summaryrefslogtreecommitdiff
path: root/Documentation/trace/rv/monitor_synthesis.rst
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/trace/rv/monitor_synthesis.rst')
-rw-r--r--Documentation/trace/rv/monitor_synthesis.rst271
1 files changed, 271 insertions, 0 deletions
diff --git a/Documentation/trace/rv/monitor_synthesis.rst b/Documentation/trace/rv/monitor_synthesis.rst
new file mode 100644
index 000000000000..ac808a7554f5
--- /dev/null
+++ b/Documentation/trace/rv/monitor_synthesis.rst
@@ -0,0 +1,271 @@
+Runtime Verification Monitor Synthesis
+======================================
+
+The starting point for the application of runtime verification (RV) techniques
+is the *specification* or *modeling* of the desired (or undesired) behavior
+of the system under scrutiny.
+
+The formal representation needs to be then *synthesized* into a *monitor*
+that can then be used in the analysis of the trace of the system. The
+*monitor* connects to the system via an *instrumentation* that converts
+the events from the *system* to the events of the *specification*.
+
+
+In Linux terms, the runtime verification monitors are encapsulated inside
+the *RV monitor* abstraction. The RV monitor includes a set of instances
+of the monitor (per-cpu monitor, per-task monitor, and so on), the helper
+functions that glue the monitor to the system reference model, and the
+trace output as a reaction to event parsing and exceptions, as depicted
+below::
+
+ Linux +----- RV Monitor ----------------------------------+ Formal
+ Realm | | Realm
+ +-------------------+ +----------------+ +-----------------+
+ | Linux kernel | | Monitor | | Reference |
+ | Tracing | -> | Instance(s) | <- | Model |
+ | (instrumentation) | | (verification) | | (specification) |
+ +-------------------+ +----------------+ +-----------------+
+ | | |
+ | V |
+ | +----------+ |
+ | | Reaction | |
+ | +--+--+--+-+ |
+ | | | | |
+ | | | +-> trace output ? |
+ +------------------------|--|----------------------+
+ | +----> panic ?
+ +-------> <user-specified>
+
+RV monitor synthesis
+--------------------
+
+The synthesis of a specification into the Linux *RV monitor* abstraction is
+automated by the rvgen tool and the header file containing common code for
+creating monitors. The header files are:
+
+ * rv/da_monitor.h for deterministic automaton monitor.
+ * rv/ltl_monitor.h for linear temporal logic monitor.
+
+rvgen
+-----
+
+The rvgen utility converts a specification into the C presentation and creating
+the skeleton of a kernel monitor in C.
+
+For example, it is possible to transform the wip.dot model present in
+[1] into a per-cpu monitor with the following command::
+
+ $ rvgen monitor -c da -s wip.dot -t per_cpu
+
+This will create a directory named wip/ with the following files:
+
+- wip.h: the wip model in C
+- wip.c: the RV monitor
+
+The wip.c file contains the monitor declaration and the starting point for
+the system instrumentation.
+
+Similarly, a linear temporal logic monitor can be generated with the following
+command::
+
+ $ rvgen monitor -c ltl -s pagefault.ltl -t per_task
+
+This generates pagefault/ directory with:
+
+- pagefault.h: The Buchi automaton (the non-deterministic state machine to
+ verify the specification)
+- pagefault.c: The skeleton for the RV monitor
+
+Monitor header files
+--------------------
+
+The header files:
+
+- `rv/da_monitor.h` for deterministic automaton monitor
+- `rv/ltl_monitor` for linear temporal logic monitor
+
+include common macros and static functions for implementing *Monitor
+Instance(s)*.
+
+The benefits of having all common functionalities in a single header file are
+3-fold:
+
+ - Reduce the code duplication;
+ - Facilitate the bug fix/improvement;
+ - Avoid the case of developers changing the core of the monitor code to
+ manipulate the model in a (let's say) non-standard way.
+
+rv/da_monitor.h
++++++++++++++++
+
+This initial implementation presents three different types of monitor instances:
+
+- ``#define DECLARE_DA_MON_GLOBAL(name, type)``
+- ``#define DECLARE_DA_MON_PER_CPU(name, type)``
+- ``#define DECLARE_DA_MON_PER_TASK(name, type)``
+
+The first declares the functions for a global deterministic automata monitor,
+the second for monitors with per-cpu instances, and the third with per-task
+instances.
+
+In all cases, the 'name' argument is a string that identifies the monitor, and
+the 'type' argument is the data type used by rvgen on the representation of
+the model in C.
+
+For example, the wip model with two states and three events can be
+stored in an 'unsigned char' type. Considering that the preemption control
+is a per-cpu behavior, the monitor declaration in the 'wip.c' file is::
+
+ DECLARE_DA_MON_PER_CPU(wip, unsigned char);
+
+The monitor is executed by sending events to be processed via the functions
+presented below::
+
+ da_handle_event_$(MONITOR_NAME)($(event from event enum));
+ da_handle_start_event_$(MONITOR_NAME)($(event from event enum));
+ da_handle_start_run_event_$(MONITOR_NAME)($(event from event enum));
+
+The function ``da_handle_event_$(MONITOR_NAME)()`` is the regular case where
+the event will be processed if the monitor is processing events.
+
+When a monitor is enabled, it is placed in the initial state of the automata.
+However, the monitor does not know if the system is in the *initial state*.
+
+The ``da_handle_start_event_$(MONITOR_NAME)()`` function is used to notify the
+monitor that the system is returning to the initial state, so the monitor can
+start monitoring the next event.
+
+The ``da_handle_start_run_event_$(MONITOR_NAME)()`` function is used to notify
+the monitor that the system is known to be in the initial state, so the
+monitor can start monitoring and monitor the current event.
+
+Using the wip model as example, the events "preempt_disable" and
+"sched_waking" should be sent to monitor, respectively, via [2]::
+
+ da_handle_event_wip(preempt_disable_wip);
+ da_handle_event_wip(sched_waking_wip);
+
+While the event "preempt_enabled" will use::
+
+ da_handle_start_event_wip(preempt_enable_wip);
+
+To notify the monitor that the system will be returning to the initial state,
+so the system and the monitor should be in sync.
+
+rv/ltl_monitor.h
+++++++++++++++++
+This file must be combined with the $(MODEL_NAME).h file (generated by `rvgen`)
+to be complete. For example, for the `pagefault` monitor, the `pagefault.c`
+source file must include::
+
+ #include "pagefault.h"
+ #include <rv/ltl_monitor.h>
+
+(the skeleton monitor file generated by `rvgen` already does this).
+
+`$(MODEL_NAME).h` (`pagefault.h` in the above example) includes the
+implementation of the Buchi automaton - a non-deterministic state machine that
+verifies the LTL specification. While `rv/ltl_monitor.h` includes the common
+helper functions to interact with the Buchi automaton and to implement an RV
+monitor. An important definition in `$(MODEL_NAME).h` is::
+
+ enum ltl_atom {
+ LTL_$(FIRST_ATOMIC_PROPOSITION),
+ LTL_$(SECOND_ATOMIC_PROPOSITION),
+ ...
+ LTL_NUM_ATOM
+ };
+
+which is the list of atomic propositions present in the LTL specification
+(prefixed with "LTL\_" to avoid name collision). This `enum` is passed to the
+functions interacting with the Buchi automaton.
+
+While generating code, `rvgen` cannot understand the meaning of the atomic
+propositions. Thus, that task is left for manual work. The recommended pratice
+is adding tracepoints to places where the atomic propositions change; and in the
+tracepoints' handlers: the Buchi automaton is executed using::
+
+ void ltl_atom_update(struct task_struct *task, enum ltl_atom atom, bool value)
+
+which tells the Buchi automaton that the atomic proposition `atom` is now
+`value`. The Buchi automaton checks whether the LTL specification is still
+satisfied, and invokes the monitor's error tracepoint and the reactor if
+violation is detected.
+
+Tracepoints and `ltl_atom_update()` should be used whenever possible. However,
+it is sometimes not the most convenient. For some atomic propositions which are
+changed in multiple places in the kernel, it is cumbersome to trace all those
+places. Furthermore, it may not be important that the atomic propositions are
+updated at precise times. For example, considering the following linear temporal
+logic::
+
+ RULE = always (RT imply not PAGEFAULT)
+
+This LTL states that a real-time task does not raise page faults. For this
+specification, it is not important when `RT` changes, as long as it has the
+correct value when `PAGEFAULT` is true. Motivated by this case, another
+function is introduced::
+
+ void ltl_atom_fetch(struct task_struct *task, struct ltl_monitor *mon)
+
+This function is called whenever the Buchi automaton is triggered. Therefore, it
+can be manually implemented to "fetch" `RT`::
+
+ void ltl_atom_fetch(struct task_struct *task, struct ltl_monitor *mon)
+ {
+ ltl_atom_set(mon, LTL_RT, rt_task(task));
+ }
+
+Effectively, whenever `PAGEFAULT` is updated with a call to `ltl_atom_update()`,
+`RT` is also fetched. Thus, the LTL specification can be verified without
+tracing `RT` everywhere.
+
+For atomic propositions which act like events, they usually need to be set (or
+cleared) and then immediately cleared (or set). A convenient function is
+provided::
+
+ void ltl_atom_pulse(struct task_struct *task, enum ltl_atom atom, bool value)
+
+which is equivalent to::
+
+ ltl_atom_update(task, atom, value);
+ ltl_atom_update(task, atom, !value);
+
+To initialize the atomic propositions, the following function must be
+implemented::
+
+ ltl_atoms_init(struct task_struct *task, struct ltl_monitor *mon, bool task_creation)
+
+This function is called for all running tasks when the monitor is enabled. It is
+also called for new tasks created after the enabling the monitor. It should
+initialize as many atomic propositions as possible, for example::
+
+ void ltl_atom_init(struct task_struct *task, struct ltl_monitor *mon, bool task_creation)
+ {
+ ltl_atom_set(mon, LTL_RT, rt_task(task));
+ if (task_creation)
+ ltl_atom_set(mon, LTL_PAGEFAULT, false);
+ }
+
+Atomic propositions not initialized by `ltl_atom_init()` will stay in the
+unknown state until relevant tracepoints are hit, which can take some time. As
+monitoring for a task cannot be done until all atomic propositions is known for
+the task, the monitor may need some time to start validating tasks which have
+been running before the monitor is enabled. Therefore, it is recommended to
+start the tasks of interest after enabling the monitor.
+
+Final remarks
+-------------
+
+With the monitor synthesis in place using the header files and
+rvgen, the developer's work should be limited to the instrumentation
+of the system, increasing the confidence in the overall approach.
+
+[1] For details about deterministic automata format and the translation
+from one representation to another, see::
+
+ Documentation/trace/rv/deterministic_automata.rst
+
+[2] rvgen appends the monitor's name suffix to the events enums to
+avoid conflicting variables when exporting the global vmlinux.h
+use by BPF programs.