Age | Commit message (Collapse) | Author |
|
Make all the SCX_OPS_* and SCX_PICK_IDLE_* flags available to the
user-space part of the schedulers via the compat interface.
This allows schedulers / selftests to set all the ops flags in
user-space, rather than having them split between BPF and user-space.
Signed-off-by: Andrea Righi <arighi@nvidia.com>
Acked-by: Changwoo Min <changwoo@igalia.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
Using a single global idle mask can lead to inefficiencies and a lot of
stress on the cache coherency protocol on large systems with multiple
NUMA nodes, since all the CPUs can create a really intense read/write
activity on the single global cpumask.
Therefore, split the global cpumask into multiple per-NUMA node cpumasks
to improve scalability and performance on large systems.
The concept is that each cpumask will track only the idle CPUs within
its corresponding NUMA node, treating CPUs in other NUMA nodes as busy.
In this way concurrent access to the idle cpumask will be restricted
within each NUMA node.
The split of multiple per-node idle cpumasks can be controlled using the
SCX_OPS_BUILTIN_IDLE_PER_NODE flag.
By default SCX_OPS_BUILTIN_IDLE_PER_NODE is not enabled and a global
host-wide idle cpumask is used, maintaining the previous behavior.
NOTE: if a scheduler explicitly enables the per-node idle cpumasks (via
SCX_OPS_BUILTIN_IDLE_PER_NODE), scx_bpf_get_idle_cpu/smtmask() will
trigger an scx error, since there are no system-wide cpumasks.
= Test =
Hardware:
- System: DGX B200
- CPUs: 224 SMT threads (112 physical cores)
- Processor: INTEL(R) XEON(R) PLATINUM 8570
- 2 NUMA nodes
Scheduler:
- scx_simple [1] (so that we can focus at the built-in idle selection
policy and not at the scheduling policy itself)
Test:
- Run a parallel kernel build `make -j $(nproc)` and measure the average
elapsed time over 10 runs:
avg time | stdev
---------+------
before: 52.431s | 2.895
after: 50.342s | 2.895
= Conclusion =
Splitting the global cpumask into multiple per-NUMA cpumasks helped to
achieve a speedup of approximately +4% with this particular architecture
and test case.
The same test on a DGX-1 (40 physical cores, Intel Xeon E5-2698 v4 @
2.20GHz, 2 NUMA nodes) shows a speedup of around 1.5-3%.
On smaller systems, I haven't noticed any measurable regressions or
improvements with the same test (parallel kernel build) and scheduler
(scx_simple).
Moreover, with a modified scx_bpfland that uses the new NUMA-aware APIs
I observed an additional +2-2.5% performance improvement with the same
test.
[1] https://github.com/sched-ext/scx/blob/main/scheds/c/scx_simple.bpf.c
Cc: Yury Norov [NVIDIA] <yury.norov@gmail.com>
Signed-off-by: Andrea Righi <arighi@nvidia.com>
Reviewed-by: Yury Norov [NVIDIA] <yury.norov@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
Add the new scheduler flag SCX_OPS_BUILTIN_IDLE_PER_NODE, which allows
BPF schedulers to select between using a global flat idle cpumask or
multiple per-node cpumasks.
This only introduces the flag and the mechanism to enable/disable this
feature without affecting any scheduling behavior.
Cc: Yury Norov [NVIDIA] <yury.norov@gmail.com>
Signed-off-by: Andrea Righi <arighi@nvidia.com>
Reviewed-by: Yury Norov [NVIDIA] <yury.norov@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
Receive tools/sched_ext updates form https://github.com/sched-ext/scx to
sync userspace bits:
- scx_bpf_dump_header() added which can be used to print out basic scheduler
info on dump.
- BPF possible/online CPU iterators added.
- CO-RE enums added. The enums are autogenerated from vmlinux.h. Include the
generated artifacts in tools/sched_ext to keep the Makefile simpler.
- Other misc changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
Add ops.cpu_online/offline() which are invoked when CPUs come online and
offline respectively. As the enqueue path already automatically bypasses
tasks to the local dsq on a deactivated CPU, BPF schedulers are guaranteed
to see tasks only on CPUs which are between online() and offline().
If the BPF scheduler doesn't implement ops.cpu_online/offline(), the
scheduler is automatically exited with SCX_ECODE_RESTART |
SCX_ECODE_RSN_HOTPLUG. Userspace can implement CPU hotpplug support
trivially by simply reinitializing and reloading the scheduler.
scx_qmap is updated to print out online CPUs on hotplug events. Other
schedulers are updated to restart based on ecode.
v3: - The previous implementation added @reason to
sched_class.rq_on/offline() to distinguish between CPU hotplug events
and topology updates. This was buggy and fragile as the methods are
skipped if the current state equals the target state. Instead, add
scx_rq_[de]activate() which are directly called from
sched_cpu_de/activate(). This also allows ops.cpu_on/offline() to
sleep which can be useful.
- ops.dispatch() could be called on a CPU that the BPF scheduler was
told to be offline. The dispatch patch is updated to bypass in such
cases.
v2: - To accommodate lock ordering change between scx_cgroup_rwsem and
cpus_read_lock(), CPU hotplug operations are put into its own SCX_OPI
block and enabled eariler during scx_ope_enable() so that
cpus_read_lock() can be dropped before acquiring scx_cgroup_rwsem.
- Auto exit with ECODE added.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: David Vernet <dvernet@meta.com>
Acked-by: Josh Don <joshdon@google.com>
Acked-by: Hao Luo <haoluo@google.com>
Acked-by: Barret Rhoden <brho@google.com>
|
|
If a BPF scheduler triggers an error, the scheduler is aborted and the
system is reverted to the built-in scheduler. In the process, a lot of
information which may be useful for figuring out what happened can be lost.
This patch adds debug dump which captures information which may be useful
for debugging including runqueue and runnable thread states at the time of
failure. The following shows a debug dump after triggering the watchdog:
root@test ~# os/work/tools/sched_ext/build/bin/scx_qmap -t 100
stats : enq=1 dsp=0 delta=1 deq=0
stats : enq=90 dsp=90 delta=0 deq=0
stats : enq=156 dsp=156 delta=0 deq=0
stats : enq=218 dsp=218 delta=0 deq=0
stats : enq=255 dsp=255 delta=0 deq=0
stats : enq=271 dsp=271 delta=0 deq=0
stats : enq=284 dsp=284 delta=0 deq=0
stats : enq=293 dsp=293 delta=0 deq=0
DEBUG DUMP
================================================================================
kworker/u32:12[320] triggered exit kind 1026:
runnable task stall (stress[1530] failed to run for 6.841s)
Backtrace:
scx_watchdog_workfn+0x136/0x1c0
process_scheduled_works+0x2b5/0x600
worker_thread+0x269/0x360
kthread+0xeb/0x110
ret_from_fork+0x36/0x40
ret_from_fork_asm+0x1a/0x30
QMAP FIFO[0]:
QMAP FIFO[1]:
QMAP FIFO[2]: 1436
QMAP FIFO[3]:
QMAP FIFO[4]:
CPU states
----------
CPU 0 : nr_run=1 ops_qseq=244
curr=swapper/0[0] class=idle_sched_class
QMAP: dsp_idx=1 dsp_cnt=0
R stress[1530] -6841ms
scx_state/flags=3/0x1 ops_state/qseq=2/20
sticky/holding_cpu=-1/-1 dsq_id=(n/a)
cpus=ff
QMAP: force_local=0
asm_sysvec_apic_timer_interrupt+0x16/0x20
CPU 2 : nr_run=2 ops_qseq=142
curr=swapper/2[0] class=idle_sched_class
QMAP: dsp_idx=1 dsp_cnt=0
R sshd[1703] -5905ms
scx_state/flags=3/0x9 ops_state/qseq=2/88
sticky/holding_cpu=-1/-1 dsq_id=(n/a)
cpus=ff
QMAP: force_local=1
__x64_sys_ppoll+0xf6/0x120
do_syscall_64+0x7b/0x150
entry_SYSCALL_64_after_hwframe+0x76/0x7e
R fish[1539] -4141ms
scx_state/flags=3/0x9 ops_state/qseq=2/124
sticky/holding_cpu=-1/-1 dsq_id=(n/a)
cpus=ff
QMAP: force_local=1
futex_wait+0x60/0xe0
do_futex+0x109/0x180
__x64_sys_futex+0x117/0x190
do_syscall_64+0x7b/0x150
entry_SYSCALL_64_after_hwframe+0x76/0x7e
CPU 3 : nr_run=2 ops_qseq=162
curr=kworker/u32:12[320] class=ext_sched_class
QMAP: dsp_idx=1 dsp_cnt=0
*R kworker/u32:12[320] +0ms
scx_state/flags=3/0xd ops_state/qseq=0/0
sticky/holding_cpu=-1/-1 dsq_id=(n/a)
cpus=ff
QMAP: force_local=0
scx_dump_state+0x613/0x6f0
scx_ops_error_irq_workfn+0x1f/0x40
irq_work_run_list+0x82/0xd0
irq_work_run+0x14/0x30
__sysvec_irq_work+0x40/0x140
sysvec_irq_work+0x60/0x70
asm_sysvec_irq_work+0x16/0x20
scx_watchdog_workfn+0x15f/0x1c0
process_scheduled_works+0x2b5/0x600
worker_thread+0x269/0x360
kthread+0xeb/0x110
ret_from_fork+0x36/0x40
ret_from_fork_asm+0x1a/0x30
R kworker/3:2[1436] +0ms
scx_state/flags=3/0x9 ops_state/qseq=2/160
sticky/holding_cpu=-1/-1 dsq_id=(n/a)
cpus=08
QMAP: force_local=0
kthread+0xeb/0x110
ret_from_fork+0x36/0x40
ret_from_fork_asm+0x1a/0x30
CPU 7 : nr_run=0 ops_qseq=76
curr=swapper/7[0] class=idle_sched_class
================================================================================
EXIT: runnable task stall (stress[1530] failed to run for 6.841s)
It shows that CPU 3 was running the watchdog when it triggered the error
condition and the scx_qmap thread has been queued on CPU 0 for over 5
seconds but failed to run. It also prints out scx_qmap specific information
- e.g. which tasks are queued on each FIFO and so on using the dump_*() ops.
This dump has proved pretty useful for developing and debugging BPF
schedulers.
Debug dump is generated automatically when the BPF scheduler exits due to an
error. The debug buffer used in such cases is determined by
sched_ext_ops.exit_dump_len and defaults to 32k. If the debug dump overruns
the available buffer, the output is truncated and marked accordingly.
Debug dump output can also be read through the sched_ext_dump tracepoint.
When read through the tracepoint, there is no length limit.
SysRq-D can be used to trigger debug dump at any time while a BPF scheduler
is loaded. This is non-destructive - the scheduler keeps running afterwards.
The output can be read through the sched_ext_dump tracepoint.
v2: - The size of exit debug dump buffer can now be customized using
sched_ext_ops.exit_dump_len.
- sched_ext_ops.dump*() added to enable dumping of BPF scheduler
specific information.
- Tracpoint output and SysRq-D triggering added.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: David Vernet <dvernet@meta.com>
|
|
Add two simple example BPF schedulers - simple and qmap.
* simple: In terms of scheduling, it behaves identical to not having any
operation implemented at all. The two operations it implements are only to
improve visibility and exit handling. On certain homogeneous
configurations, this actually can perform pretty well.
* qmap: A fixed five level priority scheduler to demonstrate queueing PIDs
on BPF maps for scheduling. While not very practical, this is useful as a
simple example and will be used to demonstrate different features.
v7: - Compat helpers stripped out in prepartion of upstreaming as the
upstreamed patchset will be the baselinfe. Utility macros that can be
used to implement compat features are kept.
- Explicitly disable map autoattach on struct_ops to avoid trying to
attach twice while maintaining compatbility with older libbpf.
v6: - Common header files reorganized and cleaned up. Compat helpers are
added to demonstrate how schedulers can maintain backward
compatibility with older kernels while making use of newly added
features.
- simple_select_cpu() added to keep track of the number of local
dispatches. This is needed because the default ops.select_cpu()
implementation is updated to dispatch directly and won't call
ops.enqueue().
- Updated to reflect the sched_ext API changes. Switching all tasks is
the default behavior now and scx_qmap supports partial switching when
`-p` is specified.
- tools/sched_ext/Kconfig dropped. This will be included in the doc
instead.
v5: - Improve Makefile. Build artifects are now collected into a separate
dir which change be changed. Install and help targets are added and
clean actually cleans everything.
- MEMBER_VPTR() improved to improve access to structs. ARRAY_ELEM_PTR()
and RESIZEABLE_ARRAY() are added to support resizable arrays in .bss.
- Add scx_common.h which provides common utilities to user code such as
SCX_BUG[_ON]() and RESIZE_ARRAY().
- Use SCX_BUG[_ON]() to simplify error handling.
v4: - Dropped _example prefix from scheduler names.
v3: - Rename scx_example_dummy to scx_example_simple and restructure a bit
to ease later additions. Comment updates.
- Added declarations for BPF inline iterators. In the future, hopefully,
these will be consolidated into a generic BPF header so that they
don't need to be replicated here.
v2: - Updated with the generic BPF cpumask helpers.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: David Vernet <dvernet@meta.com>
Acked-by: Josh Don <joshdon@google.com>
Acked-by: Hao Luo <haoluo@google.com>
Acked-by: Barret Rhoden <brho@google.com>
|