summaryrefslogtreecommitdiff
path: root/drivers/dma/dw/dw.c
AgeCommit message (Collapse)Author
2024-08-05dmaengine: dw: Simplify max-burst calculation procedureSerge Semin
In order to have a more coherent DW AHB DMA slave configuration method - dwc_config() - let's simplify the source and destination channel max-burst calculation procedure: 1. Create the max-burst verification method as it has been just done for the memory and peripheral address widths. Thus the dwc_config() method will turn to a set of the verification methods execution. 2. Since both the generic DW AHB DMA and Intel iDMA 32-bit engines support the power-of-2 bursts only, then the specified by the client driver max-burst values can be converted to being power-of-2 right in the max-burst verification method. 3. Since max-burst encoded value is required on the CTL_LO fields calculation stage, the encode_maxburst() callback can be easily dropped from the dw_dma structure meanwhile the encoding procedure will be executed right in the CTL_LO register value calculation. Thus the update will provide the next positive effects: the internal DMA-slave config structure will contain only the real DMA-transfer config values, which will be encoded to the DMA-controller register fields only when it's required on the buffer mapping; the redundant encode_maxburst() callback will be dropped simplifying the internal HW-abstraction API; dwc_config() will look more readable executing the verification functions one-by-one. Signed-off-by: Serge Semin <fancer.lancer@gmail.com> Acked-by: Andy Shevchenko <andy@kernel.org> Link: https://lore.kernel.org/r/20240802075100.6475-6-fancer.lancer@gmail.com Signed-off-by: Vinod Koul <vkoul@kernel.org>
2024-08-05dmaengine: dw: Define encode_maxburst() above prepare_ctllo() callbacksSerge Semin
As a preparatory change before dropping the encode_maxburst() callbacks let's move dw_dma_encode_maxburst() and idma32_encode_maxburst() to being defined above the dw_dma_prepare_ctllo() and idma32_prepare_ctllo() methods respectively. That's required since the former methods will be called from the later ones directly. Signed-off-by: Serge Semin <fancer.lancer@gmail.com> Acked-by: Andy Shevchenko <andy@kernel.org> Link: https://lore.kernel.org/r/20240802075100.6475-5-fancer.lancer@gmail.com Signed-off-by: Vinod Koul <vkoul@kernel.org>
2024-08-05dmaengine: dw: Simplify prepare CTL_LO methodsSerge Semin
Currently the CTL LO fields are calculated on the platform-specific basis. It's implemented by means of the prepare_ctllo() callbacks using the ternary operator within the local variables init block at the beginning of the block scope. The functions code currently is relatively hard to comprehend and isn't that optimal since implies four conditional statements executed and two additional local variables defined. Let's simplify the DW AHB DMA prepare_ctllo() method by unrolling the ternary operators into the normal if-else statement, dropping redundant master-interface ID variables and initializing the local variables based on the singly evaluated DMA-transfer direction check. Thus the method will look much more readable since now the fields content can be easily inferred right from the if-else branch. Provide the same update in the Intel DMA32 core driver for the sake of the driver code unification. Note besides of the effects described above this update is basically a preparation before dropping the max burst encoding callback. The dropping will require to call the burst fields calculation methods right in the prepare_ctllo() callbacks. It would have made the later functions code even more complex should they were left in the original state. Signed-off-by: Serge Semin <fancer.lancer@gmail.com> Acked-by: Andy Shevchenko <andy@kernel.org> Link: https://lore.kernel.org/r/20240802075100.6475-4-fancer.lancer@gmail.com Signed-off-by: Vinod Koul <vkoul@kernel.org>
2020-08-17dmaengine: dw: Ignore burst setting for memory peripheralsSerge Semin
According to the DW DMA controller Databook 2.18b (page 40 "3.5 Memory Peripherals") memory peripherals don't have handshaking interface connected to the controller, therefore they can never be a flow controller. Since the CTLx.SRC_MSIZE and CTLx.DEST_MSIZE are properties valid only for peripherals with a handshaking interface, we can freely zero these fields out if the memory peripheral is selected to be the source or the destination of the DMA transfers. Note according to the databook, length of burst transfers to memory is always equal to the number of data items available in a channel FIFO or data items required to complete the block transfer, whichever is smaller; length of burst transfers from memory is always equal to the space available in a channel FIFO or number of data items required to complete the block transfer, whichever is smaller. Signed-off-by: Serge Semin <Sergey.Semin@baikalelectronics.ru> Link: https://lore.kernel.org/r/20200731200826.9292-5-Sergey.Semin@baikalelectronics.ru Signed-off-by: Vinod Koul <vkoul@kernel.org>
2020-08-17dmaengine: dw: Activate FIFO-mode for memory peripherals onlySerge Semin
CFGx.FIFO_MODE field controls a DMA-controller "FIFO readiness" criterion. In other words it determines when to start pushing data out of a DW DMAC channel FIFO to a destination peripheral or from a source peripheral to the DW DMAC channel FIFO. Currently FIFO-mode is set to one for all DW DMAC channels. It means they are tuned to flush data out of FIFO (to a memory peripheral or by accepting the burst transaction requests) when FIFO is at least half-full (except at the end of the block transfer, when FIFO-flush mode is activated) and are configured to get data to the FIFO when it's at least half-empty. Such configuration is a good choice when there is no slave device involved in the DMA transfers. In that case the number of bursts per block is less than when CFGx.FIFO_MODE = 0 and, hence, the bus utilization will improve. But the latency of DMA transfers may increase when CFGx.FIFO_MODE = 1, since DW DMAC will wait for the channel FIFO contents to be either half-full or half-empty depending on having the destination or the source transfers. Such latencies might be dangerous in case if the DMA transfers are expected to be performed from/to a slave device. Since normally peripheral devices keep data in internal FIFOs, any latency at some critical moment may cause one being overflown and consequently losing data. This especially concerns a case when either a peripheral device is relatively fast or the DW DMAC engine is relatively slow with respect to the incoming data pace. In order to solve problems, which might be caused by the latencies described above, let's enable the FIFO half-full/half-empty "FIFO readiness" criterion only for DMA transfers with no slave device involved. Thanks to the commit 99ba8b9b0d97 ("dmaengine: dw: Initialize channel before each transfer") we can freely do that in the generic dw_dma_initialize_chan() method. Signed-off-by: Serge Semin <Sergey.Semin@baikalelectronics.ru> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Link: https://lore.kernel.org/r/20200731200826.9292-3-Sergey.Semin@baikalelectronics.ru Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-01-07dmaengine: dw: Don't pollute CTL_LO on iDMA 32-bitAndy Shevchenko
Intel iDMA 32-bit doesn't have a concept of bus masters and thus there is no need to setup any kind of masters in the CTL_LO register. Moreover, the burst size for memory-to-memory transfer is not what is says, we need to have a corrected list of possible sizes. Note, that the size of 8 items, each of that up to 4 bytes, is chosen because of maximum of 1/2 FIFO, which is 64 bytes on Intel Merrifield. Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-01-07dmaengine: dw: Reset DRAIN bit when resume the channelAndy Shevchenko
For Intel iDMA 32-bit the channel can be drained on a suspend. We need to reset the bit on the resume to return a status quo. Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-01-07dmaengine: dw: Split DW and iDMA 32-bit operationsAndy Shevchenko
Here is a kinda big refactoring that should have been done in the first place, when Intel iDMA 32-bit support appeared. It splits operations which are different to Synopsys DesignWare and Intel iDMA 32-bit controllers. No functional change intended. Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Vinod Koul <vkoul@kernel.org>