diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2025-04-01 09:29:18 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2025-04-01 09:29:18 -0700 |
commit | eb0ece16027f8223d5dc9aaf90124f70577bd22a (patch) | |
tree | 1e2214cacd123b940ceca684322203643d5e9bc7 /mm/cma.c | |
parent | 08733088b566b58283f0f12fb73f5db6a9a9de30 (diff) | |
parent | 0a1e082b64ccce165e7307a7b49d22b2504f9d1f (diff) |
Merge tag 'mm-stable-2025-03-30-16-52' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- The series "Enable strict percpu address space checks" from Uros
Bizjak uses x86 named address space qualifiers to provide
compile-time checking of percpu area accesses.
This has caused a small amount of fallout - two or three issues were
reported. In all cases the calling code was found to be incorrect.
- The series "Some cleanup for memcg" from Chen Ridong implements some
relatively monir cleanups for the memcontrol code.
- The series "mm: fixes for device-exclusive entries (hmm)" from David
Hildenbrand fixes a boatload of issues which David found then using
device-exclusive PTE entries when THP is enabled. More work is
needed, but this makes thins better - our own HMM selftests now
succeed.
- The series "mm: zswap: remove z3fold and zbud" from Yosry Ahmed
remove the z3fold and zbud implementations. They have been deprecated
for half a year and nobody has complained.
- The series "mm: further simplify VMA merge operation" from Lorenzo
Stoakes implements numerous simplifications in this area. No runtime
effects are anticipated.
- The series "mm/madvise: remove redundant mmap_lock operations from
process_madvise()" from SeongJae Park rationalizes the locking in the
madvise() implementation. Performance gains of 20-25% were observed
in one MADV_DONTNEED microbenchmark.
- The series "Tiny cleanup and improvements about SWAP code" from
Baoquan He contains a number of touchups to issues which Baoquan
noticed when working on the swap code.
- The series "mm: kmemleak: Usability improvements" from Catalin
Marinas implements a couple of improvements to the kmemleak
user-visible output.
- The series "mm/damon/paddr: fix large folios access and schemes
handling" from Usama Arif provides a couple of fixes for DAMON's
handling of large folios.
- The series "mm/damon/core: fix wrong and/or useless damos_walk()
behaviors" from SeongJae Park fixes a few issues with the accuracy of
kdamond's walking of DAMON regions.
- The series "expose mapping wrprotect, fix fb_defio use" from Lorenzo
Stoakes changes the interaction between framebuffer deferred-io and
core MM. No functional changes are anticipated - this is preparatory
work for the future removal of page structure fields.
- The series "mm/damon: add support for hugepage_size DAMOS filter"
from Usama Arif adds a DAMOS filter which permits the filtering by
huge page sizes.
- The series "mm: permit guard regions for file-backed/shmem mappings"
from Lorenzo Stoakes extends the guard region feature from its
present "anon mappings only" state. The feature now covers shmem and
file-backed mappings.
- The series "mm: batched unmap lazyfree large folios during
reclamation" from Barry Song cleans up and speeds up the unmapping
for pte-mapped large folios.
- The series "reimplement per-vma lock as a refcount" from Suren
Baghdasaryan puts the vm_lock back into the vma. Our reasons for
pulling it out were largely bogus and that change made the code more
messy. This patchset provides small (0-10%) improvements on one
microbenchmark.
- The series "Docs/mm/damon: misc DAMOS filters documentation fixes and
improves" from SeongJae Park does some maintenance work on the DAMON
docs.
- The series "hugetlb/CMA improvements for large systems" from Frank
van der Linden addresses a pile of issues which have been observed
when using CMA on large machines.
- The series "mm/damon: introduce DAMOS filter type for unmapped pages"
from SeongJae Park enables users of DMAON/DAMOS to filter my the
page's mapped/unmapped status.
- The series "zsmalloc/zram: there be preemption" from Sergey
Senozhatsky teaches zram to run its compression and decompression
operations preemptibly.
- The series "selftests/mm: Some cleanups from trying to run them" from
Brendan Jackman fixes a pile of unrelated issues which Brendan
encountered while runnimg our selftests.
- The series "fs/proc/task_mmu: add guard region bit to pagemap" from
Lorenzo Stoakes permits userspace to use /proc/pid/pagemap to
determine whether a particular page is a guard page.
- The series "mm, swap: remove swap slot cache" from Kairui Song
removes the swap slot cache from the allocation path - it simply
wasn't being effective.
- The series "mm: cleanups for device-exclusive entries (hmm)" from
David Hildenbrand implements a number of unrelated cleanups in this
code.
- The series "mm: Rework generic PTDUMP configs" from Anshuman Khandual
implements a number of preparatoty cleanups to the GENERIC_PTDUMP
Kconfig logic.
- The series "mm/damon: auto-tune aggregation interval" from SeongJae
Park implements a feedback-driven automatic tuning feature for
DAMON's aggregation interval tuning.
- The series "Fix lazy mmu mode" from Ryan Roberts fixes some issues in
powerpc, sparc and x86 lazy MMU implementations. Ryan did this in
preparation for implementing lazy mmu mode for arm64 to optimize
vmalloc.
- The series "mm/page_alloc: Some clarifications for migratetype
fallback" from Brendan Jackman reworks some commentary to make the
code easier to follow.
- The series "page_counter cleanup and size reduction" from Shakeel
Butt cleans up the page_counter code and fixes a size increase which
we accidentally added late last year.
- The series "Add a command line option that enables control of how
many threads should be used to allocate huge pages" from Thomas
Prescher does that. It allows the careful operator to significantly
reduce boot time by tuning the parallalization of huge page
initialization.
- The series "Fix calculations in trace_balance_dirty_pages() for cgwb"
from Tang Yizhou fixes the tracing output from the dirty page
balancing code.
- The series "mm/damon: make allow filters after reject filters useful
and intuitive" from SeongJae Park improves the handling of allow and
reject filters. Behaviour is made more consistent and the documention
is updated accordingly.
- The series "Switch zswap to object read/write APIs" from Yosry Ahmed
updates zswap to the new object read/write APIs and thus permits the
removal of some legacy code from zpool and zsmalloc.
- The series "Some trivial cleanups for shmem" from Baolin Wang does as
it claims.
- The series "fs/dax: Fix ZONE_DEVICE page reference counts" from
Alistair Popple regularizes the weird ZONE_DEVICE page refcount
handling in DAX, permittig the removal of a number of special-case
checks.
- The series "refactor mremap and fix bug" from Lorenzo Stoakes is a
preparatoty refactoring and cleanup of the mremap() code.
- The series "mm: MM owner tracking for large folios (!hugetlb) +
CONFIG_NO_PAGE_MAPCOUNT" from David Hildenbrand reworks the manner in
which we determine whether a large folio is known to be mapped
exclusively into a single MM.
- The series "mm/damon: add sysfs dirs for managing DAMOS filters based
on handling layers" from SeongJae Park adds a couple of new sysfs
directories to ease the management of DAMON/DAMOS filters.
- The series "arch, mm: reduce code duplication in mem_init()" from
Mike Rapoport consolidates many per-arch implementations of
mem_init() into code generic code, where that is practical.
- The series "mm/damon/sysfs: commit parameters online via
damon_call()" from SeongJae Park continues the cleaning up of sysfs
access to DAMON internal data.
- The series "mm: page_ext: Introduce new iteration API" from Luiz
Capitulino reworks the page_ext initialization to fix a boot-time
crash which was observed with an unusual combination of compile and
cmdline options.
- The series "Buddy allocator like (or non-uniform) folio split" from
Zi Yan reworks the code to split a folio into smaller folios. The
main benefit is lessened memory consumption: fewer post-split folios
are generated.
- The series "Minimize xa_node allocation during xarry split" from Zi
Yan reduces the number of xarray xa_nodes which are generated during
an xarray split.
- The series "drivers/base/memory: Two cleanups" from Gavin Shan
performs some maintenance work on the drivers/base/memory code.
- The series "Add tracepoints for lowmem reserves, watermarks and
totalreserve_pages" from Martin Liu adds some more tracepoints to the
page allocator code.
- The series "mm/madvise: cleanup requests validations and
classifications" from SeongJae Park cleans up some warts which
SeongJae observed during his earlier madvise work.
- The series "mm/hwpoison: Fix regressions in memory failure handling"
from Shuai Xue addresses two quite serious regressions which Shuai
has observed in the memory-failure implementation.
- The series "mm: reliable huge page allocator" from Johannes Weiner
makes huge page allocations cheaper and more reliable by reducing
fragmentation.
- The series "Minor memcg cleanups & prep for memdescs" from Matthew
Wilcox is preparatory work for the future implementation of memdescs.
- The series "track memory used by balloon drivers" from Nico Pache
introduces a way to track memory used by our various balloon drivers.
- The series "mm/damon: introduce DAMOS filter type for active pages"
from Nhat Pham permits users to filter for active/inactive pages,
separately for file and anon pages.
- The series "Adding Proactive Memory Reclaim Statistics" from Hao Jia
separates the proactive reclaim statistics from the direct reclaim
statistics.
- The series "mm/vmscan: don't try to reclaim hwpoison folio" from
Jinjiang Tu fixes our handling of hwpoisoned pages within the reclaim
code.
* tag 'mm-stable-2025-03-30-16-52' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (431 commits)
mm/page_alloc: remove unnecessary __maybe_unused in order_to_pindex()
x86/mm: restore early initialization of high_memory for 32-bits
mm/vmscan: don't try to reclaim hwpoison folio
mm/hwpoison: introduce folio_contain_hwpoisoned_page() helper
cgroup: docs: add pswpin and pswpout items in cgroup v2 doc
mm: vmscan: split proactive reclaim statistics from direct reclaim statistics
selftests/mm: speed up split_huge_page_test
selftests/mm: uffd-unit-tests support for hugepages > 2M
docs/mm/damon/design: document active DAMOS filter type
mm/damon: implement a new DAMOS filter type for active pages
fs/dax: don't disassociate zero page entries
MM documentation: add "Unaccepted" meminfo entry
selftests/mm: add commentary about 9pfs bugs
fork: use __vmalloc_node() for stack allocation
docs/mm: Physical Memory: Populate the "Zones" section
xen: balloon: update the NR_BALLOON_PAGES state
hv_balloon: update the NR_BALLOON_PAGES state
balloon_compaction: update the NR_BALLOON_PAGES state
meminfo: add a per node counter for balloon drivers
mm: remove references to folio in __memcg_kmem_uncharge_page()
...
Diffstat (limited to 'mm/cma.c')
-rw-r--r-- | mm/cma.c | 746 |
1 files changed, 620 insertions, 126 deletions
@@ -18,6 +18,7 @@ #include <linux/memblock.h> #include <linux/err.h> +#include <linux/list.h> #include <linux/mm.h> #include <linux/sizes.h> #include <linux/slab.h> @@ -33,11 +34,17 @@ struct cma cma_areas[MAX_CMA_AREAS]; unsigned int cma_area_count; -static DEFINE_MUTEX(cma_mutex); + +static int __init __cma_declare_contiguous_nid(phys_addr_t base, + phys_addr_t size, phys_addr_t limit, + phys_addr_t alignment, unsigned int order_per_bit, + bool fixed, const char *name, struct cma **res_cma, + int nid); phys_addr_t cma_get_base(const struct cma *cma) { - return PFN_PHYS(cma->base_pfn); + WARN_ON_ONCE(cma->nranges != 1); + return PFN_PHYS(cma->ranges[0].base_pfn); } unsigned long cma_get_size(const struct cma *cma) @@ -63,9 +70,10 @@ static unsigned long cma_bitmap_aligned_mask(const struct cma *cma, * The value returned is represented in order_per_bits. */ static unsigned long cma_bitmap_aligned_offset(const struct cma *cma, + const struct cma_memrange *cmr, unsigned int align_order) { - return (cma->base_pfn & ((1UL << align_order) - 1)) + return (cmr->base_pfn & ((1UL << align_order) - 1)) >> cma->order_per_bit; } @@ -75,65 +83,122 @@ static unsigned long cma_bitmap_pages_to_bits(const struct cma *cma, return ALIGN(pages, 1UL << cma->order_per_bit) >> cma->order_per_bit; } -static void cma_clear_bitmap(struct cma *cma, unsigned long pfn, - unsigned long count) +static void cma_clear_bitmap(struct cma *cma, const struct cma_memrange *cmr, + unsigned long pfn, unsigned long count) { unsigned long bitmap_no, bitmap_count; unsigned long flags; - bitmap_no = (pfn - cma->base_pfn) >> cma->order_per_bit; + bitmap_no = (pfn - cmr->base_pfn) >> cma->order_per_bit; bitmap_count = cma_bitmap_pages_to_bits(cma, count); spin_lock_irqsave(&cma->lock, flags); - bitmap_clear(cma->bitmap, bitmap_no, bitmap_count); + bitmap_clear(cmr->bitmap, bitmap_no, bitmap_count); + cma->available_count += count; spin_unlock_irqrestore(&cma->lock, flags); } -static void __init cma_activate_area(struct cma *cma) +/* + * Check if a CMA area contains no ranges that intersect with + * multiple zones. Store the result in the flags in case + * this gets called more than once. + */ +bool cma_validate_zones(struct cma *cma) { - unsigned long base_pfn = cma->base_pfn, pfn; - struct zone *zone; - - cma->bitmap = bitmap_zalloc(cma_bitmap_maxno(cma), GFP_KERNEL); - if (!cma->bitmap) - goto out_error; + int r; + unsigned long base_pfn; + struct cma_memrange *cmr; + bool valid_bit_set; /* - * alloc_contig_range() requires the pfn range specified to be in the - * same zone. Simplify by forcing the entire CMA resv range to be in the - * same zone. + * If already validated, return result of previous check. + * Either the valid or invalid bit will be set if this + * check has already been done. If neither is set, the + * check has not been performed yet. */ - WARN_ON_ONCE(!pfn_valid(base_pfn)); - zone = page_zone(pfn_to_page(base_pfn)); - for (pfn = base_pfn + 1; pfn < base_pfn + cma->count; pfn++) { - WARN_ON_ONCE(!pfn_valid(pfn)); - if (page_zone(pfn_to_page(pfn)) != zone) - goto not_in_zone; + valid_bit_set = test_bit(CMA_ZONES_VALID, &cma->flags); + if (valid_bit_set || test_bit(CMA_ZONES_INVALID, &cma->flags)) + return valid_bit_set; + + for (r = 0; r < cma->nranges; r++) { + cmr = &cma->ranges[r]; + base_pfn = cmr->base_pfn; + + /* + * alloc_contig_range() requires the pfn range specified + * to be in the same zone. Simplify by forcing the entire + * CMA resv range to be in the same zone. + */ + WARN_ON_ONCE(!pfn_valid(base_pfn)); + if (pfn_range_intersects_zones(cma->nid, base_pfn, cmr->count)) { + set_bit(CMA_ZONES_INVALID, &cma->flags); + return false; + } + } + + set_bit(CMA_ZONES_VALID, &cma->flags); + + return true; +} + +static void __init cma_activate_area(struct cma *cma) +{ + unsigned long pfn, end_pfn; + int allocrange, r; + struct cma_memrange *cmr; + unsigned long bitmap_count, count; + + for (allocrange = 0; allocrange < cma->nranges; allocrange++) { + cmr = &cma->ranges[allocrange]; + cmr->bitmap = bitmap_zalloc(cma_bitmap_maxno(cma, cmr), + GFP_KERNEL); + if (!cmr->bitmap) + goto cleanup; } - for (pfn = base_pfn; pfn < base_pfn + cma->count; - pfn += pageblock_nr_pages) - init_cma_reserved_pageblock(pfn_to_page(pfn)); + if (!cma_validate_zones(cma)) + goto cleanup; + + for (r = 0; r < cma->nranges; r++) { + cmr = &cma->ranges[r]; + if (cmr->early_pfn != cmr->base_pfn) { + count = cmr->early_pfn - cmr->base_pfn; + bitmap_count = cma_bitmap_pages_to_bits(cma, count); + bitmap_set(cmr->bitmap, 0, bitmap_count); + } + + for (pfn = cmr->early_pfn; pfn < cmr->base_pfn + cmr->count; + pfn += pageblock_nr_pages) + init_cma_reserved_pageblock(pfn_to_page(pfn)); + } spin_lock_init(&cma->lock); + mutex_init(&cma->alloc_mutex); + #ifdef CONFIG_CMA_DEBUGFS INIT_HLIST_HEAD(&cma->mem_head); spin_lock_init(&cma->mem_head_lock); #endif + set_bit(CMA_ACTIVATED, &cma->flags); return; -not_in_zone: - bitmap_free(cma->bitmap); -out_error: +cleanup: + for (r = 0; r < allocrange; r++) + bitmap_free(cma->ranges[r].bitmap); + /* Expose all pages to the buddy, they are useless for CMA. */ - if (!cma->reserve_pages_on_error) { - for (pfn = base_pfn; pfn < base_pfn + cma->count; pfn++) - free_reserved_page(pfn_to_page(pfn)); + if (!test_bit(CMA_RESERVE_PAGES_ON_ERROR, &cma->flags)) { + for (r = 0; r < allocrange; r++) { + cmr = &cma->ranges[r]; + end_pfn = cmr->base_pfn + cmr->count; + for (pfn = cmr->early_pfn; pfn < end_pfn; pfn++) + free_reserved_page(pfn_to_page(pfn)); + } } totalcma_pages -= cma->count; - cma->count = 0; + cma->available_count = cma->count = 0; pr_err("CMA area %s could not be activated\n", cma->name); } @@ -150,7 +215,44 @@ core_initcall(cma_init_reserved_areas); void __init cma_reserve_pages_on_error(struct cma *cma) { - cma->reserve_pages_on_error = true; + set_bit(CMA_RESERVE_PAGES_ON_ERROR, &cma->flags); +} + +static int __init cma_new_area(const char *name, phys_addr_t size, + unsigned int order_per_bit, + struct cma **res_cma) +{ + struct cma *cma; + + if (cma_area_count == ARRAY_SIZE(cma_areas)) { + pr_err("Not enough slots for CMA reserved regions!\n"); + return -ENOSPC; + } + + /* + * Each reserved area must be initialised later, when more kernel + * subsystems (like slab allocator) are available. + */ + cma = &cma_areas[cma_area_count]; + cma_area_count++; + + if (name) + snprintf(cma->name, CMA_MAX_NAME, "%s", name); + else + snprintf(cma->name, CMA_MAX_NAME, "cma%d\n", cma_area_count); + + cma->available_count = cma->count = size >> PAGE_SHIFT; + cma->order_per_bit = order_per_bit; + *res_cma = cma; + totalcma_pages += cma->count; + + return 0; +} + +static void __init cma_drop_area(struct cma *cma) +{ + totalcma_pages -= cma->count; + cma_area_count--; } /** @@ -171,13 +273,9 @@ int __init cma_init_reserved_mem(phys_addr_t base, phys_addr_t size, struct cma **res_cma) { struct cma *cma; + int ret; /* Sanity checks */ - if (cma_area_count == ARRAY_SIZE(cma_areas)) { - pr_err("Not enough slots for CMA reserved regions!\n"); - return -ENOSPC; - } - if (!size || !memblock_is_region_reserved(base, size)) return -EINVAL; @@ -194,25 +292,264 @@ int __init cma_init_reserved_mem(phys_addr_t base, phys_addr_t size, if (!IS_ALIGNED(base | size, CMA_MIN_ALIGNMENT_BYTES)) return -EINVAL; + ret = cma_new_area(name, size, order_per_bit, &cma); + if (ret != 0) + return ret; + + cma->ranges[0].base_pfn = PFN_DOWN(base); + cma->ranges[0].early_pfn = PFN_DOWN(base); + cma->ranges[0].count = cma->count; + cma->nranges = 1; + cma->nid = NUMA_NO_NODE; + + *res_cma = cma; + + return 0; +} + +/* + * Structure used while walking physical memory ranges and finding out + * which one(s) to use for a CMA area. + */ +struct cma_init_memrange { + phys_addr_t base; + phys_addr_t size; + struct list_head list; +}; + +/* + * Work array used during CMA initialization. + */ +static struct cma_init_memrange memranges[CMA_MAX_RANGES] __initdata; + +static bool __init revsizecmp(struct cma_init_memrange *mlp, + struct cma_init_memrange *mrp) +{ + return mlp->size > mrp->size; +} + +static bool __init basecmp(struct cma_init_memrange *mlp, + struct cma_init_memrange *mrp) +{ + return mlp->base < mrp->base; +} + +/* + * Helper function to create sorted lists. + */ +static void __init list_insert_sorted( + struct list_head *ranges, + struct cma_init_memrange *mrp, + bool (*cmp)(struct cma_init_memrange *lh, struct cma_init_memrange *rh)) +{ + struct list_head *mp; + struct cma_init_memrange *mlp; + + if (list_empty(ranges)) + list_add(&mrp->list, ranges); + else { + list_for_each(mp, ranges) { + mlp = list_entry(mp, struct cma_init_memrange, list); + if (cmp(mlp, mrp)) + break; + } + __list_add(&mrp->list, mlp->list.prev, &mlp->list); + } +} + +/* + * Create CMA areas with a total size of @total_size. A normal allocation + * for one area is tried first. If that fails, the biggest memblock + * ranges above 4G are selected, and allocated bottom up. + * + * The complexity here is not great, but this function will only be + * called during boot, and the lists operated on have fewer than + * CMA_MAX_RANGES elements (default value: 8). + */ +int __init cma_declare_contiguous_multi(phys_addr_t total_size, + phys_addr_t align, unsigned int order_per_bit, + const char *name, struct cma **res_cma, int nid) +{ + phys_addr_t start, end; + phys_addr_t size, sizesum, sizeleft; + struct cma_init_memrange *mrp, *mlp, *failed; + struct cma_memrange *cmrp; + LIST_HEAD(ranges); + LIST_HEAD(final_ranges); + struct list_head *mp, *next; + int ret, nr = 1; + u64 i; + struct cma *cma; + /* - * Each reserved area must be initialised later, when more kernel - * subsystems (like slab allocator) are available. + * First, try it the normal way, producing just one range. */ - cma = &cma_areas[cma_area_count]; + ret = __cma_declare_contiguous_nid(0, total_size, 0, align, + order_per_bit, false, name, res_cma, nid); + if (ret != -ENOMEM) + goto out; - if (name) - snprintf(cma->name, CMA_MAX_NAME, name); - else - snprintf(cma->name, CMA_MAX_NAME, "cma%d\n", cma_area_count); + /* + * Couldn't find one range that fits our needs, so try multiple + * ranges. + * + * No need to do the alignment checks here, the call to + * cma_declare_contiguous_nid above would have caught + * any issues. With the checks, we know that: + * + * - @align is a power of 2 + * - @align is >= pageblock alignment + * - @size is aligned to @align and to @order_per_bit + * + * So, as long as we create ranges that have a base + * aligned to @align, and a size that is aligned to + * both @align and @order_to_bit, things will work out. + */ + nr = 0; + sizesum = 0; + failed = NULL; - cma->base_pfn = PFN_DOWN(base); - cma->count = size >> PAGE_SHIFT; - cma->order_per_bit = order_per_bit; + ret = cma_new_area(name, total_size, order_per_bit, &cma); + if (ret != 0) + goto out; + + align = max_t(phys_addr_t, align, CMA_MIN_ALIGNMENT_BYTES); + /* + * Create a list of ranges above 4G, largest range first. + */ + for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &start, &end, NULL) { + if (upper_32_bits(start) == 0) + continue; + + start = ALIGN(start, align); + if (start >= end) + continue; + + end = ALIGN_DOWN(end, align); + if (end <= start) + continue; + + size = end - start; + size = ALIGN_DOWN(size, (PAGE_SIZE << order_per_bit)); + if (!size) + continue; + sizesum += size; + + pr_debug("consider %016llx - %016llx\n", (u64)start, (u64)end); + + /* + * If we don't yet have used the maximum number of + * areas, grab a new one. + * + * If we can't use anymore, see if this range is not + * smaller than the smallest one already recorded. If + * not, re-use the smallest element. + */ + if (nr < CMA_MAX_RANGES) + mrp = &memranges[nr++]; + else { + mrp = list_last_entry(&ranges, + struct cma_init_memrange, list); + if (size < mrp->size) + continue; + list_del(&mrp->list); + sizesum -= mrp->size; + pr_debug("deleted %016llx - %016llx from the list\n", + (u64)mrp->base, (u64)mrp->base + size); + } + mrp->base = start; + mrp->size = size; + + /* + * Now do a sorted insert. + */ + list_insert_sorted(&ranges, mrp, revsizecmp); + pr_debug("added %016llx - %016llx to the list\n", + (u64)mrp->base, (u64)mrp->base + size); + pr_debug("total size now %llu\n", (u64)sizesum); + } + + /* + * There is not enough room in the CMA_MAX_RANGES largest + * ranges, so bail out. + */ + if (sizesum < total_size) { + cma_drop_area(cma); + ret = -ENOMEM; + goto out; + } + + /* + * Found ranges that provide enough combined space. + * Now, sorted them by address, smallest first, because we + * want to mimic a bottom-up memblock allocation. + */ + sizesum = 0; + list_for_each_safe(mp, next, &ranges) { + mlp = list_entry(mp, struct cma_init_memrange, list); + list_del(mp); + list_insert_sorted(&final_ranges, mlp, basecmp); + sizesum += mlp->size; + if (sizesum >= total_size) + break; + } + + /* + * Walk the final list, and add a CMA range for + * each range, possibly not using the last one fully. + */ + nr = 0; + sizeleft = total_size; + list_for_each(mp, &final_ranges) { + mlp = list_entry(mp, struct cma_init_memrange, list); + size = min(sizeleft, mlp->size); + if (memblock_reserve(mlp->base, size)) { + /* + * Unexpected error. Could go on to + * the next one, but just abort to + * be safe. + */ + failed = mlp; + break; + } + + pr_debug("created region %d: %016llx - %016llx\n", + nr, (u64)mlp->base, (u64)mlp->base + size); + cmrp = &cma->ranges[nr++]; + cmrp->base_pfn = PHYS_PFN(mlp->base); + cmrp->early_pfn = cmrp->base_pfn; + cmrp->count = size >> PAGE_SHIFT; + + sizeleft -= size; + if (sizeleft == 0) + break; + } + + if (failed) { + list_for_each(mp, &final_ranges) { + mlp = list_entry(mp, struct cma_init_memrange, list); + if (mlp == failed) + break; + memblock_phys_free(mlp->base, mlp->size); + } + cma_drop_area(cma); + ret = -ENOMEM; + goto out; + } + + cma->nranges = nr; + cma->nid = nid; *res_cma = cma; - cma_area_count++; - totalcma_pages += cma->count; - return 0; +out: + if (ret != 0) + pr_err("Failed to reserve %lu MiB\n", + (unsigned long)total_size / SZ_1M); + else + pr_info("Reserved %lu MiB in %d range%s\n", + (unsigned long)total_size / SZ_1M, nr, + nr > 1 ? "s" : ""); + return ret; } /** @@ -241,6 +578,26 @@ int __init cma_declare_contiguous_nid(phys_addr_t base, bool fixed, const char *name, struct cma **res_cma, int nid) { + int ret; + + ret = __cma_declare_contiguous_nid(base, size, limit, alignment, + order_per_bit, fixed, name, res_cma, nid); + if (ret != 0) + pr_err("Failed to reserve %ld MiB\n", + (unsigned long)size / SZ_1M); + else + pr_info("Reserved %ld MiB at %pa\n", + (unsigned long)size / SZ_1M, &base); + + return ret; +} + +static int __init __cma_declare_contiguous_nid(phys_addr_t base, + phys_addr_t size, phys_addr_t limit, + phys_addr_t alignment, unsigned int order_per_bit, + bool fixed, const char *name, struct cma **res_cma, + int nid) +{ phys_addr_t memblock_end = memblock_end_of_DRAM(); phys_addr_t highmem_start; int ret; @@ -272,10 +629,9 @@ int __init cma_declare_contiguous_nid(phys_addr_t base, /* Sanitise input arguments. */ alignment = max_t(phys_addr_t, alignment, CMA_MIN_ALIGNMENT_BYTES); if (fixed && base & (alignment - 1)) { - ret = -EINVAL; pr_err("Region at %pa must be aligned to %pa bytes\n", &base, &alignment); - goto err; + return -EINVAL; } base = ALIGN(base, alignment); size = ALIGN(size, alignment); @@ -293,10 +649,9 @@ int __init cma_declare_contiguous_nid(phys_addr_t base, * low/high memory boundary. */ if (fixed && base < highmem_start && base + size > highmem_start) { - ret = -EINVAL; pr_err("Region at %pa defined on low/high memory boundary (%pa)\n", &base, &highmem_start); - goto err; + return -EINVAL; } /* @@ -308,18 +663,16 @@ int __init cma_declare_contiguous_nid(phys_addr_t base, limit = memblock_end; if (base + size > limit) { - ret = -EINVAL; pr_err("Size (%pa) of region at %pa exceeds limit (%pa)\n", &size, &base, &limit); - goto err; + return -EINVAL; } /* Reserve memory */ if (fixed) { if (memblock_is_region_reserved(base, size) || memblock_reserve(base, size) < 0) { - ret = -EBUSY; - goto err; + return -EBUSY; } } else { phys_addr_t addr = 0; @@ -356,10 +709,8 @@ int __init cma_declare_contiguous_nid(phys_addr_t base, if (!addr) { addr = memblock_alloc_range_nid(size, alignment, base, limit, nid, true); - if (!addr) { - ret = -ENOMEM; - goto err; - } + if (!addr) + return -ENOMEM; } /* @@ -372,86 +723,89 @@ int __init cma_declare_contiguous_nid(phys_addr_t base, ret = cma_init_reserved_mem(base, size, order_per_bit, name, res_cma); if (ret) - goto free_mem; + memblock_phys_free(base, size); - pr_info("Reserved %ld MiB at %pa on node %d\n", (unsigned long)size / SZ_1M, - &base, nid); - return 0; + (*res_cma)->nid = nid; -free_mem: - memblock_phys_free(base, size); -err: - pr_err("Failed to reserve %ld MiB on node %d\n", (unsigned long)size / SZ_1M, - nid); return ret; } static void cma_debug_show_areas(struct cma *cma) { unsigned long next_zero_bit, next_set_bit, nr_zero; - unsigned long start = 0; - unsigned long nr_part, nr_total = 0; - unsigned long nbits = cma_bitmap_maxno(cma); + unsigned long start; + unsigned long nr_part; + unsigned long nbits; + int r; + struct cma_memrange *cmr; spin_lock_irq(&cma->lock); pr_info("number of available pages: "); - for (;;) { - next_zero_bit = find_next_zero_bit(cma->bitmap, nbits, start); - if (next_zero_bit >= nbits) - break; - next_set_bit = find_next_bit(cma->bitmap, nbits, next_zero_bit); - nr_zero = next_set_bit - next_zero_bit; - nr_part = nr_zero << cma->order_per_bit; - pr_cont("%s%lu@%lu", nr_total ? "+" : "", nr_part, - next_zero_bit); - nr_total += nr_part; - start = next_zero_bit + nr_zero; + for (r = 0; r < cma->nranges; r++) { + cmr = &cma->ranges[r]; + + start = 0; + nbits = cma_bitmap_maxno(cma, cmr); + + pr_info("range %d: ", r); + for (;;) { + next_zero_bit = find_next_zero_bit(cmr->bitmap, + nbits, start); + if (next_zero_bit >= nbits) + break; + next_set_bit = find_next_bit(cmr->bitmap, nbits, + next_zero_bit); + nr_zero = next_set_bit - next_zero_bit; + nr_part = nr_zero << cma->order_per_bit; + pr_cont("%s%lu@%lu", start ? "+" : "", nr_part, + next_zero_bit); + start = next_zero_bit + nr_zero; + } + pr_info("\n"); } - pr_cont("=> %lu free of %lu total pages\n", nr_total, cma->count); + pr_cont("=> %lu free of %lu total pages\n", cma->available_count, + cma->count); spin_unlock_irq(&cma->lock); } -static struct page *__cma_alloc(struct cma *cma, unsigned long count, - unsigned int align, gfp_t gfp) +static int cma_range_alloc(struct cma *cma, struct cma_memrange *cmr, + unsigned long count, unsigned int align, + struct page **pagep, gfp_t gfp) { unsigned long mask, offset; unsigned long pfn = -1; unsigned long start = 0; unsigned long bitmap_maxno, bitmap_no, bitmap_count; - unsigned long i; + int ret = -EBUSY; struct page *page = NULL; - int ret = -ENOMEM; - const char *name = cma ? cma->name : NULL; - - trace_cma_alloc_start(name, count, align); - - if (!cma || !cma->count || !cma->bitmap) - return page; - - pr_debug("%s(cma %p, name: %s, count %lu, align %d)\n", __func__, - (void *)cma, cma->name, count, align); - - if (!count) - return page; mask = cma_bitmap_aligned_mask(cma, align); - offset = cma_bitmap_aligned_offset(cma, align); - bitmap_maxno = cma_bitmap_maxno(cma); + offset = cma_bitmap_aligned_offset(cma, cmr, align); + bitmap_maxno = cma_bitmap_maxno(cma, cmr); bitmap_count = cma_bitmap_pages_to_bits(cma, count); if (bitmap_count > bitmap_maxno) - return page; + goto out; for (;;) { spin_lock_irq(&cma->lock); - bitmap_no = bitmap_find_next_zero_area_off(cma->bitmap, + /* + * If the request is larger than the available number + * of pages, stop right away. + */ + if (count > cma->available_count) { + spin_unlock_irq(&cma->lock); + break; + } + bitmap_no = bitmap_find_next_zero_area_off(cmr->bitmap, bitmap_maxno, start, bitmap_count, mask, offset); if (bitmap_no >= bitmap_maxno) { spin_unlock_irq(&cma->lock); break; } - bitmap_set(cma->bitmap, bitmap_no, bitmap_count); + bitmap_set(cmr->bitmap, bitmap_no, bitmap_count); + cma->available_count -= count; /* * It's safe to drop the lock here. We've marked this region for * our exclusive use. If the migration fails we will take the @@ -459,16 +813,16 @@ static struct page *__cma_alloc(struct cma *cma, unsigned long count, */ spin_unlock_irq(&cma->lock); - pfn = cma->base_pfn + (bitmap_no << cma->order_per_bit); - mutex_lock(&cma_mutex); + pfn = cmr->base_pfn + (bitmap_no << cma->order_per_bit); + mutex_lock(&cma->alloc_mutex); ret = alloc_contig_range(pfn, pfn + count, MIGRATE_CMA, gfp); - mutex_unlock(&cma_mutex); + mutex_unlock(&cma->alloc_mutex); if (ret == 0) { page = pfn_to_page(pfn); break; } - cma_clear_bitmap(cma, pfn, count); + cma_clear_bitmap(cma, cmr, pfn, count); if (ret != -EBUSY) break; @@ -480,6 +834,38 @@ static struct page *__cma_alloc(struct cma *cma, unsigned long count, /* try again with a bit different memory target */ start = bitmap_no + mask + 1; } +out: + *pagep = page; + return ret; +} + +static struct page *__cma_alloc(struct cma *cma, unsigned long count, + unsigned int align, gfp_t gfp) +{ + struct page *page = NULL; + int ret = -ENOMEM, r; + unsigned long i; + const char *name = cma ? cma->name : NULL; + + trace_cma_alloc_start(name, count, align); + + if (!cma || !cma->count) + return page; + + pr_debug("%s(cma %p, name: %s, count %lu, align %d)\n", __func__, + (void *)cma, cma->name, count, align); + + if (!count) + return page; + + for (r = 0; r < cma->nranges; r++) { + page = NULL; + + ret = cma_range_alloc(cma, &cma->ranges[r], count, align, + &page, gfp); + if (ret != -EBUSY || page) + break; + } /* * CMA can allocate multiple page blocks, which results in different @@ -498,7 +884,8 @@ static struct page *__cma_alloc(struct cma *cma, unsigned long count, } pr_debug("%s(): returned %p\n", __func__, page); - trace_cma_alloc_finish(name, pfn, page, count, align, ret); + trace_cma_alloc_finish(name, page ? page_to_pfn(page) : 0, + page, count, align, ret); if (page) { count_vm_event(CMA_ALLOC_SUCCESS); cma_sysfs_account_success_pages(cma, count); @@ -541,20 +928,31 @@ struct folio *cma_alloc_folio(struct cma *cma, int order, gfp_t gfp) bool cma_pages_valid(struct cma *cma, const struct page *pages, unsigned long count) { - unsigned long pfn; + unsigned long pfn, end; + int r; + struct cma_memrange *cmr; + bool ret; - if (!cma || !pages) + if (!cma || !pages || count > cma->count) return false; pfn = page_to_pfn(pages); + ret = false; - if (pfn < cma->base_pfn || pfn >= cma->base_pfn + cma->count) { - pr_debug("%s(page %p, count %lu)\n", __func__, - (void *)pages, count); - return false; + for (r = 0; r < cma->nranges; r++) { + cmr = &cma->ranges[r]; + end = cmr->base_pfn + cmr->count; + if (pfn >= cmr->base_pfn && pfn < end) { + ret = pfn + count <= end; + break; + } } - return true; + if (!ret) + pr_debug("%s(page %p, count %lu)\n", + __func__, (void *)pages, count); + + return ret; } /** @@ -570,19 +968,32 @@ bool cma_pages_valid(struct cma *cma, const struct page *pages, bool cma_release(struct cma *cma, const struct page *pages, unsigned long count) { - unsigned long pfn; + struct cma_memrange *cmr; + unsigned long pfn, end_pfn; + int r; + + pr_debug("%s(page %p, count %lu)\n", __func__, (void *)pages, count); if (!cma_pages_valid(cma, pages, count)) return false; - pr_debug("%s(page %p, count %lu)\n", __func__, (void *)pages, count); - pfn = page_to_pfn(pages); + end_pfn = pfn + count; + + for (r = 0; r < cma->nranges; r++) { + cmr = &cma->ranges[r]; + if (pfn >= cmr->base_pfn && + pfn < (cmr->base_pfn + cmr->count)) { + VM_BUG_ON(end_pfn > cmr->base_pfn + cmr->count); + break; + } + } - VM_BUG_ON(pfn + count > cma->base_pfn + cma->count); + if (r == cma->nranges) + return false; free_contig_range(pfn, count); - cma_clear_bitmap(cma, pfn, count); + cma_clear_bitmap(cma, cmr, pfn, count); cma_sysfs_account_release_pages(cma, count); trace_cma_release(cma->name, pfn, pages, count); @@ -610,3 +1021,86 @@ int cma_for_each_area(int (*it)(struct cma *cma, void *data), void *data) return 0; } + +bool cma_intersects(struct cma *cma, unsigned long start, unsigned long end) +{ + int r; + struct cma_memrange *cmr; + unsigned long rstart, rend; + + for (r = 0; r < cma->nranges; r++) { + cmr = &cma->ranges[r]; + + rstart = PFN_PHYS(cmr->base_pfn); + rend = PFN_PHYS(cmr->base_pfn + cmr->count); + if (end < rstart) + continue; + if (start >= rend) + continue; + return true; + } + + return false; +} + +/* + * Very basic function to reserve memory from a CMA area that has not + * yet been activated. This is expected to be called early, when the + * system is single-threaded, so there is no locking. The alignment + * checking is restrictive - only pageblock-aligned areas + * (CMA_MIN_ALIGNMENT_BYTES) may be reserved through this function. + * This keeps things simple, and is enough for the current use case. + * + * The CMA bitmaps have not yet been allocated, so just start + * reserving from the bottom up, using a PFN to keep track + * of what has been reserved. Unreserving is not possible. + * + * The caller is responsible for initializing the page structures + * in the area properly, since this just points to memblock-allocated + * memory. The caller should subsequently use init_cma_pageblock to + * set the migrate type and CMA stats the pageblocks that were reserved. + * + * If the CMA area fails to activate later, memory obtained through + * this interface is not handed to the page allocator, this is + * the responsibility of the caller (e.g. like normal memblock-allocated + * memory). + */ +void __init *cma_reserve_early(struct cma *cma, unsigned long size) +{ + int r; + struct cma_memrange *cmr; + unsigned long available; + void *ret = NULL; + + if (!cma || !cma->count) + return NULL; + /* + * Can only be called early in init. + */ + if (test_bit(CMA_ACTIVATED, &cma->flags)) + return NULL; + + if (!IS_ALIGNED(size, CMA_MIN_ALIGNMENT_BYTES)) + return NULL; + + if (!IS_ALIGNED(size, (PAGE_SIZE << cma->order_per_bit))) + return NULL; + + size >>= PAGE_SHIFT; + + if (size > cma->available_count) + return NULL; + + for (r = 0; r < cma->nranges; r++) { + cmr = &cma->ranges[r]; + available = cmr->count - (cmr->early_pfn - cmr->base_pfn); + if (size <= available) { + ret = phys_to_virt(PFN_PHYS(cmr->early_pfn)); + cmr->early_pfn += size; + cma->available_count -= size; + return ret; + } + } + + return ret; +} |