suggested-by: Steven Price <steven.price@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
FEAT_PMUv3p9 registers such as PMICNTR_EL0, PMICFILTR_EL0, and PMUACR_EL1
access from EL1 requires appropriate EL2 fine grained trap configuration
via FEAT_FGT2 based trap control registers HDFGRTR2_EL2 and HDFGWTR2_EL2.
Otherwise such register accesses will result in traps into EL2.
Add a new helper __init_el2_fgt2() which initializes FEAT_FGT2 based fine
grained trap control registers HDFGRTR2_EL2 and HDFGWTR2_EL2 (setting the
bits nPMICNTR_EL0, nPMICFILTR_EL0 and nPMUACR_EL1) to enable access into
PMICNTR_EL0, PMICFILTR_EL0, and PMUACR_EL1 registers.
Also update booting.rst with SCR_EL3.FGTEn2 requirement for all FEAT_FGT2
based registers to be accessible in EL2.
Cc: Will Deacon <will@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Rob Herring <robh@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Oliver Upton <oliver.upton@linux.dev>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-doc@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: kvmarm@lists.linux.dev
Fixes: 0bbff9ed8165 ("perf/arm_pmuv3: Add PMUv3.9 per counter EL0 access control")
Fixes: d8226d8cfbaf ("perf: arm_pmuv3: Add support for Armv9.4 PMU instruction counter")
Tested-by: Rob Herring (Arm) <robh@kernel.org>
Reviewed-by: Rob Herring (Arm) <robh@kernel.org>
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Link: https://lore.kernel.org/r/20250227035119.2025171-1-anshuman.khandual@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Change though to through.
Signed-off-by: Gabriel <gshahrouzi@gmail.com>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
Link: https://lore.kernel.org/r/67bd05b5.c80a0220.205997.19df@mx.google.com
|
|
Rockchip RK3566/RK3568 GIC600 integration has DDR addressing
limited to the first 32bit of physical address space. Rockchip
assigned Erratum ID #3568002 for this issue. Add driver quirk for
this Rockchip GIC Erratum.
Note, that the 0x0201743b GIC600 ID is not Rockchip-specific and is
common for many ARM GICv3 implementations. Hence, there is an extra
of_machine_is_compatible() check.
Signed-off-by: Dmitry Osipenko <dmitry.osipenko@collabora.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/all/20250216221634.364158-2-dmitry.osipenko@collabora.com
|
|
Now that Documentation/ABI is processed by automarkup, let it
generate cross-references for the corresponding ABI file.
Signed-off-by: Mauro Carvalho Chehab <mchehab+huawei@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
Link: https://lore.kernel.org/r/0a989eea90e5d03a36a07760f8b505e074e85c03.1739254867.git.mchehab+huawei@kernel.org
|
|
In one of the renumberings of the GCS hwcap a stray reference to HWCAP2 was
left, fix it.
Reported-by: David Spickett <David.Spickett@arm.com>
Fixes: 7058bf87cd59 ("arm64/gcs: Document the ABI for Guarded Control Stacks")
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20250124-arm64-gcs-hwcap-doc-v1-1-fa9368b01ca6@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/iommu/linux
Pull iommu updates from Joerg Roedel:
"Core changes:
- PASID support for the blocked_domain
ARM-SMMU Updates:
- SMMUv2:
- Implement per-client prefetcher configuration on Qualcomm SoCs
- Support for the Adreno SMMU on Qualcomm's SDM670 SOC
- SMMUv3:
- Pretty-printing of event records
- Drop the ->domain_alloc_paging implementation in favour of
domain_alloc_paging_flags(flags==0)
- IO-PGTable:
- Generalisation of the page-table walker to enable external
walkers (e.g. for debugging unexpected page-faults from the GPU)
- Minor fix for handling concatenated PGDs at stage-2 with 16KiB
pages
- Misc:
- Clean-up device probing and replace the crufty probe-deferral
hack with a more robust implementation of
arm_smmu_get_by_fwnode()
- Device-tree binding updates for a bunch of Qualcomm platforms
Intel VT-d Updates:
- Remove domain_alloc_paging()
- Remove capability audit code
- Draining PRQ in sva unbind path when FPD bit set
- Link cache tags of same iommu unit together
AMD-Vi Updates:
- Use CMPXCHG128 to update DTE
- Cleanups of the domain_alloc_paging() path
RiscV IOMMU:
- Platform MSI support
- Shutdown support
Rockchip IOMMU:
- Add DT bindings for Rockchip RK3576
More smaller fixes and cleanups"
* tag 'iommu-updates-v6.14' of git://git.kernel.org/pub/scm/linux/kernel/git/iommu/linux: (66 commits)
iommu: Use str_enable_disable-like helpers
iommu/amd: Fully decode all combinations of alloc_paging_flags
iommu/amd: Move the nid to pdom_setup_pgtable()
iommu/amd: Change amd_iommu_pgtable to use enum protection_domain_mode
iommu/amd: Remove type argument from do_iommu_domain_alloc() and related
iommu/amd: Remove dev == NULL checks
iommu/amd: Remove domain_alloc()
iommu/amd: Remove unused amd_iommu_domain_update()
iommu/riscv: Fixup compile warning
iommu/arm-smmu-v3: Add missing #include of linux/string_choices.h
iommu/arm-smmu-v3: Use str_read_write helper w/ logs
iommu/io-pgtable-arm: Add way to debug pgtable walk
iommu/io-pgtable-arm: Re-use the pgtable walk for iova_to_phys
iommu/io-pgtable-arm: Make pgtable walker more generic
iommu/arm-smmu: Add ACTLR data and support for qcom_smmu_500
iommu/arm-smmu: Introduce ACTLR custom prefetcher settings
iommu/arm-smmu: Add support for PRR bit setup
iommu/arm-smmu: Refactor qcom_smmu structure to include single pointer
iommu/arm-smmu: Re-enable context caching in smmu reset operation
iommu/vt-d: Link cache tags of same iommu unit together
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/frederic/linux-dynticks
Pull kthread updates from Frederic Weisbecker:
"Kthreads affinity follow either of 4 existing different patterns:
1) Per-CPU kthreads must stay affine to a single CPU and never
execute relevant code on any other CPU. This is currently handled
by smpboot code which takes care of CPU-hotplug operations.
Affinity here is a correctness constraint.
2) Some kthreads _have_ to be affine to a specific set of CPUs and
can't run anywhere else. The affinity is set through
kthread_bind_mask() and the subsystem takes care by itself to
handle CPU-hotplug operations. Affinity here is assumed to be a
correctness constraint.
3) Per-node kthreads _prefer_ to be affine to a specific NUMA node.
This is not a correctness constraint but merely a preference in
terms of memory locality. kswapd and kcompactd both fall into this
category. The affinity is set manually like for any other task and
CPU-hotplug is supposed to be handled by the relevant subsystem so
that the task is properly reaffined whenever a given CPU from the
node comes up. Also care should be taken so that the node affinity
doesn't cross isolated (nohz_full) cpumask boundaries.
4) Similar to the previous point except kthreads have a _preferred_
affinity different than a node. Both RCU boost kthreads and RCU
exp kworkers fall into this category as they refer to "RCU nodes"
from a distinctly distributed tree.
Currently the preferred affinity patterns (3 and 4) have at least 4
identified users, with more or less success when it comes to handle
CPU-hotplug operations and CPU isolation. Each of which do it in its
own ad-hoc way.
This is an infrastructure proposal to handle this with the following
API changes:
- kthread_create_on_node() automatically affines the created kthread
to its target node unless it has been set as per-cpu or bound with
kthread_bind[_mask]() before the first wake-up.
- kthread_affine_preferred() is a new function that can be called
right after kthread_create_on_node() to specify a preferred
affinity different than the specified node.
When the preferred affinity can't be applied because the possible
targets are offline or isolated (nohz_full), the kthread is affine to
the housekeeping CPUs (which means to all online CPUs most of the time
or only the non-nohz_full CPUs when nohz_full= is set).
kswapd, kcompactd, RCU boost kthreads and RCU exp kworkers have been
converted, along with a few old drivers.
Summary of the changes:
- Consolidate a bunch of ad-hoc implementations of
kthread_run_on_cpu()
- Introduce task_cpu_fallback_mask() that defines the default last
resort affinity of a task to become nohz_full aware
- Add some correctness check to ensure kthread_bind() is always
called before the first kthread wake up.
- Default affine kthread to its preferred node.
- Convert kswapd / kcompactd and remove their halfway working ad-hoc
affinity implementation
- Implement kthreads preferred affinity
- Unify kthread worker and kthread API's style
- Convert RCU kthreads to the new API and remove the ad-hoc affinity
implementation"
* tag 'kthread-for-6.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/frederic/linux-dynticks:
kthread: modify kernel-doc function name to match code
rcu: Use kthread preferred affinity for RCU exp kworkers
treewide: Introduce kthread_run_worker[_on_cpu]()
kthread: Unify kthread_create_on_cpu() and kthread_create_worker_on_cpu() automatic format
rcu: Use kthread preferred affinity for RCU boost
kthread: Implement preferred affinity
mm: Create/affine kswapd to its preferred node
mm: Create/affine kcompactd to its preferred node
kthread: Default affine kthread to its preferred NUMA node
kthread: Make sure kthread hasn't started while binding it
sched,arm64: Handle CPU isolation on last resort fallback rq selection
arm64: Exclude nohz_full CPUs from 32bits el0 support
lib: test_objpool: Use kthread_run_on_cpu()
kallsyms: Use kthread_run_on_cpu()
soc/qman: test: Use kthread_run_on_cpu()
arm/bL_switcher: Use kthread_run_on_cpu()
|
|
* for-next/docs:
Documentation: arm64: Remove stale and redundant virtual memory diagrams
docs: arm64: Document EL3 requirements for FEAT_PMUv3
docs: arm64: Document EL3 requirements for cpu debug architecture
|
|
The arm64 'memory.rst' file tries to document the virtual memory map
and the translation procedure for a couple of kernel configurations.
Unfortunately, the virtual memory map changes relatively frequently and
we support considerably more configurations than we did when the docs
were introduced (e.g. we now have support for 16KiB pages and 52-bit
addressing). Furthermore, the Arm ARM is the definitive resource for the
translation procedure and so there's little point in duplicating part
of that information in the kernel documentation.
Rather than continue trying (and failing) to maintain these diagrams,
let's rip them out. The kernel page-table can be dumped using
CONFIG_PTDUMP_DEBUGFS if necesssary.
Link: https://lore.kernel.org/r/20250102065554.1533781-1-sangmoon.kim@samsung.com
Reported-by: Sangmoon Kim <sangmoon.kim@samsung.com>
Signed-off-by: Will Deacon <will@kernel.org>
|
|
Nohz full CPUs are not a desirable fallback target to run 32bits el0
applications. If present, prefer a set of housekeeping CPUs that can do
the job instead. Otherwise just don't support el0 32 bits. Should the
need arise, appropriate support can be introduced in the future.
Suggested-by: Will Deacon <will@kernel.org>
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
|
|
The 2024 dpISA introduces a number of architecture features all of which
only add new instructions so only require the addition of hwcaps and ID
register visibility.
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20250107-arm64-2024-dpisa-v5-3-7578da51fc3d@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
|
|
The hwcaps code that exposes SVE features to userspace only
considers ID_AA64ZFR0_EL1, while this is only valid when
ID_AA64PFR0_EL1.SVE advertises that SVE is actually supported.
The expectations are that when ID_AA64PFR0_EL1.SVE is 0, the
ID_AA64ZFR0_EL1 register is also 0. So far, so good.
Things become a bit more interesting if the HW implements SME.
In this case, a few ID_AA64ZFR0_EL1 fields indicate *SME*
features. And these fields overlap with their SVE interpretations.
But the architecture says that the SME and SVE feature sets must
match, so we're still hunky-dory.
This goes wrong if the HW implements SME, but not SVE. In this
case, we end-up advertising some SVE features to userspace, even
if the HW has none. That's because we never consider whether SVE
is actually implemented. Oh well.
Fix it by restricting all SVE capabilities to ID_AA64PFR0_EL1.SVE
being non-zero. The HWCAPS documentation is amended to reflect the
actually checks performed by the kernel.
Fixes: 06a916feca2b ("arm64: Expose SVE2 features for userspace")
Reported-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Mark Brown <broonie@kernel.org>
Cc: Will Deacon <will@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: stable@vger.kernel.org
Reviewed-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20250107-arm64-2024-dpisa-v5-1-7578da51fc3d@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
|
|
Default MMU-500 reset operation disables context caching in prefetch
buffer. It is however expected for context banks using the ACTLR
register to retain their prefetch value during reset and runtime
suspend.
Add config 'ARM_SMMU_MMU_500_CPRE_ERRATA' to gate this errata workaround
in default MMU-500 reset operation which defaults to 'Y' and provide
option to disable workaround for context caching in prefetch buffer as
and when needed.
Suggested-by: Will Deacon <will@kernel.org>
Signed-off-by: Bibek Kumar Patro <quic_bibekkum@quicinc.com>
Link: https://lore.kernel.org/r/20241212151402.159102-2-quic_bibekkum@quicinc.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
This documents EL3 requirements for FEAT_PMUv3. The register field MDCR_EL3
.TPM needs to be cleared for accesses into PMU registers without any trap
being generated into EL3. PMUv3 registers like PMCCFILTR_EL0, PMCCNTR_EL0
PMCNTENCLR_EL0, PMCNTENSET_EL0, PMCR_EL0, PMEVCNTR<n>_EL0, PMEVTYPER<n>_EL0
etc are already being accessed for perf HW PMU implementation.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-doc@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Link: https://lore.kernel.org/r/20241211065425.1106683-3-anshuman.khandual@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
This documents EL3 requirements for debug architecture. The register field
MDCR_EL3.TDA needs to be cleared for accesses into debug registers without
any trap being generated into EL3. CPU debug registers like DBGBCR<n>_EL1,
DBGBVR<n>_EL1, DBGWCR<n>_EL1, DBGWVR<n>_EL1 and MDSCR_EL1 are already being
accessed for HW breakpoint, watchpoint and debug monitor implementations on
the platform.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-doc@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Link: https://lore.kernel.org/r/20241211065425.1106683-2-anshuman.khandual@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
HiSilicon HIP09A platforms using the same SMMU PMCG with HIP09
and thus suffers the same erratum. List them in the PMCG platform
information list without introducing a new SMMU PMCG Model.
Update the silicon-errata.rst as well.
Reviewed-by: Yicong Yang <yangyicong@hisilicon.com>
Acked-by: Hanjun Guo <guohanjun@huawei.com>
Signed-off-by: Qinxin Xia <xiaqinxin@huawei.com>
Link: https://lore.kernel.org/r/20241205013331.1484017-1-xiaqinxin@huawei.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
When enabling GICv4.1 in hip09, VMAPP fails to clear some caches during
the unmap operation, which can causes vSGIs to be lost.
To fix the issue, invalidate the related vPE cache through GICR_INVALLR
after VMOVP.
Suggested-by: Marc Zyngier <maz@kernel.org>
Co-developed-by: Nianyao Tang <tangnianyao@huawei.com>
Signed-off-by: Nianyao Tang <tangnianyao@huawei.com>
Signed-off-by: Zhou Wang <wangzhou1@hisilicon.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Marc Zyngier <maz@kernel.org>
|
|
Pull kvm updates from Paolo Bonzini:
"The biggest change here is eliminating the awful idea that KVM had of
essentially guessing which pfns are refcounted pages.
The reason to do so was that KVM needs to map both non-refcounted
pages (for example BARs of VFIO devices) and VM_PFNMAP/VM_MIXMEDMAP
VMAs that contain refcounted pages.
However, the result was security issues in the past, and more recently
the inability to map VM_IO and VM_PFNMAP memory that _is_ backed by
struct page but is not refcounted. In particular this broke virtio-gpu
blob resources (which directly map host graphics buffers into the
guest as "vram" for the virtio-gpu device) with the amdgpu driver,
because amdgpu allocates non-compound higher order pages and the tail
pages could not be mapped into KVM.
This requires adjusting all uses of struct page in the
per-architecture code, to always work on the pfn whenever possible.
The large series that did this, from David Stevens and Sean
Christopherson, also cleaned up substantially the set of functions
that provided arch code with the pfn for a host virtual addresses.
The previous maze of twisty little passages, all different, is
replaced by five functions (__gfn_to_page, __kvm_faultin_pfn, the
non-__ versions of these two, and kvm_prefetch_pages) saving almost
200 lines of code.
ARM:
- Support for stage-1 permission indirection (FEAT_S1PIE) and
permission overlays (FEAT_S1POE), including nested virt + the
emulated page table walker
- Introduce PSCI SYSTEM_OFF2 support to KVM + client driver. This
call was introduced in PSCIv1.3 as a mechanism to request
hibernation, similar to the S4 state in ACPI
- Explicitly trap + hide FEAT_MPAM (QoS controls) from KVM guests. As
part of it, introduce trivial initialization of the host's MPAM
context so KVM can use the corresponding traps
- PMU support under nested virtualization, honoring the guest
hypervisor's trap configuration and event filtering when running a
nested guest
- Fixes to vgic ITS serialization where stale device/interrupt table
entries are not zeroed when the mapping is invalidated by the VM
- Avoid emulated MMIO completion if userspace has requested
synchronous external abort injection
- Various fixes and cleanups affecting pKVM, vCPU initialization, and
selftests
LoongArch:
- Add iocsr and mmio bus simulation in kernel.
- Add in-kernel interrupt controller emulation.
- Add support for virtualization extensions to the eiointc irqchip.
PPC:
- Drop lingering and utterly obsolete references to PPC970 KVM, which
was removed 10 years ago.
- Fix incorrect documentation references to non-existing ioctls
RISC-V:
- Accelerate KVM RISC-V when running as a guest
- Perf support to collect KVM guest statistics from host side
s390:
- New selftests: more ucontrol selftests and CPU model sanity checks
- Support for the gen17 CPU model
- List registers supported by KVM_GET/SET_ONE_REG in the
documentation
x86:
- Cleanup KVM's handling of Accessed and Dirty bits to dedup code,
improve documentation, harden against unexpected changes.
Even if the hardware A/D tracking is disabled, it is possible to
use the hardware-defined A/D bits to track if a PFN is Accessed
and/or Dirty, and that removes a lot of special cases.
- Elide TLB flushes when aging secondary PTEs, as has been done in
x86's primary MMU for over 10 years.
- Recover huge pages in-place in the TDP MMU when dirty page logging
is toggled off, instead of zapping them and waiting until the page
is re-accessed to create a huge mapping. This reduces vCPU jitter.
- Batch TLB flushes when dirty page logging is toggled off. This
reduces the time it takes to disable dirty logging by ~3x.
- Remove the shrinker that was (poorly) attempting to reclaim shadow
page tables in low-memory situations.
- Clean up and optimize KVM's handling of writes to
MSR_IA32_APICBASE.
- Advertise CPUIDs for new instructions in Clearwater Forest
- Quirk KVM's misguided behavior of initialized certain feature MSRs
to their maximum supported feature set, which can result in KVM
creating invalid vCPU state. E.g. initializing PERF_CAPABILITIES to
a non-zero value results in the vCPU having invalid state if
userspace hides PDCM from the guest, which in turn can lead to
save/restore failures.
- Fix KVM's handling of non-canonical checks for vCPUs that support
LA57 to better follow the "architecture", in quotes because the
actual behavior is poorly documented. E.g. most MSR writes and
descriptor table loads ignore CR4.LA57 and operate purely on
whether the CPU supports LA57.
- Bypass the register cache when querying CPL from kvm_sched_out(),
as filling the cache from IRQ context is generally unsafe; harden
the cache accessors to try to prevent similar issues from occuring
in the future. The issue that triggered this change was already
fixed in 6.12, but was still kinda latent.
- Advertise AMD_IBPB_RET to userspace, and fix a related bug where
KVM over-advertises SPEC_CTRL when trying to support cross-vendor
VMs.
- Minor cleanups
- Switch hugepage recovery thread to use vhost_task.
These kthreads can consume significant amounts of CPU time on
behalf of a VM or in response to how the VM behaves (for example
how it accesses its memory); therefore KVM tried to place the
thread in the VM's cgroups and charge the CPU time consumed by that
work to the VM's container.
However the kthreads did not process SIGSTOP/SIGCONT, and therefore
cgroups which had KVM instances inside could not complete freezing.
Fix this by replacing the kthread with a PF_USER_WORKER thread, via
the vhost_task abstraction. Another 100+ lines removed, with
generally better behavior too like having these threads properly
parented in the process tree.
- Revert a workaround for an old CPU erratum (Nehalem/Westmere) that
didn't really work; there was really nothing to work around anyway:
the broken patch was meant to fix nested virtualization, but the
PERF_GLOBAL_CTRL MSR is virtualized and therefore unaffected by the
erratum.
- Fix 6.12 regression where CONFIG_KVM will be built as a module even
if asked to be builtin, as long as neither KVM_INTEL nor KVM_AMD is
'y'.
x86 selftests:
- x86 selftests can now use AVX.
Documentation:
- Use rST internal links
- Reorganize the introduction to the API document
Generic:
- Protect vcpu->pid accesses outside of vcpu->mutex with a rwlock
instead of RCU, so that running a vCPU on a different task doesn't
encounter long due to having to wait for all CPUs become quiescent.
In general both reads and writes are rare, but userspace that
supports confidential computing is introducing the use of "helper"
vCPUs that may jump from one host processor to another. Those will
be very happy to trigger a synchronize_rcu(), and the effect on
performance is quite the disaster"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (298 commits)
KVM: x86: Break CONFIG_KVM_X86's direct dependency on KVM_INTEL || KVM_AMD
KVM: x86: add back X86_LOCAL_APIC dependency
Revert "KVM: VMX: Move LOAD_IA32_PERF_GLOBAL_CTRL errata handling out of setup_vmcs_config()"
KVM: x86: switch hugepage recovery thread to vhost_task
KVM: x86: expose MSR_PLATFORM_INFO as a feature MSR
x86: KVM: Advertise CPUIDs for new instructions in Clearwater Forest
Documentation: KVM: fix malformed table
irqchip/loongson-eiointc: Add virt extension support
LoongArch: KVM: Add irqfd support
LoongArch: KVM: Add PCHPIC user mode read and write functions
LoongArch: KVM: Add PCHPIC read and write functions
LoongArch: KVM: Add PCHPIC device support
LoongArch: KVM: Add EIOINTC user mode read and write functions
LoongArch: KVM: Add EIOINTC read and write functions
LoongArch: KVM: Add EIOINTC device support
LoongArch: KVM: Add IPI user mode read and write function
LoongArch: KVM: Add IPI read and write function
LoongArch: KVM: Add IPI device support
LoongArch: KVM: Add iocsr and mmio bus simulation in kernel
KVM: arm64: Pass on SVE mapping failures
...
|
|
* for-next/mops:
: More FEAT_MOPS (memcpy instructions) uses - in-kernel routines
arm64: mops: Document requirements for hypervisors
arm64: lib: Use MOPS for copy_page() and clear_page()
arm64: lib: Use MOPS for memcpy() routines
arm64: mops: Document booting requirement for HCR_EL2.MCE2
arm64: mops: Handle MOPS exceptions from EL1
arm64: probes: Disable kprobes/uprobes on MOPS instructions
# Conflicts:
# arch/arm64/kernel/entry-common.c
|
|
'for-next/tlb', 'for-next/misc', 'for-next/mte', 'for-next/sysreg', 'for-next/stacktrace', 'for-next/hwcap3', 'for-next/kselftest', 'for-next/crc32', 'for-next/guest-cca', 'for-next/haft' and 'for-next/scs', remote-tracking branch 'arm64/for-next/perf' into for-next/core
* arm64/for-next/perf:
perf: Switch back to struct platform_driver::remove()
perf: arm_pmuv3: Add support for Samsung Mongoose PMU
dt-bindings: arm: pmu: Add Samsung Mongoose core compatible
perf/dwc_pcie: Fix typos in event names
perf/dwc_pcie: Add support for Ampere SoCs
ARM: pmuv3: Add missing write_pmuacr()
perf/marvell: Marvell PEM performance monitor support
perf/arm_pmuv3: Add PMUv3.9 per counter EL0 access control
perf/dwc_pcie: Convert the events with mixed case to lowercase
perf/cxlpmu: Support missing events in 3.1 spec
perf: imx_perf: add support for i.MX91 platform
dt-bindings: perf: fsl-imx-ddr: Add i.MX91 compatible
drivers perf: remove unused field pmu_node
* for-next/gcs: (42 commits)
: arm64 Guarded Control Stack user-space support
kselftest/arm64: Fix missing printf() argument in gcs/gcs-stress.c
arm64/gcs: Fix outdated ptrace documentation
kselftest/arm64: Ensure stable names for GCS stress test results
kselftest/arm64: Validate that GCS push and write permissions work
kselftest/arm64: Enable GCS for the FP stress tests
kselftest/arm64: Add a GCS stress test
kselftest/arm64: Add GCS signal tests
kselftest/arm64: Add test coverage for GCS mode locking
kselftest/arm64: Add a GCS test program built with the system libc
kselftest/arm64: Add very basic GCS test program
kselftest/arm64: Always run signals tests with GCS enabled
kselftest/arm64: Allow signals tests to specify an expected si_code
kselftest/arm64: Add framework support for GCS to signal handling tests
kselftest/arm64: Add GCS as a detected feature in the signal tests
kselftest/arm64: Verify the GCS hwcap
arm64: Add Kconfig for Guarded Control Stack (GCS)
arm64/ptrace: Expose GCS via ptrace and core files
arm64/signal: Expose GCS state in signal frames
arm64/signal: Set up and restore the GCS context for signal handlers
arm64/mm: Implement map_shadow_stack()
...
* for-next/probes:
: Various arm64 uprobes/kprobes cleanups
arm64: insn: Simulate nop instruction for better uprobe performance
arm64: probes: Remove probe_opcode_t
arm64: probes: Cleanup kprobes endianness conversions
arm64: probes: Move kprobes-specific fields
arm64: probes: Fix uprobes for big-endian kernels
arm64: probes: Fix simulate_ldr*_literal()
arm64: probes: Remove broken LDR (literal) uprobe support
* for-next/asm-offsets:
: arm64 asm-offsets.c cleanup (remove unused offsets)
arm64: asm-offsets: remove PREEMPT_DISABLE_OFFSET
arm64: asm-offsets: remove DMA_{TO,FROM}_DEVICE
arm64: asm-offsets: remove VM_EXEC and PAGE_SZ
arm64: asm-offsets: remove MM_CONTEXT_ID
arm64: asm-offsets: remove COMPAT_{RT_,SIGFRAME_REGS_OFFSET
arm64: asm-offsets: remove VMA_VM_*
arm64: asm-offsets: remove TSK_ACTIVE_MM
* for-next/tlb:
: TLB flushing optimisations
arm64: optimize flush tlb kernel range
arm64: tlbflush: add __flush_tlb_range_limit_excess()
* for-next/misc:
: Miscellaneous patches
arm64: tls: Fix context-switching of tpidrro_el0 when kpti is enabled
arm64/ptrace: Clarify documentation of VL configuration via ptrace
acpi/arm64: remove unnecessary cast
arm64/mm: Change protval as 'pteval_t' in map_range()
arm64: uprobes: Optimize cache flushes for xol slot
acpi/arm64: Adjust error handling procedure in gtdt_parse_timer_block()
arm64: fix .data.rel.ro size assertion when CONFIG_LTO_CLANG
arm64/ptdump: Test both PTE_TABLE_BIT and PTE_VALID for block mappings
arm64/mm: Sanity check PTE address before runtime P4D/PUD folding
arm64/mm: Drop setting PTE_TYPE_PAGE in pte_mkcont()
ACPI: GTDT: Tighten the check for the array of platform timer structures
arm64/fpsimd: Fix a typo
arm64: Expose ID_AA64ISAR1_EL1.XS to sanitised feature consumers
arm64: Return early when break handler is found on linked-list
arm64/mm: Re-organize arch_make_huge_pte()
arm64/mm: Drop _PROT_SECT_DEFAULT
arm64: Add command-line override for ID_AA64MMFR0_EL1.ECV
arm64: head: Drop SWAPPER_TABLE_SHIFT
arm64: cpufeature: add POE to cpucap_is_possible()
arm64/mm: Change pgattr_change_is_safe() arguments as pteval_t
* for-next/mte:
: Various MTE improvements
selftests: arm64: add hugetlb mte tests
hugetlb: arm64: add mte support
* for-next/sysreg:
: arm64 sysreg updates
arm64/sysreg: Update ID_AA64MMFR1_EL1 to DDI0601 2024-09
* for-next/stacktrace:
: arm64 stacktrace improvements
arm64: preserve pt_regs::stackframe during exec*()
arm64: stacktrace: unwind exception boundaries
arm64: stacktrace: split unwind_consume_stack()
arm64: stacktrace: report recovered PCs
arm64: stacktrace: report source of unwind data
arm64: stacktrace: move dump_backtrace() to kunwind_stack_walk()
arm64: use a common struct frame_record
arm64: pt_regs: swap 'unused' and 'pmr' fields
arm64: pt_regs: rename "pmr_save" -> "pmr"
arm64: pt_regs: remove stale big-endian layout
arm64: pt_regs: assert pt_regs is a multiple of 16 bytes
* for-next/hwcap3:
: Add AT_HWCAP3 support for arm64 (also wire up AT_HWCAP4)
arm64: Support AT_HWCAP3
binfmt_elf: Wire up AT_HWCAP3 at AT_HWCAP4
* for-next/kselftest: (30 commits)
: arm64 kselftest fixes/cleanups
kselftest/arm64: Try harder to generate different keys during PAC tests
kselftest/arm64: Don't leak pipe fds in pac.exec_sign_all()
kselftest/arm64: Corrupt P0 in the irritator when testing SSVE
kselftest/arm64: Add FPMR coverage to fp-ptrace
kselftest/arm64: Expand the set of ZA writes fp-ptrace does
kselftets/arm64: Use flag bits for features in fp-ptrace assembler code
kselftest/arm64: Enable build of PAC tests with LLVM=1
kselftest/arm64: Check that SVCR is 0 in signal handlers
kselftest/arm64: Fix printf() compiler warnings in the arm64 syscall-abi.c tests
kselftest/arm64: Fix printf() warning in the arm64 MTE prctl() test
kselftest/arm64: Fix printf() compiler warnings in the arm64 fp tests
kselftest/arm64: Fix build with stricter assemblers
kselftest/arm64: Test signal handler state modification in fp-stress
kselftest/arm64: Provide a SIGUSR1 handler in the kernel mode FP stress test
kselftest/arm64: Implement irritators for ZA and ZT
kselftest/arm64: Remove unused ADRs from irritator handlers
kselftest/arm64: Correct misleading comments on fp-stress irritators
kselftest/arm64: Poll less often while waiting for fp-stress children
kselftest/arm64: Increase frequency of signal delivery in fp-stress
kselftest/arm64: Fix encoding for SVE B16B16 test
...
* for-next/crc32:
: Optimise CRC32 using PMULL instructions
arm64/crc32: Implement 4-way interleave using PMULL
arm64/crc32: Reorganize bit/byte ordering macros
arm64/lib: Handle CRC-32 alternative in C code
* for-next/guest-cca:
: Support for running Linux as a guest in Arm CCA
arm64: Document Arm Confidential Compute
virt: arm-cca-guest: TSM_REPORT support for realms
arm64: Enable memory encrypt for Realms
arm64: mm: Avoid TLBI when marking pages as valid
arm64: Enforce bounce buffers for realm DMA
efi: arm64: Map Device with Prot Shared
arm64: rsi: Map unprotected MMIO as decrypted
arm64: rsi: Add support for checking whether an MMIO is protected
arm64: realm: Query IPA size from the RMM
arm64: Detect if in a realm and set RIPAS RAM
arm64: rsi: Add RSI definitions
* for-next/haft:
: Support for arm64 FEAT_HAFT
arm64: pgtable: Warn unexpected pmdp_test_and_clear_young()
arm64: Enable ARCH_HAS_NONLEAF_PMD_YOUNG
arm64: Add support for FEAT_HAFT
arm64: setup: name 'tcr2' register
arm64/sysreg: Update ID_AA64MMFR1_EL1 register
* for-next/scs:
: Dynamic shadow call stack fixes
arm64/scs: Drop unused prototype __pi_scs_patch_vmlinux()
arm64/scs: Deal with 64-bit relative offsets in FDE frames
arm64/scs: Fix handling of DWARF augmentation data in CIE/FDE frames
|
|
When we configure SVE, SSVE or ZA via ptrace we allow the user to configure
the vector length and specify any of the flags that are accepted when
configuring via prctl(). This includes the S[VM]E_SET_VL_ONEXEC flag which
defers the configuration of the VL until an exec(). We don't do anything to
limit the provision of register data as part of configuring the _ONEXEC VL
but as a function of the VL enumeration support we do this will be
interpreted using the vector length currently configured for the process.
This is all a bit surprising, and probably we should just not have allowed
register data to be specified with _ONEXEC, but it's our ABI so let's
add some explicit documentation in both the ABI documents and the source
calling out what happens.
The comments are also missing the fact that since SME does not have a
mandatory 128 bit VL it is possible for VL enumeration to result in the
configuration of a higher VL than was requested, cover that too.
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20241106-arm64-sve-ptrace-vl-set-v1-1-3b164e8b559c@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
The ptrace documentation for GCS was written prior to the implementation of
clone3() when we still blocked enabling of GCS via ptrace. This restriction
was relaxed as part of implementing clone3() support since we implemented
support for the GCS not being managed by the kernel but the documentation
still mentions the restriction. Update the documentation to reflect what
was merged.
We have not yet merged clone3() itself but all the support other than in
clone() itself is there.
Fixes: 7058bf87cd59 ("arm64/gcs: Document the ABI for Guarded Control Stacks")
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20241031-arm64-gcs-doc-disable-v1-1-d7f6ded62046@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Add a mops.rst document to clarify in more detail what hypervisors need
to do to run a Linux guest on a system with FEAT_MOPS.
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
Link: https://lore.kernel.org/r/20241028185721.52852-1-kristina.martsenko@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
ARMv8.4 adds support for 'Memory Partitioning And Monitoring' (MPAM)
which describes an interface to cache and bandwidth controls wherever
they appear in the system.
Add support to detect MPAM. Like SVE, MPAM has an extra id register that
describes some more properties, including the virtualisation support,
which is optional. Detect this separately so we can detect
mismatched/insane systems, but still use MPAM on the host even if the
virtualisation support is missing.
MPAM needs enabling at the highest implemented exception level, otherwise
the register accesses trap. The 'enabled' flag is accessible to lower
exception levels, but its in a register that traps when MPAM isn't enabled.
The cpufeature 'matches' hook is extended to test this on one of the
CPUs, so that firmware can emulate MPAM as disabled if it is reserved
for use by secure world.
Secondary CPUs that appear late could trip cpufeature's 'lower safe'
behaviour after the MPAM properties have been advertised to user-space.
Add a verify call to ensure late secondaries match the existing CPUs.
(If you have a boot failure that bisects here its likely your CPUs
advertise MPAM in the id registers, but firmware failed to either enable
or MPAM, or emulate the trap as if it were disabled)
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Joey Gouly <joey.gouly@arm.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Tested-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20241030160317.2528209-4-joey.gouly@arm.com
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
|
Add some documentation on Arm CCA and the requirements for running Linux
as a Realm guest. Also update booting.rst to describe the requirement
for RIPAS RAM.
Reviewed-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Steven Price <steven.price@arm.com>
Link: https://lore.kernel.org/r/20241017131434.40935-12-steven.price@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
We have filled all 64 bits of AT_HWCAP2 so in order to support discovery of
further features provide the framework to use the already defined AT_HWCAP3
for further CPU features.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Link: https://lore.kernel.org/r/20241004-arm64-elf-hwcap3-v2-2-799d1daad8b0@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Document that hypervisors must set HCR_EL2.MCE2 and handle MOPS
exceptions when they migrate a vCPU to another type of CPU, as Linux may
not be able to handle the exception at all times.
As one example, when running under nested virtualization, KVM does not
handle MOPS exceptions from the nVHE/hVHE EL2 hyp as the hyp is never
migrated, so the host hypervisor needs to handle them. There may be
other situations (now or in the future) where the kernel can't handle an
unexpected MOPS exception, so require that the hypervisor handles them.
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
Link: https://lore.kernel.org/r/20240930161051.3777828-4-kristina.martsenko@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Add the Microsoft Azure Cobalt 100 CPU to the list of CPUs suffering
from erratum 3194386 added in commit 75b3c43eab59 ("arm64: errata:
Expand speculative SSBS workaround")
CC: Mark Rutland <mark.rutland@arm.com>
CC: James More <james.morse@arm.com>
CC: Will Deacon <will@kernel.org>
CC: stable@vger.kernel.org # 6.6+
Signed-off-by: Easwar Hariharan <eahariha@linux.microsoft.com>
Link: https://lore.kernel.org/r/20241003225239.321774-1-eahariha@linux.microsoft.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Provide a hwcap to enable userspace to detect support for GCS.
Signed-off-by: Mark Brown <broonie@kernel.org>
Acked-by: Yury Khrustalev <yury.khrustalev@arm.com>
Link: https://lore.kernel.org/r/20241001-arm64-gcs-v13-18-222b78d87eee@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Add some documentation of the userspace ABI for Guarded Control Stacks.
Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Yury Khrustalev <yury.khrustalev@arm.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20241001-arm64-gcs-v13-7-222b78d87eee@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
FEAT_GCS introduces a number of new system registers, we require that
access to these registers is not trapped when we identify that the feature
is present. There is also a HCRX_EL2 control to make GCS operations
functional.
Since if GCS is enabled any function call instruction will cause a fault
we also require that the feature be specifically disabled, existing
kernels implicitly have this requirement and especially given that the
MMU must be disabled it is difficult to see a situation where leaving
GCS enabled would be reasonable.
Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20241001-arm64-gcs-v13-6-222b78d87eee@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
A number of Arm Ltd CPUs suffer from errata whereby an MSR to the SSBS
special-purpose register does not affect subsequent speculative
instructions, permitting speculative store bypassing for a window of
time.
We worked around this for a number of CPUs in commits:
* 7187bb7d0b5c7dfa ("arm64: errata: Add workaround for Arm errata 3194386 and 3312417")
* 75b3c43eab594bfb ("arm64: errata: Expand speculative SSBS workaround")
* 145502cac7ea70b5 ("arm64: errata: Expand speculative SSBS workaround (again)")
Since then, a (hopefully final) batch of updates have been published,
with two more affected CPUs. For the affected CPUs the existing
mitigation is sufficient, as described in their respective Software
Developer Errata Notice (SDEN) documents:
* Cortex-A715 (MP148) SDEN v15.0, erratum 3456084
https://developer.arm.com/documentation/SDEN-2148827/1500/
* Neoverse-N3 (MP195) SDEN v5.0, erratum 3456111
https://developer.arm.com/documentation/SDEN-3050973/0500/
Enable the existing mitigation by adding the relevant MIDRs to
erratum_spec_ssbs_list, and update silicon-errata.rst and the
Kconfig text accordingly.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20240930111705.3352047-3-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Pull documentation update from Jonathan Corbet:
"Another relatively mundane cycle for docs:
- The beginning of an EEVDF scheduler document
- More Chinese translations
- A rethrashing of our bisection documentation
...plus the usual array of smaller fixes, and more than the usual
number of typo fixes"
* tag 'docs-6.12' of git://git.lwn.net/linux: (48 commits)
Remove duplicate "and" in 'Linux NVMe docs.
docs:filesystems: fix spelling and grammar mistakes
docs:filesystem: fix mispelled words on autofs page
docs:mm: fixed spelling and grammar mistakes on vmalloc kernel stack page
Documentation: PCI: fix typo in pci.rst
docs/zh_CN: add the translation of kbuild/gcc-plugins.rst
docs/process: fix typos
docs:mm: fix spelling mistakes in heterogeneous memory management page
accel/qaic: Fix a typo
docs/zh_CN: update the translation of security-bugs
docs: block: Fix grammar and spelling mistakes in bfq-iosched.rst
Documentation: Fix spelling mistakes
Documentation/gpu: Fix typo in Documentation/gpu/komeda-kms.rst
scripts: sphinx-pre-install: remove unnecessary double check for $cur_version
Loongarch: KVM: Add KVM hypercalls documentation for LoongArch
Documentation: Document the kernel flag bdev_allow_write_mounted
docs: scheduler: completion: Update member of struct completion
docs: kerneldoc-preamble.sty: Suppress extra spaces in CJK literal blocks
docs: submitting-patches: Advertise b4
docs: update dev-tools/kcsan.rst url about KTSAN
...
|
|
* for-next/poe: (31 commits)
arm64: pkeys: remove redundant WARN
kselftest/arm64: Add test case for POR_EL0 signal frame records
kselftest/arm64: parse POE_MAGIC in a signal frame
kselftest/arm64: add HWCAP test for FEAT_S1POE
selftests: mm: make protection_keys test work on arm64
selftests: mm: move fpregs printing
kselftest/arm64: move get_header()
arm64: add Permission Overlay Extension Kconfig
arm64: enable PKEY support for CPUs with S1POE
arm64: enable POE and PIE to coexist
arm64/ptrace: add support for FEAT_POE
arm64: add POE signal support
arm64: implement PKEYS support
arm64: add pte_access_permitted_no_overlay()
arm64: handle PKEY/POE faults
arm64: mask out POIndex when modifying a PTE
arm64: convert protection key into vm_flags and pgprot values
arm64: add POIndex defines
arm64: re-order MTE VM_ flags
arm64: enable the Permission Overlay Extension for EL0
...
|
|
* for-next/errata:
arm64: errata: Enable the AC03_CPU_38 workaround for ampere1a
|
|
Correct spelling mistakes in the documentation to improve readability.
Signed-off-by: Amit Vadhavana <av2082000@gmail.com>
Reviewed-by: Bjorn Helgaas <bhelgaas@google.com>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
Link: https://lore.kernel.org/r/20240817072724.6861-1-av2082000@gmail.com
|
|
Expose a HWCAP and ID_AA64MMFR3_EL1_S1POE to userspace, so they can be used to
check if the CPU supports the feature.
Signed-off-by: Joey Gouly <joey.gouly@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Link: https://lore.kernel.org/r/20240822151113.1479789-12-joey.gouly@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|