Age | Commit message (Collapse) | Author |
|
DCP (Data Co-Processor) is the little brother of NXP's CAAM IP.
Beside of accelerated crypto operations, it also offers support for
hardware-bound keys. Using this feature it is possible to implement a blob
mechanism similar to what CAAM offers. Unlike on CAAM, constructing and
parsing the blob has to happen in software (i.e. the kernel).
The software-based blob format used by DCP trusted keys encrypts
the payload using AES-128-GCM with a freshly generated random key and nonce.
The random key itself is AES-128-ECB encrypted using the DCP unique
or OTP key.
The DCP trusted key blob format is:
/*
* struct dcp_blob_fmt - DCP BLOB format.
*
* @fmt_version: Format version, currently being %1
* @blob_key: Random AES 128 key which is used to encrypt @payload,
* @blob_key itself is encrypted with OTP or UNIQUE device key in
* AES-128-ECB mode by DCP.
* @nonce: Random nonce used for @payload encryption.
* @payload_len: Length of the plain text @payload.
* @payload: The payload itself, encrypted using AES-128-GCM and @blob_key,
* GCM auth tag of size AES_BLOCK_SIZE is attached at the end of it.
*
* The total size of a DCP BLOB is sizeof(struct dcp_blob_fmt) + @payload_len +
* AES_BLOCK_SIZE.
*/
struct dcp_blob_fmt {
__u8 fmt_version;
__u8 blob_key[AES_KEYSIZE_128];
__u8 nonce[AES_KEYSIZE_128];
__le32 payload_len;
__u8 payload[];
} __packed;
By default the unique key is used. It is also possible to use the
OTP key. While the unique key should be unique it is not documented how
this key is derived. Therefore selection the OTP key is supported as
well via the use_otp_key module parameter.
Co-developed-by: Richard Weinberger <richard@nod.at>
Signed-off-by: Richard Weinberger <richard@nod.at>
Co-developed-by: David Oberhollenzer <david.oberhollenzer@sigma-star.at>
Signed-off-by: David Oberhollenzer <david.oberhollenzer@sigma-star.at>
Signed-off-by: David Gstir <david@sigma-star.at>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
|
|
Enabling trusted keys requires at least one trust source implementation
(currently TPM, TEE or CAAM) to be enabled. Currently, this is
done by checking each trust source's config option individually.
This does not scale when more trust sources like the one for DCP
are added, because the condition will get long and hard to read.
Add config HAVE_TRUSTED_KEYS which is set to true by each trust source
once its enabled and adapt the check for having at least one active trust
source to use this option. Whenever a new trust source is added, it now
needs to select HAVE_TRUSTED_KEYS.
Signed-off-by: David Gstir <david@sigma-star.at>
Tested-by: Jarkko Sakkinen <jarkko@kernel.org> # for TRUSTED_KEYS_TPM
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
|
|
The Cryptographic Acceleration and Assurance Module (CAAM) is an IP core
built into many newer i.MX and QorIQ SoCs by NXP.
The CAAM does crypto acceleration, hardware number generation and
has a blob mechanism for encapsulation/decapsulation of sensitive material.
This blob mechanism depends on a device specific random 256-bit One Time
Programmable Master Key that is fused in each SoC at manufacturing
time. This key is unreadable and can only be used by the CAAM for AES
encryption/decryption of user data.
This makes it a suitable backend (source) for kernel trusted keys.
Previous commits generalized trusted keys to support multiple backends
and added an API to access the CAAM blob mechanism. Based on these,
provide the necessary glue to use the CAAM for trusted keys.
Reviewed-by: David Gstir <david@sigma-star.at>
Reviewed-by: Pankaj Gupta <pankaj.gupta@nxp.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Tested-by: Tim Harvey <tharvey@gateworks.com>
Tested-by: Matthias Schiffer <matthias.schiffer@ew.tq-group.com>
Tested-by: Pankaj Gupta <pankaj.gupta@nxp.com>
Tested-by: Michael Walle <michael@walle.cc> # on ls1028a (non-E and E)
Tested-by: John Ernberg <john.ernberg@actia.se> # iMX8QXP
Signed-off-by: Ahmad Fatoum <a.fatoum@pengutronix.de>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
|
|
With recent rework, trusted keys are no longer limited to TPM as trust
source. The Kconfig symbol is unchanged however leading to a few issues:
- TCG_TPM is required, even if only TEE is to be used
- Enabling TCG_TPM, but excluding it from available trusted sources
is not possible
- TEE=m && TRUSTED_KEYS=y will lead to TEE support being silently
dropped, which is not the best user experience
Remedy these issues by introducing two new boolean Kconfig symbols:
TRUSTED_KEYS_TPM and TRUSTED_KEYS_TEE with the appropriate
dependencies.
Any new code depending on the TPM trusted key backend in particular
or symbols exported by it will now need to explicitly state that it
depends on TRUSTED_KEYS && TRUSTED_KEYS_TPM
The latter to ensure the dependency is built and the former to ensure
it's reachable for module builds. There are no such users yet.
Reviewed-by: Sumit Garg <sumit.garg@linaro.org>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Reviewed-by: Pankaj Gupta <pankaj.gupta@nxp.com>
Tested-by: Pankaj Gupta <pankaj.gupta@nxp.com>
Tested-by: Andreas Rammhold <andreas@rammhold.de>
Tested-by: Tim Harvey <tharvey@gateworks.com>
Tested-by: Michael Walle <michael@walle.cc> # on ls1028a (non-E and E)
Tested-by: John Ernberg <john.ernberg@actia.se> # iMX8QXP
Signed-off-by: Ahmad Fatoum <a.fatoum@pengutronix.de>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
|