Age | Commit message (Collapse) | Author |
|
Register X0 contains PIE_E1_ASM and should not be written into REG_TCR2_EL1
which could have an adverse impact otherwise. This has remained undetected
till now probably because current value for PIE_E1_ASM (0xcc880e0ac0800000)
clears TCR2_EL1 which again gets set subsequently with 'tcr2' after testing
for FEAT_TCR2.
Drop this unwarranted 'msr' which is a stray change from an earlier commit.
This line got re-introduced when rebasing on top of the commit 926b66e2ebc8
("arm64: setup: name 'tcr2' register").
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-kernel@vger.kernel.org
Fixes: 7052e808c446 ("arm64/sysreg: Get rid of the TCR2_EL1x SysregFields")
Acked-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Link: https://lore.kernel.org/r/20250704063812.298914-1-anshuman.khandual@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
We do not currently issue an ISB after updating POR_EL0 when
context-switching it, for instance. The rationale is that if the old
value of POR_EL0 is more restrictive and causes a fault during
uaccess, the access will be retried [1]. In other words, we are
trading an ISB on every context-switching for the (unlikely)
possibility of a spurious fault. We may also miss faults if the new
value of POR_EL0 is more restrictive, but that's considered
acceptable.
However, as things stand, a spurious Overlay fault results in
uaccess failing right away since it causes fault_from_pkey() to
return true. If an Overlay fault is reported, we therefore need to
double check POR_EL0 against vma_pkey(vma) - this is what
arch_vma_access_permitted() already does.
As it turns out, we already perform that explicit check if no
Overlay fault is reported, and we need to keep that check (see
comment added in fault_from_pkey()). Net result: the Overlay ISS2
bit isn't of much help to decide whether a pkey fault occurred.
Remove the check for the Overlay bit from fault_from_pkey() and
add a comment to try and explain the situation. While at it, also
add a comment to permission_overlay_switch() in case anyone gets
surprised by the lack of ISB.
[1] https://lore.kernel.org/linux-arm-kernel/ZtYNGBrcE-j35fpw@arm.com/
Fixes: 160a8e13de6c ("arm64: context switch POR_EL0 register")
Signed-off-by: Kevin Brodsky <kevin.brodsky@arm.com>
Link: https://lore.kernel.org/r/20250619160042.2499290-2-kevin.brodsky@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
Commit 9c006972c3fe ("arm64: mmu: drop pXd_present() checks from
pXd_free_pYd_table()") removes the pxd_present() checks because the
caller checks pxd_present(). But, in case of vmap_try_huge_pud(), the
caller only checks pud_present(); pud_free_pmd_page() recurses on each
pmd through pmd_free_pte_page(), wherein the pmd may be none. Thus it is
possible to hit a warning in the latter, since pmd_none => !pmd_table().
Thus, add a pmd_present() check in pud_free_pmd_page().
This problem was found by code inspection.
Fixes: 9c006972c3fe ("arm64: mmu: drop pXd_present() checks from pXd_free_pYd_table()")
Cc: stable@vger.kernel.org
Reported-by: Ryan Roberts <ryan.roberts@arm.com>
Acked-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Dev Jain <dev.jain@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Link: https://lore.kernel.org/r/20250527082633.61073-1-dev.jain@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- "Add folio_mk_pte()" from Matthew Wilcox simplifies the act of
creating a pte which addresses the first page in a folio and reduces
the amount of plumbing which architecture must implement to provide
this.
- "Misc folio patches for 6.16" from Matthew Wilcox is a shower of
largely unrelated folio infrastructure changes which clean things up
and better prepare us for future work.
- "memory,x86,acpi: hotplug memory alignment advisement" from Gregory
Price adds early-init code to prevent x86 from leaving physical
memory unused when physical address regions are not aligned to memory
block size.
- "mm/compaction: allow more aggressive proactive compaction" from
Michal Clapinski provides some tuning of the (sadly, hard-coded (more
sadly, not auto-tuned)) thresholds for our invokation of proactive
compaction. In a simple test case, the reduction of a guest VM's
memory consumption was dramatic.
- "Minor cleanups and improvements to swap freeing code" from Kemeng
Shi provides some code cleaups and a small efficiency improvement to
this part of our swap handling code.
- "ptrace: introduce PTRACE_SET_SYSCALL_INFO API" from Dmitry Levin
adds the ability for a ptracer to modify syscalls arguments. At this
time we can alter only "system call information that are used by
strace system call tampering, namely, syscall number, syscall
arguments, and syscall return value.
This series should have been incorporated into mm.git's "non-MM"
branch, but I goofed.
- "fs/proc: extend the PAGEMAP_SCAN ioctl to report guard regions" from
Andrei Vagin extends the info returned by the PAGEMAP_SCAN ioctl
against /proc/pid/pagemap. This permits CRIU to more efficiently get
at the info about guard regions.
- "Fix parameter passed to page_mapcount_is_type()" from Gavin Shan
implements that fix. No runtime effect is expected because
validate_page_before_insert() happens to fix up this error.
- "kernel/events/uprobes: uprobe_write_opcode() rewrite" from David
Hildenbrand basically brings uprobe text poking into the current
decade. Remove a bunch of hand-rolled implementation in favor of
using more current facilities.
- "mm/ptdump: Drop assumption that pxd_val() is u64" from Anshuman
Khandual provides enhancements and generalizations to the pte dumping
code. This might be needed when 128-bit Page Table Descriptors are
enabled for ARM.
- "Always call constructor for kernel page tables" from Kevin Brodsky
ensures that the ctor/dtor is always called for kernel pgtables, as
it already is for user pgtables.
This permits the addition of more functionality such as "insert hooks
to protect page tables". This change does result in various
architectures performing unnecesary work, but this is fixed up where
it is anticipated to occur.
- "Rust support for mm_struct, vm_area_struct, and mmap" from Alice
Ryhl adds plumbing to permit Rust access to core MM structures.
- "fix incorrectly disallowed anonymous VMA merges" from Lorenzo
Stoakes takes advantage of some VMA merging opportunities which we've
been missing for 15 years.
- "mm/madvise: batch tlb flushes for MADV_DONTNEED and MADV_FREE" from
SeongJae Park optimizes process_madvise()'s TLB flushing.
Instead of flushing each address range in the provided iovec, we
batch the flushing across all the iovec entries. The syscall's cost
was approximately halved with a microbenchmark which was designed to
load this particular operation.
- "Track node vacancy to reduce worst case allocation counts" from
Sidhartha Kumar makes the maple tree smarter about its node
preallocation.
stress-ng mmap performance increased by single-digit percentages and
the amount of unnecessarily preallocated memory was dramaticelly
reduced.
- "mm/gup: Minor fix, cleanup and improvements" from Baoquan He removes
a few unnecessary things which Baoquan noted when reading the code.
- ""Enhance sysfs handling for memory hotplug in weighted interleave"
from Rakie Kim "enhances the weighted interleave policy in the memory
management subsystem by improving sysfs handling, fixing memory
leaks, and introducing dynamic sysfs updates for memory hotplug
support". Fixes things on error paths which we are unlikely to hit.
- "mm/damon: auto-tune DAMOS for NUMA setups including tiered memory"
from SeongJae Park introduces new DAMOS quota goal metrics which
eliminate the manual tuning which is required when utilizing DAMON
for memory tiering.
- "mm/vmalloc.c: code cleanup and improvements" from Baoquan He
provides cleanups and small efficiency improvements which Baoquan
found via code inspection.
- "vmscan: enforce mems_effective during demotion" from Gregory Price
changes reclaim to respect cpuset.mems_effective during demotion when
possible. because presently, reclaim explicitly ignores
cpuset.mems_effective when demoting, which may cause the cpuset
settings to violated.
This is useful for isolating workloads on a multi-tenant system from
certain classes of memory more consistently.
- "Clean up split_huge_pmd_locked() and remove unnecessary folio
pointers" from Gavin Guo provides minor cleanups and efficiency gains
in in the huge page splitting and migrating code.
- "Use kmem_cache for memcg alloc" from Huan Yang creates a slab cache
for `struct mem_cgroup', yielding improved memory utilization.
- "add max arg to swappiness in memory.reclaim and lru_gen" from
Zhongkun He adds a new "max" argument to the "swappiness=" argument
for memory.reclaim MGLRU's lru_gen.
This directs proactive reclaim to reclaim from only anon folios
rather than file-backed folios.
- "kexec: introduce Kexec HandOver (KHO)" from Mike Rapoport is the
first step on the path to permitting the kernel to maintain existing
VMs while replacing the host kernel via file-based kexec. At this
time only memblock's reserve_mem is preserved.
- "mm: Introduce for_each_valid_pfn()" from David Woodhouse provides
and uses a smarter way of looping over a pfn range. By skipping
ranges of invalid pfns.
- "sched/numa: Skip VMA scanning on memory pinned to one NUMA node via
cpuset.mems" from Libo Chen removes a lot of pointless VMA scanning
when a task is pinned a single NUMA mode.
Dramatic performance benefits were seen in some real world cases.
- "JFS: Implement migrate_folio for jfs_metapage_aops" from Shivank
Garg addresses a warning which occurs during memory compaction when
using JFS.
- "move all VMA allocation, freeing and duplication logic to mm" from
Lorenzo Stoakes moves some VMA code from kernel/fork.c into the more
appropriate mm/vma.c.
- "mm, swap: clean up swap cache mapping helper" from Kairui Song
provides code consolidation and cleanups related to the folio_index()
function.
- "mm/gup: Cleanup memfd_pin_folios()" from Vishal Moola does that.
- "memcg: Fix test_memcg_min/low test failures" from Waiman Long
addresses some bogus failures which are being reported by the
test_memcontrol selftest.
- "eliminate mmap() retry merge, add .mmap_prepare hook" from Lorenzo
Stoakes commences the deprecation of file_operations.mmap() in favor
of the new file_operations.mmap_prepare().
The latter is more restrictive and prevents drivers from messing with
things in ways which, amongst other problems, may defeat VMA merging.
- "memcg: decouple memcg and objcg stocks"" from Shakeel Butt decouples
the per-cpu memcg charge cache from the objcg's one.
This is a step along the way to making memcg and objcg charging
NMI-safe, which is a BPF requirement.
- "mm/damon: minor fixups and improvements for code, tests, and
documents" from SeongJae Park is yet another batch of miscellaneous
DAMON changes. Fix and improve minor problems in code, tests and
documents.
- "memcg: make memcg stats irq safe" from Shakeel Butt converts memcg
stats to be irq safe. Another step along the way to making memcg
charging and stats updates NMI-safe, a BPF requirement.
- "Let unmap_hugepage_range() and several related functions take folio
instead of page" from Fan Ni provides folio conversions in the
hugetlb code.
* tag 'mm-stable-2025-05-31-14-50' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (285 commits)
mm: pcp: increase pcp->free_count threshold to trigger free_high
mm/hugetlb: convert use of struct page to folio in __unmap_hugepage_range()
mm/hugetlb: refactor __unmap_hugepage_range() to take folio instead of page
mm/hugetlb: refactor unmap_hugepage_range() to take folio instead of page
mm/hugetlb: pass folio instead of page to unmap_ref_private()
memcg: objcg stock trylock without irq disabling
memcg: no stock lock for cpu hot-unplug
memcg: make __mod_memcg_lruvec_state re-entrant safe against irqs
memcg: make count_memcg_events re-entrant safe against irqs
memcg: make mod_memcg_state re-entrant safe against irqs
memcg: move preempt disable to callers of memcg_rstat_updated
memcg: memcg_rstat_updated re-entrant safe against irqs
mm: khugepaged: decouple SHMEM and file folios' collapse
selftests/eventfd: correct test name and improve messages
alloc_tag: check mem_profiling_support in alloc_tag_init
Docs/damon: update titles and brief introductions to explain DAMOS
selftests/damon/_damon_sysfs: read tried regions directories in order
mm/damon/tests/core-kunit: add a test for damos_set_filters_default_reject()
mm/damon/paddr: remove unused variable, folio_list, in damon_pa_stat()
mm/damon/sysfs-schemes: fix wrong comment on damons_sysfs_quota_goal_metric_strs
...
|
|
* for-next/mm:
arm64/boot: Disallow BSS exports to startup code
arm64/boot: Move global CPU override variables out of BSS
arm64/boot: Move init_pgdir[] and init_idmap_pgdir[] into __pi_ namespace
arm64: mm: Drop redundant check in pmd_trans_huge()
arm64/mm: Permit lazy_mmu_mode to be nested
arm64/mm: Disable barrier batching in interrupt contexts
arm64/mm: Batch barriers when updating kernel mappings
mm/vmalloc: Enter lazy mmu mode while manipulating vmalloc ptes
arm64/mm: Support huge pte-mapped pages in vmap
mm/vmalloc: Gracefully unmap huge ptes
mm/vmalloc: Warn on improper use of vunmap_range()
arm64/mm: Hoist barriers out of set_ptes_anysz() loop
arm64: hugetlb: Use __set_ptes_anysz() and __ptep_get_and_clear_anysz()
arm64/mm: Refactor __set_ptes() and __ptep_get_and_clear()
mm/page_table_check: Batch-check pmds/puds just like ptes
arm64: hugetlb: Refine tlb maintenance scope
arm64: hugetlb: Cleanup huge_pte size discovery mechanisms
arm64: pageattr: Explicitly bail out when changing permissions for vmalloc_huge mappings
arm64: Support ARM64_VA_BITS=52 when setting ARCH_MMAP_RND_BITS_MAX
arm64/mm: Remove randomization of the linear map
|
|
mov_q cannot really move PIE_E[0|1] macros into a general purpose register
as expected if those macro constants contain some 128 bit layout elements,
that are required for D128 page tables. The primary issue is that for D128,
PIE_E[0|1] are defined in terms of 128-bit types with shifting and masking,
which the assembler can't accommodate.
Instead pre-calculate these PIRE0_EL1/PIR_EL1 constants into asm-offsets.h
based PIE_E0_ASM/PIE_E1_ASM which can then be used in arch/arm64/mm/proc.S.
While here also drop PTE_MAYBE_NG/PTE_MAYBE_SHARED assembly overrides which
are not required any longer, as the compiler toolchains are smart enough to
compute both the PIE_[E0|E1]_ASM constants in all scenarios.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Link: https://lore.kernel.org/r/20250429050511.1663235-1-anshuman.khandual@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
Constructors for PUD/P4D-level pgtables were recently introduced. They
should be called for all pgtables; make sure they are called for special
kernel mappings created by __create_pgd_mapping() too.
Link: https://lkml.kernel.org/r/20250408095222.860601-12-kevin.brodsky@arm.com
Signed-off-by: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Andreas Larsson <andreas@gaisler.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Linus Waleij <linus.walleij@linaro.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: <x86@kernel.org>
Cc: Yang Shi <yang@os.amperecomputing.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
TL;DR: always call the PTE/PMD ctor, passing the appropriate mm to skip
ptlock_init() if unneeded.
__create_pgd_mapping() is used for creating different kinds of mappings,
and may allocate page table pages if passed an allocator callback. There
are currently three such cases:
1. create_pgd_mapping(), which is used to create the EFI mapping
2. arch_add_memory()
3. map_entry_trampoline()
1. uses pgd_pgtable_alloc() as allocator callback, which calls the
PTE/PMD ctor, while 2. and 3. use __pgd_pgtable_alloc(), which does not.
The rationale is most likely that pgtables associated with init_mm do not
make use of split page table locks, and it is therefore unnecessary to
initialise them by calling the ctor. 2. operates on swapper_pg_dir so
the allocated pgtables are clearly associated with init_mm, this is
arguably the case for 3. too (the trampoline mapping is never modified so
ptlocks are anyway irrelevant). 1. corresponds to efi_mm so ptlocks need
to be initialised in that case.
We are now moving towards calling the ctor for all page tables, even those
associated with init_mm. pagetable_{pte,pmd}_ctor() have become aware of
the associated mm so that the ptlock initialisation can be skipped for
init_mm. This patch therefore amends the allocator callbacks so that the
PTE/PMD ctor are always called, with an appropriate mm pointer to avoid
unnecessary ptlock overhead.
Modifying the prototype of the allocator callbacks to take the mm and
propagating that pointer all the way down would be pretty invasive.
Instead:
* __pgd_pgtable_alloc() (cases 2. and 3. above) is replaced with
pgd_pgtable_alloc_init_mm(), resulting in the ctors being called with
&init_mm. This is the main functional change in this patch; the ptlock
still isn't initialised, but other ctor actions (e.g.
accounting-related) are now carried out for those allocated pgtables.
* pgd_pgtable_alloc() (case 1. above) is replaced with
pgd_pgtable_alloc_special_mm(), resulting in the ctors being called with
NULL as mm. No functional change here; NULL essentially means "not
init_mm", and the ptlock is still initialised.
__pgd_pgtable_alloc() is now the common implementation of those two
helpers. While at it we switch it to using pagetable_alloc() like
standard pgtable allocator functions and remove the comment regarding ctor
calls (ctors are now always expected to be called).
Link: https://lkml.kernel.org/r/20250408095222.860601-10-kevin.brodsky@arm.com
Signed-off-by: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Andreas Larsson <andreas@gaisler.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Linus Waleij <linus.walleij@linaro.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: <x86@kernel.org>
Cc: Yang Shi <yang@os.amperecomputing.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Commit 90292aca9854 ("arm64: mm: use appropriate ctors for page tables")
introduced pgtable ctor calls in pgd_pgtable_alloc(). To identify the
pgtable level and call the appropriate ctor, the *_SHIFT value associated
with the pgtable level is used. However, those values do not
unambiguously identify a level, because if a given level is folded, the
*_SHIFT value will be equal to that of the upper level (e.g. PMD_SHIFT ==
PUD_SHIFT if PMD is folded).
As things stand, there is probably not much damaged done by calling the
ctor for a different level, and ARCH_ENABLE_SPLIT_PMD_PTLOCK is only
selected if PMD isn't folded (so we don't needlessly initialise
pmd_ptlock). Still, this is pretty confusing, and it would get even more
confusing when adding ctor calls for the remaining levels.
Let's simplify all this by using an enum to identify the pgtable level
instead; this way folding becomes irrelevant. This is inspired by one of
the m68k pgtable allocators (arch/m68k/include/asm/motorola_pgalloc.h).
Link: https://lkml.kernel.org/r/20250408095222.860601-9-kevin.brodsky@arm.com
Signed-off-by: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Andreas Larsson <andreas@gaisler.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Linus Waleij <linus.walleij@linaro.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: <x86@kernel.org>
Cc: Yang Shi <yang@os.amperecomputing.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "Always call constructor for kernel page tables", v2.
There has been much confusion around exactly when page table
constructors/destructors (pagetable_*_[cd]tor) are supposed to be called.
They were initially introduced for user PTEs only (to support split page
table locks), then at the PMD level for the same purpose. Accounting was
added later on, starting at the PTE level and then moving to higher levels
(PMD, PUD). Finally, with my earlier series "Account page tables at all
levels" [1], the ctor/dtor is run for all levels, all the way to PGD.
I thought this was the end of the story, and it hopefully is for user
pgtables, but I was wrong for what concerns kernel pgtables. The current
situation there makes very little sense:
* At the PTE level, the ctor/dtor is not called (at least in the generic
implementation). Specific helpers are used for kernel pgtables at this
level (pte_{alloc,free}_kernel()) and those have never called the
ctor/dtor, most likely because they were initially irrelevant in the
kernel case.
* At all other levels, the ctor/dtor is normally called. This is
potentially wasteful at the PMD level (more on that later).
This series aims to ensure that the ctor/dtor is always called for kernel
pgtables, as it already is for user pgtables. Besides consistency, the
main motivation is to guarantee that ctor/dtor hooks are systematically
called; this makes it possible to insert hooks to protect page tables [2],
for instance. There is however an extra challenge: split locks are not
used for kernel pgtables, and it would therefore be wasteful to initialise
them (ptlock_init()).
It is worth clarifying exactly when split locks are used. They clearly
are for user pgtables, but as illustrated in commit 61444cde9170 ("ARM:
8591/1: mm: use fully constructed struct pages for EFI pgd allocations"),
they also are for special page tables like efi_mm. The one case where
split locks are definitely unused is pgtables owned by init_mm; this is
consistent with the behaviour of apply_to_pte_range().
The approach chosen in this series is therefore to pass the mm associated
to the pgtables being constructed to pagetable_{pte,pmd}_ctor() (patch 1),
and skip ptlock_init() if mm == &init_mm (patch 3 and 7). This makes it
possible to call the PTE ctor/dtor from pte_{alloc,free}_kernel() without
unintended consequences (patch 3). As a result the accounting functions
are now called at all levels for kernel pgtables, and split locks are
never initialised.
In configurations where ptlocks are dynamically allocated (32-bit,
PREEMPT_RT, etc.) and ARCH_ENABLE_SPLIT_PMD_PTLOCK is selected, this
series results in the removal of a kmem_cache allocation for every kernel
PMD. Additionally, for certain architectures that do not use
<asm-generic/pgalloc.h> such as s390, the same optimisation occurs at the
PTE level.
===
Things get more complicated when it comes to special pgtable allocators
(patch 8-12). All architectures need such allocators to create initial
kernel pgtables; we are not concerned with those as the ctor cannot be
called so early in the boot sequence. However, those allocators may also
be used later in the boot sequence or during normal operations. There are
two main use-cases:
1. Mapping EFI memory: efi_mm (arm, arm64, riscv)
2. arch_add_memory(): init_mm
The ctor is already explicitly run (at the PTE/PMD level) in the first
case, as required for pgtables that are not associated with init_mm.
However the same allocators may also be used for the second use-case (or
others), and this is where it gets messy. Patch 1 calls the ctor with
NULL as mm in those situations, as the actual mm isn't available.
Practically this means that ptlocks will be unconditionally initialised.
This is fine on arm - create_mapping_late() is only used for the EFI
mapping. On arm64, __create_pgd_mapping() is also used by
arch_add_memory(); patch 8/9/11 ensure that ctors are called at all levels
with the appropriate mm. The situation is similar on riscv, but
propagating the mm down to the ctor would require significant refactoring.
Since they are already called unconditionally, this series leaves riscv
no worse off - patch 10 adds comments to clarify the situation.
From a cursory look at other architectures implementing arch_add_memory(),
s390 and x86 may also need a similar treatment to add constructor calls.
This is to be taken care of in a future version or as a follow-up.
===
The complications in those special pgtable allocators beg the question:
does it really make sense to treat efi_mm and init_mm differently in e.g.
apply_to_pte_range()? Maybe what we really need is a way to tell if an mm
corresponds to user memory or not, and never use split locks for non-user
mm's. Feedback and suggestions welcome!
This patch (of 12):
In preparation for calling constructors for all kernel page tables while
eliding unnecessary ptlock initialisation, let's pass down the associated
mm to the PTE/PMD level ctors. (These are the two levels where ptlocks
are used.)
In most cases the mm is already around at the point of calling the ctor so
we simply pass it down. This is however not the case for special page
table allocators:
* arch/arm/mm/mmu.c
* arch/arm64/mm/mmu.c
* arch/riscv/mm/init.c
In those cases, the page tables being allocated are either for standard
kernel memory (init_mm) or special page directories, which may not be
associated to any mm. For now let's pass NULL as mm; this will be refined
where possible in future patches.
No functional change in this patch.
Link: https://lore.kernel.org/linux-mm/20250103184415.2744423-1-kevin.brodsky@arm.com/ [1]
Link: https://lore.kernel.org/linux-hardening/20250203101839.1223008-1-kevin.brodsky@arm.com/ [2]
Link: https://lkml.kernel.org/r/20250408095222.860601-1-kevin.brodsky@arm.com
Link: https://lkml.kernel.org/r/20250408095222.860601-2-kevin.brodsky@arm.com
Signed-off-by: Kevin Brodsky <kevin.brodsky@arm.com>
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com> [s390]
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Andreas Larsson <andreas@gaisler.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Linus Waleij <linus.walleij@linaro.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yang Shi <yang@os.amperecomputing.com>
Cc: <x86@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Define ptdesc_t type which describes the basic page table descriptor
layout on arm64 platform. Subsequently all level specific pxxval_t
descriptors are derived from ptdesc_t thus establishing a common original
format, which can also be appropriate for page table entries, masks and
protection values etc which are used at all page table levels.
Link: https://lkml.kernel.org/r/20250407053113.746295-4-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Suggested-by: Ryan Roberts <ryan.roberts@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "mm/ptdump: Drop assumption that pxd_val() is u64", v2.
Last argument passed down in note_page() is u64 assuming pxd_val()
returned value (all page table levels) is 64 bit - which might not be the
case going ahead when D128 page tables is enabled on arm64 platform.
Besides pxd_val() is very platform specific and its type should not be
assumed in generic MM. A similar problem exists for effective_prot(),
although it is restricted to x86 platform.
This series splits note_page() and effective_prot() into individual page
table level specific callbacks which accepts corresponding pxd_t page
table entry as an argument instead and later on all subscribing platforms
could derive pxd_val() from the table entries as required and proceed as
before.
Define ptdesc_t type which describes the basic page table descriptor
layout on arm64 platform. Subsequently all level specific pxxval_t
descriptors are derived from ptdesc_t thus establishing a common original
format, which can also be appropriate for page table entries, masks and
protection values etc which are used at all page table levels.
This patch (of 3):
Last argument passed down in note_page() is u64 assuming pxd_val()
returned value (all page table levels) is 64 bit - which might not be the
case going ahead when D128 page tables is enabled on arm64 platform.
Besides pxd_val() is very platform specific and its type should not be
assumed in generic MM.
Split note_page() into individual page table level specific callbacks
which accepts corresponding pxd_t argument instead and then subscribing
platforms just derive pxd_val() from the entries as required and proceed
as earlier.
Also add a note_page_flush() callback for flushing the last page table
page that was being handled earlier via level = -1.
Link: https://lkml.kernel.org/r/20250407053113.746295-1-anshuman.khandual@arm.com
Link: https://lkml.kernel.org/r/20250407053113.746295-2-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Implement the required arch functions to enable use of contpte in the
vmap when VM_ALLOW_HUGE_VMAP is specified. This speeds up vmap
operations due to only having to issue a DSB and ISB per contpte block
instead of per pte. But it also means that the TLB pressure reduces due
to only needing a single TLB entry for the whole contpte block.
Since vmap uses set_huge_pte_at() to set the contpte, that API is now
used for kernel mappings for the first time. Although in the vmap case
we never expect it to be called to modify a valid mapping so
clear_flush() should never be called, it's still wise to make it robust
for the kernel case, so amend the tlb flush function if the mm is for
kernel space.
Tested with vmalloc performance selftests:
# kself/mm/test_vmalloc.sh \
run_test_mask=1
test_repeat_count=5
nr_pages=256
test_loop_count=100000
use_huge=1
Duration reduced from 1274243 usec to 1083553 usec on Apple M2 for 15%
reduction in time taken.
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Tested-by: Luiz Capitulino <luizcap@redhat.com>
Link: https://lore.kernel.org/r/20250422081822.1836315-10-ryan.roberts@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
Refactor the huge_pte helpers to use the new common __set_ptes_anysz()
and __ptep_get_and_clear_anysz() APIs.
This provides 2 benefits; First, when page_table_check=on, hugetlb is
now properly/fully checked. Previously only the first page of a hugetlb
folio was checked. Second, instead of having to call __set_ptes(nr=1)
for each pte in a loop, the whole contiguous batch can now be set in one
go, which enables some efficiencies and cleans up the code.
One detail to note is that huge_ptep_clear_flush() was previously
calling ptep_clear_flush() for a non-contiguous pte (i.e. a pud or pmd
block mapping). This has a couple of disadvantages; first
ptep_clear_flush() calls ptep_get_and_clear() which transparently
handles contpte. Given we only call for non-contiguous ptes, it would be
safe, but a waste of effort. It's preferable to go straight to the layer
below. However, more problematic is that ptep_get_and_clear() is for
PAGE_SIZE entries so it calls page_table_check_pte_clear() and would not
clear the whole hugetlb folio. So let's stop special-casing the non-cont
case and just rely on get_clear_contig_flush() to do the right thing for
non-cont entries.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Tested-by: Luiz Capitulino <luizcap@redhat.com>
Link: https://lore.kernel.org/r/20250422081822.1836315-6-ryan.roberts@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
When operating on contiguous blocks of ptes (or pmds) for some hugetlb
sizes, we must honour break-before-make requirements and clear down the
block to invalid state in the pgtable then invalidate the relevant tlb
entries before making the pgtable entries valid again.
However, the tlb maintenance is currently always done assuming the worst
case stride (PAGE_SIZE), last_level (false) and tlb_level
(TLBI_TTL_UNKNOWN). We can do much better with the hinting; In reality,
we know the stride from the huge_pte pgsize, we are always operating
only on the last level, and we always know the tlb_level, again based on
pgsize. So let's start providing these hints.
Additionally, avoid tlb maintenace in set_huge_pte_at().
Break-before-make is only required if we are transitioning the
contiguous pte block from valid -> valid. So let's elide the
clear-and-flush ("break") if the pte range was previously invalid.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Tested-by: Luiz Capitulino <luizcap@redhat.com>
Link: https://lore.kernel.org/r/20250422081822.1836315-3-ryan.roberts@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
Not all huge_pte helper APIs explicitly provide the size of the
huge_pte. So the helpers have to depend on various methods to determine
the size of the huge_pte. Some of these methods are dubious.
Let's clean up the code to use preferred methods and retire the dubious
ones. The options in order of preference:
- If size is provided as parameter, use it together with
num_contig_ptes(). This is explicit and works for both present and
non-present ptes.
- If vma is provided as a parameter, retrieve size via
huge_page_size(hstate_vma(vma)) and use it together with
num_contig_ptes(). This is explicit and works for both present and
non-present ptes.
- If the pte is present and contiguous, use find_num_contig() to walk
the pgtable to find the level and infer the number of ptes from
level. Only works for *present* ptes.
- If the pte is present and not contiguous and you can infer from this
that only 1 pte needs to be operated on. This is ok if you don't care
about the absolute size, and just want to know the number of ptes.
- NEVER rely on resolving the PFN of a present pte to a folio and
getting the folio's size. This is fragile at best, because there is
nothing to stop the core-mm from allocating a folio twice as big as
the huge_pte then mapping it across 2 consecutive huge_ptes. Or just
partially mapping it.
Where we require that the pte is present, add warnings if not-present.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Tested-by: Luiz Capitulino <luizcap@redhat.com>
Link: https://lore.kernel.org/r/20250422081822.1836315-2-ryan.roberts@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
vmalloc_huge mappings
arm64 uses apply_to_page_range to change permissions for kernel vmalloc mappings,
which does not support changing permissions for block mappings. This function
will change permissions until it encounters a block mapping, and will bail
out with a warning. Since there are no reports of this triggering, it
implies that there are currently no cases of code doing a vmalloc_huge()
followed by partial permission change. But this is a footgun waiting to
go off, so let's detect it early and avoid the possibility of permissions
in an intermediate state. So, explicitly disallow changing permissions
for VM_ALLOW_HUGE_VMAP mappings.
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Reviewed-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Signed-off-by: Dev Jain <dev.jain@arm.com>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Link: https://lore.kernel.org/r/20250403052844.61818-1-dev.jain@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
Since commit
97d6786e0669 ("arm64: mm: account for hotplug memory when randomizing the linear region")
the decision whether or not to randomize the placement of the system's
DRAM inside the linear map is based on the capabilities of the CPU
rather than how much memory is present at boot time. This change was
necessary because memory hotplug may result in DRAM appearing in places
that are not covered by the linear region at all (and therefore
unusable) if the decision is solely based on the memory map at boot.
In the Android GKI kernel, which requires support for memory hotplug,
and is built with a reduced virtual address space of only 39 bits wide,
randomization of the linear map never happens in practice as a result.
And even on arm64 kernels built with support for 48 bit virtual
addressing, the wider PArange of recent CPUs means that linear map
randomization is slowly becoming a feature that only works on systems
that will soon be obsolete.
So let's just remove this feature. We can always bring it back in an
improved form if there is a real need for it.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Kees Cook <kees@kernel.org>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20250318134949.3194334-2-ardb+git@google.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 fixes from Catalin Marinas:
- Fix max_pfn calculation when hotplugging memory so that it never
decreases
- Fix dereference of unused source register in the MOPS SET operation
fault handling
- Fix NULL calling in do_compat_alignment_fixup() when the 32-bit user
space does an unaligned LDREX/STREX
- Add the HiSilicon HIP09 processor to the Spectre-BHB affected CPUs
- Drop unused code pud accessors (special/mkspecial)
* tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux:
arm64: Don't call NULL in do_compat_alignment_fixup()
arm64: Add support for HIP09 Spectre-BHB mitigation
arm64: mm: Drop dead code for pud special bit handling
arm64: mops: Do not dereference src reg for a set operation
arm64: mm: Correct the update of max_pfn
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull non-MM updates from Andrew Morton:
- The series "powerpc/crash: use generic crashkernel reservation" from
Sourabh Jain changes powerpc's kexec code to use more of the generic
layers.
- The series "get_maintainer: report subsystem status separately" from
Vlastimil Babka makes some long-requested improvements to the
get_maintainer output.
- The series "ucount: Simplify refcounting with rcuref_t" from
Sebastian Siewior cleans up and optimizing the refcounting in the
ucount code.
- The series "reboot: support runtime configuration of emergency
hw_protection action" from Ahmad Fatoum improves the ability for a
driver to perform an emergency system shutdown or reboot.
- The series "Converge on using secs_to_jiffies() part two" from Easwar
Hariharan performs further migrations from msecs_to_jiffies() to
secs_to_jiffies().
- The series "lib/interval_tree: add some test cases and cleanup" from
Wei Yang permits more userspace testing of kernel library code, adds
some more tests and performs some cleanups.
- The series "hung_task: Dump the blocking task stacktrace" from Masami
Hiramatsu arranges for the hung_task detector to dump the stack of
the blocking task and not just that of the blocked task.
- The series "resource: Split and use DEFINE_RES*() macros" from Andy
Shevchenko provides some cleanups to the resource definition macros.
- Plus the usual shower of singleton patches - please see the
individual changelogs for details.
* tag 'mm-nonmm-stable-2025-03-30-18-23' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (77 commits)
mailmap: consolidate email addresses of Alexander Sverdlin
fs/procfs: fix the comment above proc_pid_wchan()
relay: use kasprintf() instead of fixed buffer formatting
resource: replace open coded variant of DEFINE_RES()
resource: replace open coded variants of DEFINE_RES_*_NAMED()
resource: replace open coded variant of DEFINE_RES_NAMED_DESC()
resource: split DEFINE_RES_NAMED_DESC() out of DEFINE_RES_NAMED()
samples: add hung_task detector mutex blocking sample
hung_task: show the blocker task if the task is hung on mutex
kexec_core: accept unaccepted kexec segments' destination addresses
watchdog/perf: optimize bytes copied and remove manual NUL-termination
lib/interval_tree: fix the comment of interval_tree_span_iter_next_gap()
lib/interval_tree: skip the check before go to the right subtree
lib/interval_tree: add test case for span iteration
lib/interval_tree: add test case for interval_tree_iter_xxx() helpers
lib/rbtree: add random seed
lib/rbtree: split tests
lib/rbtree: enable userland test suite for rbtree related data structure
checkpatch: describe --min-conf-desc-length
scripts/gdb/symbols: determine KASLR offset on s390
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- The series "Enable strict percpu address space checks" from Uros
Bizjak uses x86 named address space qualifiers to provide
compile-time checking of percpu area accesses.
This has caused a small amount of fallout - two or three issues were
reported. In all cases the calling code was found to be incorrect.
- The series "Some cleanup for memcg" from Chen Ridong implements some
relatively monir cleanups for the memcontrol code.
- The series "mm: fixes for device-exclusive entries (hmm)" from David
Hildenbrand fixes a boatload of issues which David found then using
device-exclusive PTE entries when THP is enabled. More work is
needed, but this makes thins better - our own HMM selftests now
succeed.
- The series "mm: zswap: remove z3fold and zbud" from Yosry Ahmed
remove the z3fold and zbud implementations. They have been deprecated
for half a year and nobody has complained.
- The series "mm: further simplify VMA merge operation" from Lorenzo
Stoakes implements numerous simplifications in this area. No runtime
effects are anticipated.
- The series "mm/madvise: remove redundant mmap_lock operations from
process_madvise()" from SeongJae Park rationalizes the locking in the
madvise() implementation. Performance gains of 20-25% were observed
in one MADV_DONTNEED microbenchmark.
- The series "Tiny cleanup and improvements about SWAP code" from
Baoquan He contains a number of touchups to issues which Baoquan
noticed when working on the swap code.
- The series "mm: kmemleak: Usability improvements" from Catalin
Marinas implements a couple of improvements to the kmemleak
user-visible output.
- The series "mm/damon/paddr: fix large folios access and schemes
handling" from Usama Arif provides a couple of fixes for DAMON's
handling of large folios.
- The series "mm/damon/core: fix wrong and/or useless damos_walk()
behaviors" from SeongJae Park fixes a few issues with the accuracy of
kdamond's walking of DAMON regions.
- The series "expose mapping wrprotect, fix fb_defio use" from Lorenzo
Stoakes changes the interaction between framebuffer deferred-io and
core MM. No functional changes are anticipated - this is preparatory
work for the future removal of page structure fields.
- The series "mm/damon: add support for hugepage_size DAMOS filter"
from Usama Arif adds a DAMOS filter which permits the filtering by
huge page sizes.
- The series "mm: permit guard regions for file-backed/shmem mappings"
from Lorenzo Stoakes extends the guard region feature from its
present "anon mappings only" state. The feature now covers shmem and
file-backed mappings.
- The series "mm: batched unmap lazyfree large folios during
reclamation" from Barry Song cleans up and speeds up the unmapping
for pte-mapped large folios.
- The series "reimplement per-vma lock as a refcount" from Suren
Baghdasaryan puts the vm_lock back into the vma. Our reasons for
pulling it out were largely bogus and that change made the code more
messy. This patchset provides small (0-10%) improvements on one
microbenchmark.
- The series "Docs/mm/damon: misc DAMOS filters documentation fixes and
improves" from SeongJae Park does some maintenance work on the DAMON
docs.
- The series "hugetlb/CMA improvements for large systems" from Frank
van der Linden addresses a pile of issues which have been observed
when using CMA on large machines.
- The series "mm/damon: introduce DAMOS filter type for unmapped pages"
from SeongJae Park enables users of DMAON/DAMOS to filter my the
page's mapped/unmapped status.
- The series "zsmalloc/zram: there be preemption" from Sergey
Senozhatsky teaches zram to run its compression and decompression
operations preemptibly.
- The series "selftests/mm: Some cleanups from trying to run them" from
Brendan Jackman fixes a pile of unrelated issues which Brendan
encountered while runnimg our selftests.
- The series "fs/proc/task_mmu: add guard region bit to pagemap" from
Lorenzo Stoakes permits userspace to use /proc/pid/pagemap to
determine whether a particular page is a guard page.
- The series "mm, swap: remove swap slot cache" from Kairui Song
removes the swap slot cache from the allocation path - it simply
wasn't being effective.
- The series "mm: cleanups for device-exclusive entries (hmm)" from
David Hildenbrand implements a number of unrelated cleanups in this
code.
- The series "mm: Rework generic PTDUMP configs" from Anshuman Khandual
implements a number of preparatoty cleanups to the GENERIC_PTDUMP
Kconfig logic.
- The series "mm/damon: auto-tune aggregation interval" from SeongJae
Park implements a feedback-driven automatic tuning feature for
DAMON's aggregation interval tuning.
- The series "Fix lazy mmu mode" from Ryan Roberts fixes some issues in
powerpc, sparc and x86 lazy MMU implementations. Ryan did this in
preparation for implementing lazy mmu mode for arm64 to optimize
vmalloc.
- The series "mm/page_alloc: Some clarifications for migratetype
fallback" from Brendan Jackman reworks some commentary to make the
code easier to follow.
- The series "page_counter cleanup and size reduction" from Shakeel
Butt cleans up the page_counter code and fixes a size increase which
we accidentally added late last year.
- The series "Add a command line option that enables control of how
many threads should be used to allocate huge pages" from Thomas
Prescher does that. It allows the careful operator to significantly
reduce boot time by tuning the parallalization of huge page
initialization.
- The series "Fix calculations in trace_balance_dirty_pages() for cgwb"
from Tang Yizhou fixes the tracing output from the dirty page
balancing code.
- The series "mm/damon: make allow filters after reject filters useful
and intuitive" from SeongJae Park improves the handling of allow and
reject filters. Behaviour is made more consistent and the documention
is updated accordingly.
- The series "Switch zswap to object read/write APIs" from Yosry Ahmed
updates zswap to the new object read/write APIs and thus permits the
removal of some legacy code from zpool and zsmalloc.
- The series "Some trivial cleanups for shmem" from Baolin Wang does as
it claims.
- The series "fs/dax: Fix ZONE_DEVICE page reference counts" from
Alistair Popple regularizes the weird ZONE_DEVICE page refcount
handling in DAX, permittig the removal of a number of special-case
checks.
- The series "refactor mremap and fix bug" from Lorenzo Stoakes is a
preparatoty refactoring and cleanup of the mremap() code.
- The series "mm: MM owner tracking for large folios (!hugetlb) +
CONFIG_NO_PAGE_MAPCOUNT" from David Hildenbrand reworks the manner in
which we determine whether a large folio is known to be mapped
exclusively into a single MM.
- The series "mm/damon: add sysfs dirs for managing DAMOS filters based
on handling layers" from SeongJae Park adds a couple of new sysfs
directories to ease the management of DAMON/DAMOS filters.
- The series "arch, mm: reduce code duplication in mem_init()" from
Mike Rapoport consolidates many per-arch implementations of
mem_init() into code generic code, where that is practical.
- The series "mm/damon/sysfs: commit parameters online via
damon_call()" from SeongJae Park continues the cleaning up of sysfs
access to DAMON internal data.
- The series "mm: page_ext: Introduce new iteration API" from Luiz
Capitulino reworks the page_ext initialization to fix a boot-time
crash which was observed with an unusual combination of compile and
cmdline options.
- The series "Buddy allocator like (or non-uniform) folio split" from
Zi Yan reworks the code to split a folio into smaller folios. The
main benefit is lessened memory consumption: fewer post-split folios
are generated.
- The series "Minimize xa_node allocation during xarry split" from Zi
Yan reduces the number of xarray xa_nodes which are generated during
an xarray split.
- The series "drivers/base/memory: Two cleanups" from Gavin Shan
performs some maintenance work on the drivers/base/memory code.
- The series "Add tracepoints for lowmem reserves, watermarks and
totalreserve_pages" from Martin Liu adds some more tracepoints to the
page allocator code.
- The series "mm/madvise: cleanup requests validations and
classifications" from SeongJae Park cleans up some warts which
SeongJae observed during his earlier madvise work.
- The series "mm/hwpoison: Fix regressions in memory failure handling"
from Shuai Xue addresses two quite serious regressions which Shuai
has observed in the memory-failure implementation.
- The series "mm: reliable huge page allocator" from Johannes Weiner
makes huge page allocations cheaper and more reliable by reducing
fragmentation.
- The series "Minor memcg cleanups & prep for memdescs" from Matthew
Wilcox is preparatory work for the future implementation of memdescs.
- The series "track memory used by balloon drivers" from Nico Pache
introduces a way to track memory used by our various balloon drivers.
- The series "mm/damon: introduce DAMOS filter type for active pages"
from Nhat Pham permits users to filter for active/inactive pages,
separately for file and anon pages.
- The series "Adding Proactive Memory Reclaim Statistics" from Hao Jia
separates the proactive reclaim statistics from the direct reclaim
statistics.
- The series "mm/vmscan: don't try to reclaim hwpoison folio" from
Jinjiang Tu fixes our handling of hwpoisoned pages within the reclaim
code.
* tag 'mm-stable-2025-03-30-16-52' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (431 commits)
mm/page_alloc: remove unnecessary __maybe_unused in order_to_pindex()
x86/mm: restore early initialization of high_memory for 32-bits
mm/vmscan: don't try to reclaim hwpoison folio
mm/hwpoison: introduce folio_contain_hwpoisoned_page() helper
cgroup: docs: add pswpin and pswpout items in cgroup v2 doc
mm: vmscan: split proactive reclaim statistics from direct reclaim statistics
selftests/mm: speed up split_huge_page_test
selftests/mm: uffd-unit-tests support for hugepages > 2M
docs/mm/damon/design: document active DAMOS filter type
mm/damon: implement a new DAMOS filter type for active pages
fs/dax: don't disassociate zero page entries
MM documentation: add "Unaccepted" meminfo entry
selftests/mm: add commentary about 9pfs bugs
fork: use __vmalloc_node() for stack allocation
docs/mm: Physical Memory: Populate the "Zones" section
xen: balloon: update the NR_BALLOON_PAGES state
hv_balloon: update the NR_BALLOON_PAGES state
balloon_compaction: update the NR_BALLOON_PAGES state
meminfo: add a per node counter for balloon drivers
mm: remove references to folio in __memcg_kmem_uncharge_page()
...
|
|
Hotplugged memory can be smaller than the original memory. For example,
on my target:
root@genericarmv8:~# cat /sys/kernel/debug/memblock/memory
0: 0x0000000064005000..0x0000000064023fff 0 NOMAP
1: 0x0000000064400000..0x00000000647fffff 0 NOMAP
2: 0x0000000068000000..0x000000006fffffff 0 DRV_MNG
3: 0x0000000088800000..0x0000000094ffefff 0 NONE
4: 0x0000000094fff000..0x0000000094ffffff 0 NOMAP
max_pfn will affect read_page_owner. Therefore, it should first compare and
then select the larger value for max_pfn.
Fixes: 8fac67ca236b ("arm64: mm: update max_pfn after memory hotplug")
Cc: <stable@vger.kernel.org> # 6.1.x
Signed-off-by: Zhenhua Huang <quic_zhenhuah@quicinc.com>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Link: https://lore.kernel.org/r/20250321070019.1271859-1-quic_zhenhuah@quicinc.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
"Nothing major this time around.
Apart from the usual perf/PMU updates, some page table cleanups, the
notable features are average CPU frequency based on the AMUv1
counters, CONFIG_HOTPLUG_SMT and MOPS instructions (memcpy/memset) in
the uaccess routines.
Perf and PMUs:
- Support for the 'Rainier' CPU PMU from Arm
- Preparatory driver changes and cleanups that pave the way for BRBE
support
- Support for partial virtualisation of the Apple-M1 PMU
- Support for the second event filter in Arm CSPMU designs
- Minor fixes and cleanups (CMN and DWC PMUs)
- Enable EL2 requirements for FEAT_PMUv3p9
Power, CPU topology:
- Support for AMUv1-based average CPU frequency
- Run-time SMT control wired up for arm64 (CONFIG_HOTPLUG_SMT). It
adds a generic topology_is_primary_thread() function overridden by
x86 and powerpc
New(ish) features:
- MOPS (memcpy/memset) support for the uaccess routines
Security/confidential compute:
- Fix the DMA address for devices used in Realms with Arm CCA. The
CCA architecture uses the address bit to differentiate between
shared and private addresses
- Spectre-BHB: assume CPUs Linux doesn't know about vulnerable by
default
Memory management clean-ups:
- Drop the P*D_TABLE_BIT definition in preparation for 128-bit PTEs
- Some minor page table accessor clean-ups
- PIE/POE (permission indirection/overlay) helpers clean-up
Kselftests:
- MTE: skip hugetlb tests if MTE is not supported on such mappings
and user correct naming for sync/async tag checking modes
Miscellaneous:
- Add a PKEY_UNRESTRICTED definition as 0 to uapi (toolchain people
request)
- Sysreg updates for new register fields
- CPU type info for some Qualcomm Kryo cores"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (72 commits)
arm64: mm: Don't use %pK through printk
perf/arm_cspmu: Fix missing io.h include
arm64: errata: Add newer ARM cores to the spectre_bhb_loop_affected() lists
arm64: cputype: Add MIDR_CORTEX_A76AE
arm64: errata: Add KRYO 2XX/3XX/4XX silver cores to Spectre BHB safe list
arm64: errata: Assume that unknown CPUs _are_ vulnerable to Spectre BHB
arm64: errata: Add QCOM_KRYO_4XX_GOLD to the spectre_bhb_k24_list
arm64/sysreg: Enforce whole word match for open/close tokens
arm64/sysreg: Fix unbalanced closing block
arm64: Kconfig: Enable HOTPLUG_SMT
arm64: topology: Support SMT control on ACPI based system
arch_topology: Support SMT control for OF based system
cpu/SMT: Provide a default topology_is_primary_thread()
arm64/mm: Define PTDESC_ORDER
perf/arm_cspmu: Add PMEVFILT2R support
perf/arm_cspmu: Generalise event filtering
perf/arm_cspmu: Move register definitons to header
arm64/kernel: Always use level 2 or higher for early mappings
arm64/mm: Drop PXD_TABLE_BIT
arm64/mm: Check pmd_table() in pmd_trans_huge()
...
|
|
'for-next/sysreg', 'for-next/misc', 'for-next/pgtable-cleanups', 'for-next/kselftest', 'for-next/uaccess-mops', 'for-next/pie-poe-cleanup', 'for-next/cputype-kryo', 'for-next/cca-dma-address', 'for-next/drop-pxd_table_bit' and 'for-next/spectre-bhb-assume-vulnerable', remote-tracking branch 'arm64/for-next/perf' into for-next/core
* arm64/for-next/perf:
perf/arm_cspmu: Fix missing io.h include
perf/arm_cspmu: Add PMEVFILT2R support
perf/arm_cspmu: Generalise event filtering
perf/arm_cspmu: Move register definitons to header
drivers/perf: apple_m1: Support host/guest event filtering
drivers/perf: apple_m1: Refactor event select/filter configuration
perf/dwc_pcie: fix duplicate pci_dev devices
perf/dwc_pcie: fix some unreleased resources
perf/arm-cmn: Minor event type housekeeping
perf: arm_pmu: Move PMUv3-specific data
perf: apple_m1: Don't disable counter in m1_pmu_enable_event()
perf: arm_v7_pmu: Don't disable counter in (armv7|krait_|scorpion_)pmu_enable_event()
perf: arm_v7_pmu: Drop obvious comments for enabling/disabling counters and interrupts
perf: arm_pmuv3: Don't disable counter in armv8pmu_enable_event()
perf: arm_pmu: Don't disable counter in armpmu_add()
perf: arm_pmuv3: Call kvm_vcpu_pmu_resync_el0() before enabling counters
perf: arm_pmuv3: Add support for ARM Rainier PMU
* for-next/amuv1-avg-freq:
: Add support for AArch64 AMUv1-based average freq
arm64: Utilize for_each_cpu_wrap for reference lookup
arm64: Update AMU-based freq scale factor on entering idle
arm64: Provide an AMU-based version of arch_freq_get_on_cpu
cpufreq: Introduce an optional cpuinfo_avg_freq sysfs entry
cpufreq: Allow arch_freq_get_on_cpu to return an error
arch_topology: init capacity_freq_ref to 0
* for-next/pkey_unrestricted:
: mm/pkey: Add PKEY_UNRESTRICTED macro
selftest/powerpc/mm/pkey: fix build-break introduced by commit 00894c3fc917
selftests/powerpc: Use PKEY_UNRESTRICTED macro
selftests/mm: Use PKEY_UNRESTRICTED macro
mm/pkey: Add PKEY_UNRESTRICTED macro
* for-next/sysreg:
: arm64 sysreg updates
arm64/sysreg: Enforce whole word match for open/close tokens
arm64/sysreg: Fix unbalanced closing block
arm64/sysreg: Add register fields for HFGWTR2_EL2
arm64/sysreg: Add register fields for HFGRTR2_EL2
arm64/sysreg: Add register fields for HFGITR2_EL2
arm64/sysreg: Add register fields for HDFGWTR2_EL2
arm64/sysreg: Add register fields for HDFGRTR2_EL2
arm64/sysreg: Update register fields for ID_AA64MMFR0_EL1
* for-next/misc:
: Miscellaneous arm64 patches
arm64: mm: Don't use %pK through printk
arm64/fpsimd: Remove unused declaration fpsimd_kvm_prepare()
* for-next/pgtable-cleanups:
: arm64 pgtable accessors cleanup
arm64/mm: Define PTDESC_ORDER
arm64/kernel: Always use level 2 or higher for early mappings
arm64/hugetlb: Consistently use pud_sect_supported()
arm64/mm: Convert __pte_to_phys() and __phys_to_pte_val() as functions
* for-next/kselftest:
: arm64 kselftest updates
kselftest/arm64: mte: Skip the hugetlb tests if MTE not supported on such mappings
kselftest/arm64: mte: Use the correct naming for tag check modes in check_hugetlb_options.c
* for-next/uaccess-mops:
: Implement the uaccess memory copy/set using MOPS instructions
arm64: lib: Use MOPS for usercopy routines
arm64: mm: Handle PAN faults on uaccess CPY* instructions
arm64: extable: Add fixup handling for uaccess CPY* instructions
* for-next/pie-poe-cleanup:
: PIE/POE helpers cleanup
arm64/sysreg: Move POR_EL0_INIT to asm/por.h
arm64/sysreg: Rename POE_RXW to POE_RWX
arm64/sysreg: Improve PIR/POR helpers
* for-next/cputype-kryo:
: Add cputype info for some Qualcomm Kryo cores
arm64: cputype: Add comments about Qualcomm Kryo 5XX and 6XX cores
arm64: cputype: Add QCOM_CPU_PART_KRYO_3XX_GOLD
* for-next/cca-dma-address:
: Fix DMA address for devices used in realms with Arm CCA
arm64: realm: Use aliased addresses for device DMA to shared buffers
dma: Introduce generic dma_addr_*crypted helpers
dma: Fix encryption bit clearing for dma_to_phys
* for-next/drop-pxd_table_bit:
: Drop the arm64 PXD_TABLE_BIT (clean-up in preparation for 128-bit PTEs)
arm64/mm: Drop PXD_TABLE_BIT
arm64/mm: Check pmd_table() in pmd_trans_huge()
arm64/mm: Check PUD_TYPE_TABLE in pud_bad()
arm64/mm: Check PXD_TYPE_TABLE in [p4d|pgd]_bad()
arm64/mm: Clear PXX_TYPE_MASK and set PXD_TYPE_SECT in [pmd|pud]_mkhuge()
arm64/mm: Clear PXX_TYPE_MASK in mk_[pmd|pud]_sect_prot()
arm64/ptdump: Test PMD_TYPE_MASK for block mapping
KVM: arm64: ptdump: Test PMD_TYPE_MASK for block mapping
* for-next/spectre-bhb-assume-vulnerable:
: Rework Spectre BHB mitigations to not assume "safe"
arm64: errata: Add newer ARM cores to the spectre_bhb_loop_affected() lists
arm64: cputype: Add MIDR_CORTEX_A76AE
arm64: errata: Add KRYO 2XX/3XX/4XX silver cores to Spectre BHB safe list
arm64: errata: Assume that unknown CPUs _are_ vulnerable to Spectre BHB
arm64: errata: Add QCOM_KRYO_4XX_GOLD to the spectre_bhb_k24_list
|
|
Restricted pointers ("%pK") are not meant to be used through printk().
It can unintentionally expose security sensitive, raw pointer values.
Use regular pointer formatting instead.
Link: https://lore.kernel.org/lkml/20250113171731-dc10e3c1-da64-4af0-b767-7c7070468023@linutronix.de/
Signed-off-by: Thomas Weißschuh <thomas.weissschuh@linutronix.de>
Link: https://lore.kernel.org/r/20250217-restricted-pointers-arm64-v1-1-14bb1f516b01@linutronix.de
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
The point where the memory is released from memblock to the buddy
allocator is hidden inside arch-specific mem_init()s and the call to
memblock_free_all() is needlessly duplicated in every artiste cure and
after introduction of arch_mm_preinit() hook, mem_init() implementation on
many architecture only contains the call to memblock_free_all().
Pull memblock_free_all() call into mm_core_init() and drop mem_init() on
relevant architectures to make it more explicit where the free memory is
released from memblock to the buddy allocator and to reduce code
duplication in architecture specific code.
Link: https://lkml.kernel.org/r/20250313135003.836600-14-rppt@kernel.org
Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com> [x86]
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> [m68k]
Tested-by: Mark Brown <broonie@kernel.org>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andreas Larsson <andreas@gaisler.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Dinh Nguyen <dinguyen@kernel.org>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Guo Ren (csky) <guoren@kernel.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiaxun Yang <jiaxun.yang@flygoat.com>
Cc: Johannes Berg <johannes@sipsolutions.net>
Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Russel King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleinxer <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vineet Gupta <vgupta@kernel.org>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Currently, implementation of mem_init() in every architecture consists of
one or more of the following:
* initializations that must run before page allocator is active, for
instance swiotlb_init()
* a call to memblock_free_all() to release all the memory to the buddy
allocator
* initializations that must run after page allocator is ready and there is
no arch-specific hook other than mem_init() for that, like for example
register_page_bootmem_info() in x86 and sparc64 or simple setting of
mem_init_done = 1 in several architectures
* a bunch of semi-related stuff that apparently had no better place to
live, for example a ton of BUILD_BUG_ON()s in parisc.
Introduce arch_mm_preinit() that will be the first thing called from
mm_core_init(). On architectures that have initializations that must happen
before the page allocator is ready, move those into arch_mm_preinit() along
with the code that does not depend on ordering with page allocator setup.
On several architectures this results in reduction of mem_init() to a
single call to memblock_free_all() that allows its consolidation next.
Link: https://lkml.kernel.org/r/20250313135003.836600-13-rppt@kernel.org
Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com> [x86]
Tested-by: Mark Brown <broonie@kernel.org>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andreas Larsson <andreas@gaisler.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Dinh Nguyen <dinguyen@kernel.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Guo Ren (csky) <guoren@kernel.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiaxun Yang <jiaxun.yang@flygoat.com>
Cc: Johannes Berg <johannes@sipsolutions.net>
Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Russel King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleinxer <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vineet Gupta <vgupta@kernel.org>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
high_memory defines upper bound on the directly mapped memory. This bound
is defined by the beginning of ZONE_HIGHMEM when a system has high memory
and by the end of memory otherwise.
All this is known to generic memory management initialization code that
can set high_memory while initializing core mm structures.
Add a generic calculation of high_memory to free_area_init() and remove
per-architecture calculation except for the architectures that set and use
high_memory earlier than that.
Link: https://lkml.kernel.org/r/20250313135003.836600-11-rppt@kernel.org
Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com> [x86]
Tested-by: Mark Brown <broonie@kernel.org>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andreas Larsson <andreas@gaisler.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Dinh Nguyen <dinguyen@kernel.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Guo Ren (csky) <guoren@kernel.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiaxun Yang <jiaxun.yang@flygoat.com>
Cc: Johannes Berg <johannes@sipsolutions.net>
Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Russel King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleinxer <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vineet Gupta <vgupta@kernel.org>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Platforms subscribe into generic ptdump implementation via GENERIC_PTDUMP.
But generic ptdump gets enabled via PTDUMP_CORE. These configs
combination is confusing as they sound very similar and does not
differentiate between platform's feature subscription and feature
enablement for ptdump. Rename the configs as ARCH_HAS_PTDUMP and PTDUMP
making it more clear and improve readability.
Link: https://lkml.kernel.org/r/20250226122404.1927473-6-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu> (powerpc)
Acked-by: Catalin Marinas <catalin.marinas@arm.com> [arm64]
Cc: Will Deacon <will@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Steven Price <steven.price@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
cmdline argument is not used in reserve_crashkernel_generic() so remove
it. Correspondingly, all the callers have been updated as well.
No functional change intended.
Link: https://lkml.kernel.org/r/20250131113830.925179-3-sourabhjain@linux.ibm.com
Signed-off-by: Sourabh Jain <sourabhjain@linux.ibm.com>
Acked-by: Hari Bathini <hbathini@linux.ibm.com>
Acked-by: Baoquan He <bhe@redhat.com>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Mahesh Salgaonkar <mahesh@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
ioremap_prot() currently accepts pgprot_val parameter as an unsigned long,
thus implicitly assuming that pgprot_val and pgprot_t could never be
bigger than unsigned long. But this assumption soon will not be true on
arm64 when using D128 pgtables. In 128 bit page table configuration,
unsigned long is 64 bit, but pgprot_t is 128 bit.
Passing platform abstracted pgprot_t argument is better as compared to
size based data types. Let's change the parameter to directly pass
pgprot_t like another similar helper generic_ioremap_prot().
Without this change in place, D128 configuration does not work on arm64 as
the top 64 bits gets silently stripped when passing the protection value
to this function.
Link: https://lkml.kernel.org/r/20250218101954.415331-1-anshuman.khandual@arm.com
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Co-developed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com> [arm64]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
This patch lays the groundwork for supporting batch PTE unmapping in
try_to_unmap_one(). It introduces range handling for TLB batch flushing,
with the range currently set to the size of PAGE_SIZE.
The function __flush_tlb_range_nosync() is architecture-specific and is
only used within arch/arm64. This function requires the mm structure
instead of the vma structure. To allow its reuse by
arch_tlbbatch_add_pending(), which operates with mm but not vma, this
patch modifies the argument of __flush_tlb_range_nosync() to take mm as
its parameter.
Link: https://lkml.kernel.org/r/20250214093015.51024-3-21cnbao@gmail.com
Signed-off-by: Barry Song <v-songbaohua@oppo.com>
Acked-by: Will Deacon <will@kernel.org>
Reviewed-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Shaoqin Huang <shahuang@redhat.com>
Cc: Gavin Shan <gshan@redhat.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Lance Yang <ioworker0@gmail.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Yicong Yang <yangyicong@hisilicon.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Chis Li <chrisl@kernel.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Kairui Song <kasong@tencent.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Mauricio Faria de Oliveira <mfo@canonical.com>
Cc: Tangquan Zheng <zhengtangquan@oppo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Address bytes shifted with a single 64 bit page table entry (any page table
level) has been always hard coded as 3 (aka 2^3 = 8). Although intuitive it
is not very readable or easy to reason about. Besides it is going to change
with D128, where each 128 bit page table entry will shift address bytes by
4 (aka 2^4 = 16) instead.
Let's just formalise this address bytes shift value into a new macro called
PTDESC_ORDER establishing a logical abstraction, thus improving readability
as well. While here re-organize EARLY_LEVEL macro along with its dependents
for better clarity. This does not cause any functional change. Also replace
all (PAGE_SHIFT - PTDESC_ORDER) instances with PTDESC_TABLE_SHIFT.
Cc: Will Deacon <will@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-kernel@vger.kernel.org
Cc: kasan-dev@googlegroups.com
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Link: https://lore.kernel.org/r/20250311045710.550625-1-anshuman.khandual@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Test given page table entries against PMD_TYPE_SECT on PMD_TYPE_MASK mask
bits for identifying block mappings in stage 1 page tables.
Cc: Will Deacon <will@kernel.org>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Link: https://lore.kernel.org/r/20250221044227.1145393-3-anshuman.khandual@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
On the arm64 platform with 4K base page config, SECTION_SIZE_BITS is set
to 27, making one section 128M. The related page struct which vmemmap
points to is 2M then.
Commit c1cc1552616d ("arm64: MMU initialisation") optimizes the
vmemmap to populate at the PMD section level which was suitable
initially since hot plug granule is always one section(128M). However,
commit ba72b4c8cf60 ("mm/sparsemem: support sub-section hotplug")
introduced a 2M(SUBSECTION_SIZE) hot plug granule, which disrupted the
existing arm64 assumptions.
The first problem is that if start or end is not aligned to a section
boundary, such as when a subsection is hot added, populating the entire
section is wasteful.
The next problem is if we hotplug something that spans part of 128 MiB
section (subsections, let's call it memblock1), and then hotplug something
that spans another part of a 128 MiB section(subsections, let's call it
memblock2), and subsequently unplug memblock1, vmemmap_free() will clear
the entire PMD entry which also supports memblock2 even though memblock2
is still active.
Assuming hotplug/unplug sizes are guaranteed to be symmetric. Do the
fix similar to x86-64: populate to pages levels if start/end is not aligned
with section boundary.
Cc: stable@vger.kernel.org # v5.4+
Fixes: ba72b4c8cf60 ("mm/sparsemem: support sub-section hotplug")
Acked-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Zhenhua Huang <quic_zhenhuah@quicinc.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20250304072700.3405036-1-quic_zhenhuah@quicinc.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
It is customary to list R, W, X permissions in that order. In fact
this is already the case for PIE constants (PIE_RWX). Rename POE_RXW
accordingly, as well as POE_XW (currently unused).
While at it also swap the W/X lines in
compute_s1_overlay_permissions() to follow the R, W, X order.
Signed-off-by: Kevin Brodsky <kevin.brodsky@arm.com>
Link: https://lore.kernel.org/r/20250219164029.2309119-3-kevin.brodsky@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
We currently have one helper to set a PIRx_ELx's permission field to
a given value, PIRx_ELx_PERM(), and another helper to extract a
permission field from POR_ELx, POR_ELx_IDX(). The naming is pretty
confusing - it isn't clear at all that "_PERM" corresponds to a
setter and "_IDX" to a getter.
This patch aims at improving the situation by using the same
suffixes as FIELD_PREP()/FIELD_GET(), which we have already adopted
for SYS_FIELD_{PREP,GET}():
* PIRx_ELx_PERM_PREP(), POR_ELx_PERM_PREP() create a register value
where the permission field for a given index is set to a given value.
* POR_ELx_PERM_GET() extracts the permission field from a given
register value for a given index.
These helpers are not implemented using FIELD_PREP()/FIELD_GET()
because the mask may not be constant, and they need to be usable in
assembly. They are all defined in asm/sysreg.h, as one would expect
for basic sysreg-related helpers.
Finally the new POR_ELx_PERM_* macros are used for existing
calculations in signal.c and mmu.c.
Signed-off-by: Kevin Brodsky <kevin.brodsky@arm.com>
Link: https://lore.kernel.org/r/20250219164029.2309119-2-kevin.brodsky@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
A subsequent patch will use CPY* instructions to copy between user and
kernel memory. Add handling for PAN faults caused by an intended kernel
memory access erroneously accessing user memory, in order to make it
easier to debug kernel bugs and to keep the same behavior as with
regular loads/stores.
Signed-off-by: Kristina Martšenko <kristina.martsenko@arm.com>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Link: https://lore.kernel.org/r/20250228170006.390100-3-kristina.martsenko@arm.com
[catalin.marinas@arm.com: Folded the extable search into insn_may_access_user()]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
A subsequent patch will use CPY* instructions to copy between user and
kernel memory. Add a new exception fixup type to avoid fixing up faults
on kernel memory accesses, in order to make it easier to debug kernel
bugs and to keep the same behavior as with regular loads/stores.
Signed-off-by: Kristina Martšenko <kristina.martsenko@arm.com>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Link: https://lore.kernel.org/r/20250228170006.390100-2-kristina.martsenko@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Let's be consistent in using pud_sect_supported() for PUD_SIZE sized pages.
Hence change hugetlb_mask_last_page() and arch_make_huge_pte() as required.
Also re-arranged the switch statement for a common warning message.
Cc: Will Deacon <will@kernel.org>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Link: https://lore.kernel.org/r/20250220050534.799645-1-anshuman.khandual@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
arm64 supports multiple huge_pte sizes. Some of the sizes are covered by
a single pte entry at a particular level (PMD_SIZE, PUD_SIZE), and some
are covered by multiple ptes at a particular level (CONT_PTE_SIZE,
CONT_PMD_SIZE). So the function has to figure out the size from the
huge_pte pointer. This was previously done by walking the pgtable to
determine the level and by using the PTE_CONT bit to determine the
number of ptes at the level.
But the PTE_CONT bit is only valid when the pte is present. For
non-present pte values (e.g. markers, migration entries), the previous
implementation was therefore erroneously determining the size. There is
at least one known caller in core-mm, move_huge_pte(), which may call
huge_ptep_get_and_clear() for a non-present pte. So we must be robust to
this case. Additionally the "regular" ptep_get_and_clear() is robust to
being called for non-present ptes so it makes sense to follow the
behavior.
Fix this by using the new sz parameter which is now provided to the
function. Additionally when clearing each pte in a contig range, don't
gather the access and dirty bits if the pte is not present.
An alternative approach that would not require API changes would be to
store the PTE_CONT bit in a spare bit in the swap entry pte for the
non-present case. But it felt cleaner to follow other APIs' lead and
just pass in the size.
As an aside, PTE_CONT is bit 52, which corresponds to bit 40 in the swap
entry offset field (layout of non-present pte). Since hugetlb is never
swapped to disk, this field will only be populated for markers, which
always set this bit to 0 and hwpoison swap entries, which set the offset
field to a PFN; So it would only ever be 1 for a 52-bit PVA system where
memory in that high half was poisoned (I think!). So in practice, this
bit would almost always be zero for non-present ptes and we would only
clear the first entry if it was actually a contiguous block. That's
probably a less severe symptom than if it was always interpreted as 1
and cleared out potentially-present neighboring PTEs.
Cc: stable@vger.kernel.org
Fixes: 66b3923a1a0f ("arm64: hugetlb: add support for PTE contiguous bit")
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Link: https://lore.kernel.org/r/20250226120656.2400136-3-ryan.roberts@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
In order to fix a bug, arm64 needs to be told the size of the huge page
for which the huge_pte is being cleared in huge_ptep_get_and_clear().
Provide for this by adding an `unsigned long sz` parameter to the
function. This follows the same pattern as huge_pte_clear() and
set_huge_pte_at().
This commit makes the required interface modifications to the core mm as
well as all arches that implement this function (arm64, loongarch, mips,
parisc, powerpc, riscv, s390, sparc). The actual arm64 bug will be fixed
in a separate commit.
Cc: stable@vger.kernel.org
Fixes: 66b3923a1a0f ("arm64: hugetlb: add support for PTE contiguous bit")
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Alexandre Ghiti <alexghiti@rivosinc.com> # riscv
Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Acked-by: Alexander Gordeev <agordeev@linux.ibm.com> # s390
Link: https://lore.kernel.org/r/20250226120656.2400136-2-ryan.roberts@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
When the range of present physical memory is sufficiently small enough
and the reserved address space for the linear map is sufficiently large
enough, The linear map base address is randomized in
arm64_memblock_init().
Prior to commit 62cffa496aac ("arm64/mm: Override PARange for !LPA2 and
use it consistently"), we decided if the sizes were suitable with the
help of the raw mmfr0.parange. But the commit changed this to use the
sanitized version instead. But the function runs before the register has
been sanitized so this returns 0, interpreted as a parange of 32 bits.
Some fun wrapping occurs and the logic concludes that there is enough
room to randomize the linear map base address, when really there isn't.
So the top of the linear map ends up outside the reserved address space.
Since the PA range cannot be overridden in the first place, restore the
mmfr0 reading logic to its state prior to 62cffa496aac, where the raw
register value is used.
Reported-by: Luiz Capitulino <luizcap@redhat.com>
Suggested-by: Ard Biesheuvel <ardb@kernel.org>
Closes: https://lore.kernel.org/all/a3d9acbe-07c2-43b6-9ba9-a7585f770e83@redhat.com/
Fixes: 62cffa496aac ("arm64/mm: Override PARange for !LPA2 and use it consistently")
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Link: https://lore.kernel.org/r/20250225114638.2038006-1-ryan.roberts@arm.com
Cc: stable@vger.kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
|
|
Add the missing code to allocate P4D level page tables when cloning the
the kernel page tables. This fixes a crash that may be observed when
attempting to resume from hibernation on an LPA2 capable system with 4k
pages, which therefore uses 5 levels of paging.
Presumably, kexec is equally affected.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20250110175145.785702-2-ardb+git@google.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
"The various patchsets are summarized below. Plus of course many
indivudual patches which are described in their changelogs.
- "Allocate and free frozen pages" from Matthew Wilcox reorganizes
the page allocator so we end up with the ability to allocate and
free zero-refcount pages. So that callers (ie, slab) can avoid a
refcount inc & dec
- "Support large folios for tmpfs" from Baolin Wang teaches tmpfs to
use large folios other than PMD-sized ones
- "Fix mm/rodata_test" from Petr Tesarik performs some maintenance
and fixes for this small built-in kernel selftest
- "mas_anode_descend() related cleanup" from Wei Yang tidies up part
of the mapletree code
- "mm: fix format issues and param types" from Keren Sun implements a
few minor code cleanups
- "simplify split calculation" from Wei Yang provides a few fixes and
a test for the mapletree code
- "mm/vma: make more mmap logic userland testable" from Lorenzo
Stoakes continues the work of moving vma-related code into the
(relatively) new mm/vma.c
- "mm/page_alloc: gfp flags cleanups for alloc_contig_*()" from David
Hildenbrand cleans up and rationalizes handling of gfp flags in the
page allocator
- "readahead: Reintroduce fix for improper RA window sizing" from Jan
Kara is a second attempt at fixing a readahead window sizing issue.
It should reduce the amount of unnecessary reading
- "synchronously scan and reclaim empty user PTE pages" from Qi Zheng
addresses an issue where "huge" amounts of pte pagetables are
accumulated:
https://lore.kernel.org/lkml/cover.1718267194.git.zhengqi.arch@bytedance.com/
Qi's series addresses this windup by synchronously freeing PTE
memory within the context of madvise(MADV_DONTNEED)
- "selftest/mm: Remove warnings found by adding compiler flags" from
Muhammad Usama Anjum fixes some build warnings in the selftests
code when optional compiler warnings are enabled
- "mm: don't use __GFP_HARDWALL when migrating remote pages" from
David Hildenbrand tightens the allocator's observance of
__GFP_HARDWALL
- "pkeys kselftests improvements" from Kevin Brodsky implements
various fixes and cleanups in the MM selftests code, mainly
pertaining to the pkeys tests
- "mm/damon: add sample modules" from SeongJae Park enhances DAMON to
estimate application working set size
- "memcg/hugetlb: Rework memcg hugetlb charging" from Joshua Hahn
provides some cleanups to memcg's hugetlb charging logic
- "mm/swap_cgroup: remove global swap cgroup lock" from Kairui Song
removes the global swap cgroup lock. A speedup of 10% for a
tmpfs-based kernel build was demonstrated
- "zram: split page type read/write handling" from Sergey Senozhatsky
has several fixes and cleaups for zram in the area of
zram_write_page(). A watchdog softlockup warning was eliminated
- "move pagetable_*_dtor() to __tlb_remove_table()" from Kevin
Brodsky cleans up the pagetable destructor implementations. A rare
use-after-free race is fixed
- "mm/debug: introduce and use VM_WARN_ON_VMG()" from Lorenzo Stoakes
simplifies and cleans up the debugging code in the VMA merging
logic
- "Account page tables at all levels" from Kevin Brodsky cleans up
and regularizes the pagetable ctor/dtor handling. This results in
improvements in accounting accuracy
- "mm/damon: replace most damon_callback usages in sysfs with new
core functions" from SeongJae Park cleans up and generalizes
DAMON's sysfs file interface logic
- "mm/damon: enable page level properties based monitoring" from
SeongJae Park increases the amount of information which is
presented in response to DAMOS actions
- "mm/damon: remove DAMON debugfs interface" from SeongJae Park
removes DAMON's long-deprecated debugfs interfaces. Thus the
migration to sysfs is completed
- "mm/hugetlb: Refactor hugetlb allocation resv accounting" from
Peter Xu cleans up and generalizes the hugetlb reservation
accounting
- "mm: alloc_pages_bulk: small API refactor" from Luiz Capitulino
removes a never-used feature of the alloc_pages_bulk() interface
- "mm/damon: extend DAMOS filters for inclusion" from SeongJae Park
extends DAMOS filters to support not only exclusion (rejecting),
but also inclusion (allowing) behavior
- "Add zpdesc memory descriptor for zswap.zpool" from Alex Shi
introduces a new memory descriptor for zswap.zpool that currently
overlaps with struct page for now. This is part of the effort to
reduce the size of struct page and to enable dynamic allocation of
memory descriptors
- "mm, swap: rework of swap allocator locks" from Kairui Song redoes
and simplifies the swap allocator locking. A speedup of 400% was
demonstrated for one workload. As was a 35% reduction for kernel
build time with swap-on-zram
- "mm: update mips to use do_mmap(), make mmap_region() internal"
from Lorenzo Stoakes reworks MIPS's use of mmap_region() so that
mmap_region() can be made MM-internal
- "mm/mglru: performance optimizations" from Yu Zhao fixes a few
MGLRU regressions and otherwise improves MGLRU performance
- "Docs/mm/damon: add tuning guide and misc updates" from SeongJae
Park updates DAMON documentation
- "Cleanup for memfd_create()" from Isaac Manjarres does that thing
- "mm: hugetlb+THP folio and migration cleanups" from David
Hildenbrand provides various cleanups in the areas of hugetlb
folios, THP folios and migration
- "Uncached buffered IO" from Jens Axboe implements the new
RWF_DONTCACHE flag which provides synchronous dropbehind for
pagecache reading and writing. To permite userspace to address
issues with massive buildup of useless pagecache when
reading/writing fast devices
- "selftests/mm: virtual_address_range: Reduce memory" from Thomas
Weißschuh fixes and optimizes some of the MM selftests"
* tag 'mm-stable-2025-01-26-14-59' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (321 commits)
mm/compaction: fix UBSAN shift-out-of-bounds warning
s390/mm: add missing ctor/dtor on page table upgrade
kasan: sw_tags: use str_on_off() helper in kasan_init_sw_tags()
tools: add VM_WARN_ON_VMG definition
mm/damon/core: use str_high_low() helper in damos_wmark_wait_us()
seqlock: add missing parameter documentation for raw_seqcount_try_begin()
mm/page-writeback: consolidate wb_thresh bumping logic into __wb_calc_thresh
mm/page_alloc: remove the incorrect and misleading comment
zram: remove zcomp_stream_put() from write_incompressible_page()
mm: separate move/undo parts from migrate_pages_batch()
mm/kfence: use str_write_read() helper in get_access_type()
selftests/mm/mkdirty: fix memory leak in test_uffdio_copy()
kasan: hw_tags: Use str_on_off() helper in kasan_init_hw_tags()
selftests/mm: virtual_address_range: avoid reading from VM_IO mappings
selftests/mm: vm_util: split up /proc/self/smaps parsing
selftests/mm: virtual_address_range: unmap chunks after validation
selftests/mm: virtual_address_range: mmap() without PROT_WRITE
selftests/memfd/memfd_test: fix possible NULL pointer dereference
mm: add FGP_DONTCACHE folio creation flag
mm: call filemap_fdatawrite_range_kick() after IOCB_DONTCACHE issue
...
|
|
We already have a generic implementation of alloc/free up to P4D level, as
well as pgd_free(). Let's finish the work and add a generic PGD-level
alloc helper as well.
Unlike at lower levels, almost all architectures need some specific magic
at PGD level (typically initialising PGD entries), so introducing a
generic pgd_alloc() isn't worth it. Instead we introduce two new helpers,
__pgd_alloc() and __pgd_free(), and make use of them in the arch-specific
pgd_alloc() and pgd_free() wherever possible. To accommodate as many arch
as possible, __pgd_alloc() takes a page allocation order.
Because pagetable_alloc() allocates zeroed pages, explicit zeroing in
pgd_alloc() becomes redundant and we can get rid of it. Some trivial
implementations of pgd_free() also become unnecessary once __pgd_alloc()
is used; remove them.
Another small improvement is consistent accounting of PGD pages by using
GFP_PGTABLE_{USER,KERNEL} as appropriate.
Not all PGD allocations can be handled by the generic helpers. In
particular, multiple architectures allocate PGDs from a kmem_cache, and
those PGDs may not be page-sized.
Link: https://lkml.kernel.org/r/20250103184415.2744423-6-kevin.brodsky@arm.com
Signed-off-by: Kevin Brodsky <kevin.brodsky@arm.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Linus Walleij <linus.walleij@linaro.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mike Rapoport (Microsoft) <rppt@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
* for-next/mm:
arm64: mm: Test for pmd_sect() in vmemmap_check_pmd()
arm64/mm: Replace open encodings with PXD_TABLE_BIT
arm64/mm: Rename pte_mkpresent() as pte_mkvalid()
arm64: Kconfig: force ARM64_PAN=y when enabling TTBR0 sw PAN
arm64/kvm: Avoid invalid physical addresses to signal owner updates
arm64/kvm: Configure HYP TCR.PS/DS based on host stage1
arm64/mm: Override PARange for !LPA2 and use it consistently
arm64/mm: Reduce PA space to 48 bits when LPA2 is not enabled
|
|
* for-next/misc:
arm64: Remove duplicate included header
arm64/Kconfig: Drop EXECMEM dependency from ARCH_WANTS_EXECMEM_LATE
arm64: asm: Fix typo in pgtable.h
arm64/mm: Ensure adequate HUGE_MAX_HSTATE
arm64/mm: Replace open encodings with PXD_TABLE_BIT
arm64/mm: Drop INIT_MM_CONTEXT()
|
|
Commit 2045a3b8911b ("mm/sparse-vmemmap: generalise vmemmap_populate_hugepages()")
introduces the vmemmap_check_pmd() while does not verify if the entry is a
section mapping, as is already done for Loongarch & X86.
The update includes a check for pmd_sect(). Only if pmd_sect() returns true,
further vmemmap population for the addr is skipped.
Signed-off-by: Zhenhua Huang <quic_zhenhuah@quicinc.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Link: https://lore.kernel.org/r/20250102074047.674156-1-quic_zhenhuah@quicinc.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
pte_present() is no longer synonymous with pte_valid() as it also tests for
pte_present_invalid() as well. Hence pte_mkpresent() is misleading, because
all that does is make an entry mapped, via setting PTE_VALID. Hence rename
the helper as pte_mkvalid() which reflects its functionality appropriately.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20250107023016.829416-1-anshuman.khandual@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|