diff options
Diffstat (limited to 'drivers/android/binder/thread.rs')
-rw-r--r-- | drivers/android/binder/thread.rs | 1596 |
1 files changed, 1596 insertions, 0 deletions
diff --git a/drivers/android/binder/thread.rs b/drivers/android/binder/thread.rs new file mode 100644 index 000000000000..7e34ccd394f8 --- /dev/null +++ b/drivers/android/binder/thread.rs @@ -0,0 +1,1596 @@ +// SPDX-License-Identifier: GPL-2.0 + +// Copyright (C) 2025 Google LLC. + +//! This module defines the `Thread` type, which represents a userspace thread that is using +//! binder. +//! +//! The `Process` object stores all of the threads in an rb tree. + +use kernel::{ + bindings, + fs::{File, LocalFile}, + list::{AtomicTracker, List, ListArc, ListLinks, TryNewListArc}, + prelude::*, + security, + seq_file::SeqFile, + seq_print, + sync::poll::{PollCondVar, PollTable}, + sync::{Arc, SpinLock}, + task::Task, + types::ARef, + uaccess::UserSlice, + uapi, +}; + +use crate::{ + allocation::{Allocation, AllocationView, BinderObject, BinderObjectRef, NewAllocation}, + defs::*, + error::BinderResult, + process::{GetWorkOrRegister, Process}, + ptr_align, + stats::GLOBAL_STATS, + transaction::Transaction, + BinderReturnWriter, DArc, DLArc, DTRWrap, DeliverCode, DeliverToRead, +}; + +use core::{ + mem::size_of, + sync::atomic::{AtomicU32, Ordering}, +}; + +/// Stores the layout of the scatter-gather entries. This is used during the `translate_objects` +/// call and is discarded when it returns. +struct ScatterGatherState { + /// A struct that tracks the amount of unused buffer space. + unused_buffer_space: UnusedBufferSpace, + /// Scatter-gather entries to copy. + sg_entries: KVec<ScatterGatherEntry>, + /// Indexes into `sg_entries` corresponding to the last binder_buffer_object that + /// was processed and all of its ancestors. The array is in sorted order. + ancestors: KVec<usize>, +} + +/// This entry specifies an additional buffer that should be copied using the scatter-gather +/// mechanism. +struct ScatterGatherEntry { + /// The index in the offset array of the BINDER_TYPE_PTR that this entry originates from. + obj_index: usize, + /// Offset in target buffer. + offset: usize, + /// User address in source buffer. + sender_uaddr: usize, + /// Number of bytes to copy. + length: usize, + /// The minimum offset of the next fixup in this buffer. + fixup_min_offset: usize, + /// The offsets within this buffer that contain pointers which should be translated. + pointer_fixups: KVec<PointerFixupEntry>, +} + +/// This entry specifies that a fixup should happen at `target_offset` of the +/// buffer. If `skip` is nonzero, then the fixup is a `binder_fd_array_object` +/// and is applied later. Otherwise if `skip` is zero, then the size of the +/// fixup is `sizeof::<u64>()` and `pointer_value` is written to the buffer. +struct PointerFixupEntry { + /// The number of bytes to skip, or zero for a `binder_buffer_object` fixup. + skip: usize, + /// The translated pointer to write when `skip` is zero. + pointer_value: u64, + /// The offset at which the value should be written. The offset is relative + /// to the original buffer. + target_offset: usize, +} + +/// Return type of `apply_and_validate_fixup_in_parent`. +struct ParentFixupInfo { + /// The index of the parent buffer in `sg_entries`. + parent_sg_index: usize, + /// The number of ancestors of the buffer. + /// + /// The buffer is considered an ancestor of itself, so this is always at + /// least one. + num_ancestors: usize, + /// New value of `fixup_min_offset` if this fixup is applied. + new_min_offset: usize, + /// The offset of the fixup in the target buffer. + target_offset: usize, +} + +impl ScatterGatherState { + /// Called when a `binder_buffer_object` or `binder_fd_array_object` tries + /// to access a region in its parent buffer. These accesses have various + /// restrictions, which this method verifies. + /// + /// The `parent_offset` and `length` arguments describe the offset and + /// length of the access in the parent buffer. + /// + /// # Detailed restrictions + /// + /// Obviously the fixup must be in-bounds for the parent buffer. + /// + /// For safety reasons, we only allow fixups inside a buffer to happen + /// at increasing offsets; additionally, we only allow fixup on the last + /// buffer object that was verified, or one of its parents. + /// + /// Example of what is allowed: + /// + /// A + /// B (parent = A, offset = 0) + /// C (parent = A, offset = 16) + /// D (parent = C, offset = 0) + /// E (parent = A, offset = 32) // min_offset is 16 (C.parent_offset) + /// + /// Examples of what is not allowed: + /// + /// Decreasing offsets within the same parent: + /// A + /// C (parent = A, offset = 16) + /// B (parent = A, offset = 0) // decreasing offset within A + /// + /// Arcerring to a parent that wasn't the last object or any of its parents: + /// A + /// B (parent = A, offset = 0) + /// C (parent = A, offset = 0) + /// C (parent = A, offset = 16) + /// D (parent = B, offset = 0) // B is not A or any of A's parents + fn validate_parent_fixup( + &self, + parent: usize, + parent_offset: usize, + length: usize, + ) -> Result<ParentFixupInfo> { + // Using `position` would also be correct, but `rposition` avoids + // quadratic running times. + let ancestors_i = self + .ancestors + .iter() + .copied() + .rposition(|sg_idx| self.sg_entries[sg_idx].obj_index == parent) + .ok_or(EINVAL)?; + let sg_idx = self.ancestors[ancestors_i]; + let sg_entry = match self.sg_entries.get(sg_idx) { + Some(sg_entry) => sg_entry, + None => { + pr_err!( + "self.ancestors[{}] is {}, but self.sg_entries.len() is {}", + ancestors_i, + sg_idx, + self.sg_entries.len() + ); + return Err(EINVAL); + } + }; + if sg_entry.fixup_min_offset > parent_offset { + pr_warn!( + "validate_parent_fixup: fixup_min_offset={}, parent_offset={}", + sg_entry.fixup_min_offset, + parent_offset + ); + return Err(EINVAL); + } + let new_min_offset = parent_offset.checked_add(length).ok_or(EINVAL)?; + if new_min_offset > sg_entry.length { + pr_warn!( + "validate_parent_fixup: new_min_offset={}, sg_entry.length={}", + new_min_offset, + sg_entry.length + ); + return Err(EINVAL); + } + let target_offset = sg_entry.offset.checked_add(parent_offset).ok_or(EINVAL)?; + // The `ancestors_i + 1` operation can't overflow since the output of the addition is at + // most `self.ancestors.len()`, which also fits in a usize. + Ok(ParentFixupInfo { + parent_sg_index: sg_idx, + num_ancestors: ancestors_i + 1, + new_min_offset, + target_offset, + }) + } +} + +/// Keeps track of how much unused buffer space is left. The initial amount is the number of bytes +/// requested by the user using the `buffers_size` field of `binder_transaction_data_sg`. Each time +/// we translate an object of type `BINDER_TYPE_PTR`, some of the unused buffer space is consumed. +struct UnusedBufferSpace { + /// The start of the remaining space. + offset: usize, + /// The end of the remaining space. + limit: usize, +} +impl UnusedBufferSpace { + /// Claim the next `size` bytes from the unused buffer space. The offset for the claimed chunk + /// into the buffer is returned. + fn claim_next(&mut self, size: usize) -> Result<usize> { + // We require every chunk to be aligned. + let size = ptr_align(size).ok_or(EINVAL)?; + let new_offset = self.offset.checked_add(size).ok_or(EINVAL)?; + + if new_offset <= self.limit { + let offset = self.offset; + self.offset = new_offset; + Ok(offset) + } else { + Err(EINVAL) + } + } +} + +pub(crate) enum PushWorkRes { + Ok, + FailedDead(DLArc<dyn DeliverToRead>), +} + +impl PushWorkRes { + fn is_ok(&self) -> bool { + match self { + PushWorkRes::Ok => true, + PushWorkRes::FailedDead(_) => false, + } + } +} + +/// The fields of `Thread` protected by the spinlock. +struct InnerThread { + /// Determines the looper state of the thread. It is a bit-wise combination of the constants + /// prefixed with `LOOPER_`. + looper_flags: u32, + + /// Determines whether the looper should return. + looper_need_return: bool, + + /// Determines if thread is dead. + is_dead: bool, + + /// Work item used to deliver error codes to the thread that started a transaction. Stored here + /// so that it can be reused. + reply_work: DArc<ThreadError>, + + /// Work item used to deliver error codes to the current thread. Stored here so that it can be + /// reused. + return_work: DArc<ThreadError>, + + /// Determines whether the work list below should be processed. When set to false, `work_list` + /// is treated as if it were empty. + process_work_list: bool, + /// List of work items to deliver to userspace. + work_list: List<DTRWrap<dyn DeliverToRead>>, + current_transaction: Option<DArc<Transaction>>, + + /// Extended error information for this thread. + extended_error: ExtendedError, +} + +const LOOPER_REGISTERED: u32 = 0x01; +const LOOPER_ENTERED: u32 = 0x02; +const LOOPER_EXITED: u32 = 0x04; +const LOOPER_INVALID: u32 = 0x08; +const LOOPER_WAITING: u32 = 0x10; +const LOOPER_WAITING_PROC: u32 = 0x20; +const LOOPER_POLL: u32 = 0x40; + +impl InnerThread { + fn new() -> Result<Self> { + fn next_err_id() -> u32 { + static EE_ID: AtomicU32 = AtomicU32::new(0); + EE_ID.fetch_add(1, Ordering::Relaxed) + } + + Ok(Self { + looper_flags: 0, + looper_need_return: false, + is_dead: false, + process_work_list: false, + reply_work: ThreadError::try_new()?, + return_work: ThreadError::try_new()?, + work_list: List::new(), + current_transaction: None, + extended_error: ExtendedError::new(next_err_id(), BR_OK, 0), + }) + } + + fn pop_work(&mut self) -> Option<DLArc<dyn DeliverToRead>> { + if !self.process_work_list { + return None; + } + + let ret = self.work_list.pop_front(); + self.process_work_list = !self.work_list.is_empty(); + ret + } + + fn push_work(&mut self, work: DLArc<dyn DeliverToRead>) -> PushWorkRes { + if self.is_dead { + PushWorkRes::FailedDead(work) + } else { + self.work_list.push_back(work); + self.process_work_list = true; + PushWorkRes::Ok + } + } + + fn push_reply_work(&mut self, code: u32) { + if let Ok(work) = ListArc::try_from_arc(self.reply_work.clone()) { + work.set_error_code(code); + self.push_work(work); + } else { + pr_warn!("Thread reply work is already in use."); + } + } + + fn push_return_work(&mut self, reply: u32) { + if let Ok(work) = ListArc::try_from_arc(self.return_work.clone()) { + work.set_error_code(reply); + self.push_work(work); + } else { + pr_warn!("Thread return work is already in use."); + } + } + + /// Used to push work items that do not need to be processed immediately and can wait until the + /// thread gets another work item. + fn push_work_deferred(&mut self, work: DLArc<dyn DeliverToRead>) { + self.work_list.push_back(work); + } + + /// Fetches the transaction this thread can reply to. If the thread has a pending transaction + /// (that it could respond to) but it has also issued a transaction, it must first wait for the + /// previously-issued transaction to complete. + /// + /// The `thread` parameter should be the thread containing this `ThreadInner`. + fn pop_transaction_to_reply(&mut self, thread: &Thread) -> Result<DArc<Transaction>> { + let transaction = self.current_transaction.take().ok_or(EINVAL)?; + if core::ptr::eq(thread, transaction.from.as_ref()) { + self.current_transaction = Some(transaction); + return Err(EINVAL); + } + // Find a new current transaction for this thread. + self.current_transaction = transaction.find_from(thread).cloned(); + Ok(transaction) + } + + fn pop_transaction_replied(&mut self, transaction: &DArc<Transaction>) -> bool { + match self.current_transaction.take() { + None => false, + Some(old) => { + if !Arc::ptr_eq(transaction, &old) { + self.current_transaction = Some(old); + return false; + } + self.current_transaction = old.clone_next(); + true + } + } + } + + fn looper_enter(&mut self) { + self.looper_flags |= LOOPER_ENTERED; + if self.looper_flags & LOOPER_REGISTERED != 0 { + self.looper_flags |= LOOPER_INVALID; + } + } + + fn looper_register(&mut self, valid: bool) { + self.looper_flags |= LOOPER_REGISTERED; + if !valid || self.looper_flags & LOOPER_ENTERED != 0 { + self.looper_flags |= LOOPER_INVALID; + } + } + + fn looper_exit(&mut self) { + self.looper_flags |= LOOPER_EXITED; + } + + /// Determines whether the thread is part of a pool, i.e., if it is a looper. + fn is_looper(&self) -> bool { + self.looper_flags & (LOOPER_ENTERED | LOOPER_REGISTERED) != 0 + } + + /// Determines whether the thread should attempt to fetch work items from the process queue. + /// This is generally case when the thread is registered as a looper and not part of a + /// transaction stack. But if there is local work, we want to return to userspace before we + /// deliver any remote work. + fn should_use_process_work_queue(&self) -> bool { + self.current_transaction.is_none() && !self.process_work_list && self.is_looper() + } + + fn poll(&mut self) -> u32 { + self.looper_flags |= LOOPER_POLL; + if self.process_work_list || self.looper_need_return { + bindings::POLLIN + } else { + 0 + } + } +} + +/// This represents a thread that's used with binder. +#[pin_data] +pub(crate) struct Thread { + pub(crate) id: i32, + pub(crate) process: Arc<Process>, + pub(crate) task: ARef<Task>, + #[pin] + inner: SpinLock<InnerThread>, + #[pin] + work_condvar: PollCondVar, + /// Used to insert this thread into the process' `ready_threads` list. + /// + /// INVARIANT: May never be used for any other list than the `self.process.ready_threads`. + #[pin] + links: ListLinks, + #[pin] + links_track: AtomicTracker, +} + +kernel::list::impl_list_arc_safe! { + impl ListArcSafe<0> for Thread { + tracked_by links_track: AtomicTracker; + } +} +kernel::list::impl_list_item! { + impl ListItem<0> for Thread { + using ListLinks { self.links }; + } +} + +impl Thread { + pub(crate) fn new(id: i32, process: Arc<Process>) -> Result<Arc<Self>> { + let inner = InnerThread::new()?; + + Arc::pin_init( + try_pin_init!(Thread { + id, + process, + task: ARef::from(&**kernel::current!()), + inner <- kernel::new_spinlock!(inner, "Thread::inner"), + work_condvar <- kernel::new_poll_condvar!("Thread::work_condvar"), + links <- ListLinks::new(), + links_track <- AtomicTracker::new(), + }), + GFP_KERNEL, + ) + } + + #[inline(never)] + pub(crate) fn debug_print(self: &Arc<Self>, m: &SeqFile, print_all: bool) -> Result<()> { + let inner = self.inner.lock(); + + if print_all || inner.current_transaction.is_some() || !inner.work_list.is_empty() { + seq_print!( + m, + " thread {}: l {:02x} need_return {}\n", + self.id, + inner.looper_flags, + inner.looper_need_return, + ); + } + + let mut t_opt = inner.current_transaction.as_ref(); + while let Some(t) = t_opt { + if Arc::ptr_eq(&t.from, self) { + t.debug_print_inner(m, " outgoing transaction "); + t_opt = t.from_parent.as_ref(); + } else if Arc::ptr_eq(&t.to, &self.process) { + t.debug_print_inner(m, " incoming transaction "); + t_opt = t.find_from(self); + } else { + t.debug_print_inner(m, " bad transaction "); + t_opt = None; + } + } + + for work in &inner.work_list { + work.debug_print(m, " ", " pending transaction ")?; + } + Ok(()) + } + + pub(crate) fn get_extended_error(&self, data: UserSlice) -> Result { + let mut writer = data.writer(); + let ee = self.inner.lock().extended_error; + writer.write(&ee)?; + Ok(()) + } + + pub(crate) fn set_current_transaction(&self, transaction: DArc<Transaction>) { + self.inner.lock().current_transaction = Some(transaction); + } + + pub(crate) fn has_current_transaction(&self) -> bool { + self.inner.lock().current_transaction.is_some() + } + + /// Attempts to fetch a work item from the thread-local queue. The behaviour if the queue is + /// empty depends on `wait`: if it is true, the function waits for some work to be queued (or a + /// signal); otherwise it returns indicating that none is available. + fn get_work_local(self: &Arc<Self>, wait: bool) -> Result<Option<DLArc<dyn DeliverToRead>>> { + { + let mut inner = self.inner.lock(); + if inner.looper_need_return { + return Ok(inner.pop_work()); + } + } + + // Try once if the caller does not want to wait. + if !wait { + return self.inner.lock().pop_work().ok_or(EAGAIN).map(Some); + } + + // Loop waiting only on the local queue (i.e., not registering with the process queue). + let mut inner = self.inner.lock(); + loop { + if let Some(work) = inner.pop_work() { + return Ok(Some(work)); + } + + inner.looper_flags |= LOOPER_WAITING; + let signal_pending = self.work_condvar.wait_interruptible_freezable(&mut inner); + inner.looper_flags &= !LOOPER_WAITING; + + if signal_pending { + return Err(EINTR); + } + if inner.looper_need_return { + return Ok(None); + } + } + } + + /// Attempts to fetch a work item from the thread-local queue, falling back to the process-wide + /// queue if none is available locally. + /// + /// This must only be called when the thread is not participating in a transaction chain. If it + /// is, the local version (`get_work_local`) should be used instead. + fn get_work(self: &Arc<Self>, wait: bool) -> Result<Option<DLArc<dyn DeliverToRead>>> { + // Try to get work from the thread's work queue, using only a local lock. + { + let mut inner = self.inner.lock(); + if let Some(work) = inner.pop_work() { + return Ok(Some(work)); + } + if inner.looper_need_return { + drop(inner); + return Ok(self.process.get_work()); + } + } + + // If the caller doesn't want to wait, try to grab work from the process queue. + // + // We know nothing will have been queued directly to the thread queue because it is not in + // a transaction and it is not in the process' ready list. + if !wait { + return self.process.get_work().ok_or(EAGAIN).map(Some); + } + + // Get work from the process queue. If none is available, atomically register as ready. + let reg = match self.process.get_work_or_register(self) { + GetWorkOrRegister::Work(work) => return Ok(Some(work)), + GetWorkOrRegister::Register(reg) => reg, + }; + + let mut inner = self.inner.lock(); + loop { + if let Some(work) = inner.pop_work() { + return Ok(Some(work)); + } + + inner.looper_flags |= LOOPER_WAITING | LOOPER_WAITING_PROC; + let signal_pending = self.work_condvar.wait_interruptible_freezable(&mut inner); + inner.looper_flags &= !(LOOPER_WAITING | LOOPER_WAITING_PROC); + + if signal_pending || inner.looper_need_return { + // We need to return now. We need to pull the thread off the list of ready threads + // (by dropping `reg`), then check the state again after it's off the list to + // ensure that something was not queued in the meantime. If something has been + // queued, we just return it (instead of the error). + drop(inner); + drop(reg); + + let res = match self.inner.lock().pop_work() { + Some(work) => Ok(Some(work)), + None if signal_pending => Err(EINTR), + None => Ok(None), + }; + return res; + } + } + } + + /// Push the provided work item to be delivered to user space via this thread. + /// + /// Returns whether the item was successfully pushed. This can only fail if the thread is dead. + pub(crate) fn push_work(&self, work: DLArc<dyn DeliverToRead>) -> PushWorkRes { + let sync = work.should_sync_wakeup(); + + let res = self.inner.lock().push_work(work); + + if res.is_ok() { + if sync { + self.work_condvar.notify_sync(); + } else { + self.work_condvar.notify_one(); + } + } + + res + } + + /// Attempts to push to given work item to the thread if it's a looper thread (i.e., if it's + /// part of a thread pool) and is alive. Otherwise, push the work item to the process instead. + pub(crate) fn push_work_if_looper(&self, work: DLArc<dyn DeliverToRead>) -> BinderResult { + let mut inner = self.inner.lock(); + if inner.is_looper() && !inner.is_dead { + inner.push_work(work); + Ok(()) + } else { + drop(inner); + self.process.push_work(work) + } + } + + pub(crate) fn push_work_deferred(&self, work: DLArc<dyn DeliverToRead>) { + self.inner.lock().push_work_deferred(work); + } + + pub(crate) fn push_return_work(&self, reply: u32) { + self.inner.lock().push_return_work(reply); + } + + fn translate_object( + &self, + obj_index: usize, + offset: usize, + object: BinderObjectRef<'_>, + view: &mut AllocationView<'_>, + allow_fds: bool, + sg_state: &mut ScatterGatherState, + ) -> BinderResult { + match object { + BinderObjectRef::Binder(obj) => { + let strong = obj.hdr.type_ == BINDER_TYPE_BINDER; + // SAFETY: `binder` is a `binder_uintptr_t`; any bit pattern is a valid + // representation. + let ptr = unsafe { obj.__bindgen_anon_1.binder } as _; + let cookie = obj.cookie as _; + let flags = obj.flags as _; + let node = self + .process + .as_arc_borrow() + .get_node(ptr, cookie, flags, strong, self)?; + security::binder_transfer_binder(&self.process.cred, &view.alloc.process.cred)?; + view.transfer_binder_object(offset, obj, strong, node)?; + } + BinderObjectRef::Handle(obj) => { + let strong = obj.hdr.type_ == BINDER_TYPE_HANDLE; + // SAFETY: `handle` is a `u32`; any bit pattern is a valid representation. + let handle = unsafe { obj.__bindgen_anon_1.handle } as _; + let node = self.process.get_node_from_handle(handle, strong)?; + security::binder_transfer_binder(&self.process.cred, &view.alloc.process.cred)?; + view.transfer_binder_object(offset, obj, strong, node)?; + } + BinderObjectRef::Fd(obj) => { + if !allow_fds { + return Err(EPERM.into()); + } + + // SAFETY: `fd` is a `u32`; any bit pattern is a valid representation. + let fd = unsafe { obj.__bindgen_anon_1.fd }; + let file = LocalFile::fget(fd)?; + // SAFETY: The binder driver never calls `fdget_pos` and this code runs from an + // ioctl, so there are no active calls to `fdget_pos` on this thread. + let file = unsafe { LocalFile::assume_no_fdget_pos(file) }; + security::binder_transfer_file( + &self.process.cred, + &view.alloc.process.cred, + &file, + )?; + + let mut obj_write = BinderFdObject::default(); + obj_write.hdr.type_ = BINDER_TYPE_FD; + // This will be overwritten with the actual fd when the transaction is received. + obj_write.__bindgen_anon_1.fd = u32::MAX; + obj_write.cookie = obj.cookie; + view.write::<BinderFdObject>(offset, &obj_write)?; + + const FD_FIELD_OFFSET: usize = + core::mem::offset_of!(uapi::binder_fd_object, __bindgen_anon_1.fd); + + let field_offset = offset + FD_FIELD_OFFSET; + + view.alloc.info_add_fd(file, field_offset, false)?; + } + BinderObjectRef::Ptr(obj) => { + let obj_length = obj.length.try_into().map_err(|_| EINVAL)?; + let alloc_offset = match sg_state.unused_buffer_space.claim_next(obj_length) { + Ok(alloc_offset) => alloc_offset, + Err(err) => { + pr_warn!( + "Failed to claim space for a BINDER_TYPE_PTR. (offset: {}, limit: {}, size: {})", + sg_state.unused_buffer_space.offset, + sg_state.unused_buffer_space.limit, + obj_length, + ); + return Err(err.into()); + } + }; + + let sg_state_idx = sg_state.sg_entries.len(); + sg_state.sg_entries.push( + ScatterGatherEntry { + obj_index, + offset: alloc_offset, + sender_uaddr: obj.buffer as _, + length: obj_length, + pointer_fixups: KVec::new(), + fixup_min_offset: 0, + }, + GFP_KERNEL, + )?; + + let buffer_ptr_in_user_space = (view.alloc.ptr + alloc_offset) as u64; + + if obj.flags & uapi::BINDER_BUFFER_FLAG_HAS_PARENT == 0 { + sg_state.ancestors.clear(); + sg_state.ancestors.push(sg_state_idx, GFP_KERNEL)?; + } else { + // Another buffer also has a pointer to this buffer, and we need to fixup that + // pointer too. + + let parent_index = usize::try_from(obj.parent).map_err(|_| EINVAL)?; + let parent_offset = usize::try_from(obj.parent_offset).map_err(|_| EINVAL)?; + + let info = sg_state.validate_parent_fixup( + parent_index, + parent_offset, + size_of::<u64>(), + )?; + + sg_state.ancestors.truncate(info.num_ancestors); + sg_state.ancestors.push(sg_state_idx, GFP_KERNEL)?; + + let parent_entry = match sg_state.sg_entries.get_mut(info.parent_sg_index) { + Some(parent_entry) => parent_entry, + None => { + pr_err!( + "validate_parent_fixup returned index out of bounds for sg.entries" + ); + return Err(EINVAL.into()); + } + }; + + parent_entry.fixup_min_offset = info.new_min_offset; + parent_entry.pointer_fixups.push( + PointerFixupEntry { + skip: 0, + pointer_value: buffer_ptr_in_user_space, + target_offset: info.target_offset, + }, + GFP_KERNEL, + )?; + } + + let mut obj_write = BinderBufferObject::default(); + obj_write.hdr.type_ = BINDER_TYPE_PTR; + obj_write.flags = obj.flags; + obj_write.buffer = buffer_ptr_in_user_space; + obj_write.length = obj.length; + obj_write.parent = obj.parent; + obj_write.parent_offset = obj.parent_offset; + view.write::<BinderBufferObject>(offset, &obj_write)?; + } + BinderObjectRef::Fda(obj) => { + if !allow_fds { + return Err(EPERM.into()); + } + let parent_index = usize::try_from(obj.parent).map_err(|_| EINVAL)?; + let parent_offset = usize::try_from(obj.parent_offset).map_err(|_| EINVAL)?; + let num_fds = usize::try_from(obj.num_fds).map_err(|_| EINVAL)?; + let fds_len = num_fds.checked_mul(size_of::<u32>()).ok_or(EINVAL)?; + + let info = sg_state.validate_parent_fixup(parent_index, parent_offset, fds_len)?; + view.alloc.info_add_fd_reserve(num_fds)?; + + sg_state.ancestors.truncate(info.num_ancestors); + let parent_entry = match sg_state.sg_entries.get_mut(info.parent_sg_index) { + Some(parent_entry) => parent_entry, + None => { + pr_err!( + "validate_parent_fixup returned index out of bounds for sg.entries" + ); + return Err(EINVAL.into()); + } + }; + + parent_entry.fixup_min_offset = info.new_min_offset; + parent_entry + .pointer_fixups + .push( + PointerFixupEntry { + skip: fds_len, + pointer_value: 0, + target_offset: info.target_offset, + }, + GFP_KERNEL, + ) + .map_err(|_| ENOMEM)?; + + let fda_uaddr = parent_entry + .sender_uaddr + .checked_add(parent_offset) + .ok_or(EINVAL)?; + let mut fda_bytes = KVec::new(); + UserSlice::new(UserPtr::from_addr(fda_uaddr as _), fds_len) + .read_all(&mut fda_bytes, GFP_KERNEL)?; + + if fds_len != fda_bytes.len() { + pr_err!("UserSlice::read_all returned wrong length in BINDER_TYPE_FDA"); + return Err(EINVAL.into()); + } + + for i in (0..fds_len).step_by(size_of::<u32>()) { + let fd = { + let mut fd_bytes = [0u8; size_of::<u32>()]; + fd_bytes.copy_from_slice(&fda_bytes[i..i + size_of::<u32>()]); + u32::from_ne_bytes(fd_bytes) + }; + + let file = LocalFile::fget(fd)?; + // SAFETY: The binder driver never calls `fdget_pos` and this code runs from an + // ioctl, so there are no active calls to `fdget_pos` on this thread. + let file = unsafe { LocalFile::assume_no_fdget_pos(file) }; + security::binder_transfer_file( + &self.process.cred, + &view.alloc.process.cred, + &file, + )?; + + // The `validate_parent_fixup` call ensuers that this addition will not + // overflow. + view.alloc.info_add_fd(file, info.target_offset + i, true)?; + } + drop(fda_bytes); + + let mut obj_write = BinderFdArrayObject::default(); + obj_write.hdr.type_ = BINDER_TYPE_FDA; + obj_write.num_fds = obj.num_fds; + obj_write.parent = obj.parent; + obj_write.parent_offset = obj.parent_offset; + view.write::<BinderFdArrayObject>(offset, &obj_write)?; + } + } + Ok(()) + } + + fn apply_sg(&self, alloc: &mut Allocation, sg_state: &mut ScatterGatherState) -> BinderResult { + for sg_entry in &mut sg_state.sg_entries { + let mut end_of_previous_fixup = sg_entry.offset; + let offset_end = sg_entry.offset.checked_add(sg_entry.length).ok_or(EINVAL)?; + + let mut reader = + UserSlice::new(UserPtr::from_addr(sg_entry.sender_uaddr), sg_entry.length).reader(); + for fixup in &mut sg_entry.pointer_fixups { + let fixup_len = if fixup.skip == 0 { + size_of::<u64>() + } else { + fixup.skip + }; + + let target_offset_end = fixup.target_offset.checked_add(fixup_len).ok_or(EINVAL)?; + if fixup.target_offset < end_of_previous_fixup || offset_end < target_offset_end { + pr_warn!( + "Fixups oob {} {} {} {}", + fixup.target_offset, + end_of_previous_fixup, + offset_end, + target_offset_end + ); + return Err(EINVAL.into()); + } + + let copy_off = end_of_previous_fixup; + let copy_len = fixup.target_offset - end_of_previous_fixup; + if let Err(err) = alloc.copy_into(&mut reader, copy_off, copy_len) { + pr_warn!("Failed copying into alloc: {:?}", err); + return Err(err.into()); + } + if fixup.skip == 0 { + let res = alloc.write::<u64>(fixup.target_offset, &fixup.pointer_value); + if let Err(err) = res { + pr_warn!("Failed copying ptr into alloc: {:?}", err); + return Err(err.into()); + } + } + if let Err(err) = reader.skip(fixup_len) { + pr_warn!("Failed skipping {} from reader: {:?}", fixup_len, err); + return Err(err.into()); + } + end_of_previous_fixup = target_offset_end; + } + let copy_off = end_of_previous_fixup; + let copy_len = offset_end - end_of_previous_fixup; + if let Err(err) = alloc.copy_into(&mut reader, copy_off, copy_len) { + pr_warn!("Failed copying remainder into alloc: {:?}", err); + return Err(err.into()); + } + } + Ok(()) + } + + /// This method copies the payload of a transaction into the target process. + /// + /// The resulting payload will have several different components, which will be stored next to + /// each other in the allocation. Furthermore, various objects can be embedded in the payload, + /// and those objects have to be translated so that they make sense to the target transaction. + pub(crate) fn copy_transaction_data( + &self, + to_process: Arc<Process>, + tr: &BinderTransactionDataSg, + debug_id: usize, + allow_fds: bool, + txn_security_ctx_offset: Option<&mut usize>, + ) -> BinderResult<NewAllocation> { + let trd = &tr.transaction_data; + let is_oneway = trd.flags & TF_ONE_WAY != 0; + let mut secctx = if let Some(offset) = txn_security_ctx_offset { + let secid = self.process.cred.get_secid(); + let ctx = match security::SecurityCtx::from_secid(secid) { + Ok(ctx) => ctx, + Err(err) => { + pr_warn!("Failed to get security ctx for id {}: {:?}", secid, err); + return Err(err.into()); + } + }; + Some((offset, ctx)) + } else { + None + }; + + let data_size = trd.data_size.try_into().map_err(|_| EINVAL)?; + let aligned_data_size = ptr_align(data_size).ok_or(EINVAL)?; + let offsets_size = trd.offsets_size.try_into().map_err(|_| EINVAL)?; + let aligned_offsets_size = ptr_align(offsets_size).ok_or(EINVAL)?; + let buffers_size = tr.buffers_size.try_into().map_err(|_| EINVAL)?; + let aligned_buffers_size = ptr_align(buffers_size).ok_or(EINVAL)?; + let aligned_secctx_size = match secctx.as_ref() { + Some((_offset, ctx)) => ptr_align(ctx.len()).ok_or(EINVAL)?, + None => 0, + }; + + // This guarantees that at least `sizeof(usize)` bytes will be allocated. + let len = usize::max( + aligned_data_size + .checked_add(aligned_offsets_size) + .and_then(|sum| sum.checked_add(aligned_buffers_size)) + .and_then(|sum| sum.checked_add(aligned_secctx_size)) + .ok_or(ENOMEM)?, + size_of::<usize>(), + ); + let secctx_off = aligned_data_size + aligned_offsets_size + aligned_buffers_size; + let mut alloc = + match to_process.buffer_alloc(debug_id, len, is_oneway, self.process.task.pid()) { + Ok(alloc) => alloc, + Err(err) => { + pr_warn!( + "Failed to allocate buffer. len:{}, is_oneway:{}", + len, + is_oneway + ); + return Err(err); + } + }; + + // SAFETY: This accesses a union field, but it's okay because the field's type is valid for + // all bit-patterns. + let trd_data_ptr = unsafe { &trd.data.ptr }; + let mut buffer_reader = + UserSlice::new(UserPtr::from_addr(trd_data_ptr.buffer as _), data_size).reader(); + let mut end_of_previous_object = 0; + let mut sg_state = None; + + // Copy offsets if there are any. + if offsets_size > 0 { + { + let mut reader = + UserSlice::new(UserPtr::from_addr(trd_data_ptr.offsets as _), offsets_size) + .reader(); + alloc.copy_into(&mut reader, aligned_data_size, offsets_size)?; + } + + let offsets_start = aligned_data_size; + let offsets_end = aligned_data_size + aligned_offsets_size; + + // This state is used for BINDER_TYPE_PTR objects. + let sg_state = sg_state.insert(ScatterGatherState { + unused_buffer_space: UnusedBufferSpace { + offset: offsets_end, + limit: len, + }, + sg_entries: KVec::new(), + ancestors: KVec::new(), + }); + + // Traverse the objects specified. + let mut view = AllocationView::new(&mut alloc, data_size); + for (index, index_offset) in (offsets_start..offsets_end) + .step_by(size_of::<usize>()) + .enumerate() + { + let offset = view.alloc.read(index_offset)?; + + if offset < end_of_previous_object { + pr_warn!("Got transaction with invalid offset."); + return Err(EINVAL.into()); + } + + // Copy data between two objects. + if end_of_previous_object < offset { + view.copy_into( + &mut buffer_reader, + end_of_previous_object, + offset - end_of_previous_object, + )?; + } + + let mut object = BinderObject::read_from(&mut buffer_reader)?; + + match self.translate_object( + index, + offset, + object.as_ref(), + &mut view, + allow_fds, + sg_state, + ) { + Ok(()) => end_of_previous_object = offset + object.size(), + Err(err) => { + pr_warn!("Error while translating object."); + return Err(err); + } + } + + // Update the indexes containing objects to clean up. + let offset_after_object = index_offset + size_of::<usize>(); + view.alloc + .set_info_offsets(offsets_start..offset_after_object); + } + } + + // Copy remaining raw data. + alloc.copy_into( + &mut buffer_reader, + end_of_previous_object, + data_size - end_of_previous_object, + )?; + + if let Some(sg_state) = sg_state.as_mut() { + if let Err(err) = self.apply_sg(&mut alloc, sg_state) { + pr_warn!("Failure in apply_sg: {:?}", err); + return Err(err); + } + } + + if let Some((off_out, secctx)) = secctx.as_mut() { + if let Err(err) = alloc.write(secctx_off, secctx.as_bytes()) { + pr_warn!("Failed to write security context: {:?}", err); + return Err(err.into()); + } + **off_out = secctx_off; + } + Ok(alloc) + } + + fn unwind_transaction_stack(self: &Arc<Self>) { + let mut thread = self.clone(); + while let Ok(transaction) = { + let mut inner = thread.inner.lock(); + inner.pop_transaction_to_reply(thread.as_ref()) + } { + let reply = Err(BR_DEAD_REPLY); + if !transaction.from.deliver_single_reply(reply, &transaction) { + break; + } + + thread = transaction.from.clone(); + } + } + + pub(crate) fn deliver_reply( + &self, + reply: Result<DLArc<Transaction>, u32>, + transaction: &DArc<Transaction>, + ) { + if self.deliver_single_reply(reply, transaction) { + transaction.from.unwind_transaction_stack(); + } + } + + /// Delivers a reply to the thread that started a transaction. The reply can either be a + /// reply-transaction or an error code to be delivered instead. + /// + /// Returns whether the thread is dead. If it is, the caller is expected to unwind the + /// transaction stack by completing transactions for threads that are dead. + fn deliver_single_reply( + &self, + reply: Result<DLArc<Transaction>, u32>, + transaction: &DArc<Transaction>, + ) -> bool { + if let Ok(transaction) = &reply { + transaction.set_outstanding(&mut self.process.inner.lock()); + } + + { + let mut inner = self.inner.lock(); + if !inner.pop_transaction_replied(transaction) { + return false; + } + + if inner.is_dead { + return true; + } + + match reply { + Ok(work) => { + inner.push_work(work); + } + Err(code) => inner.push_reply_work(code), + } + } + + // Notify the thread now that we've released the inner lock. + self.work_condvar.notify_sync(); + false + } + + /// Determines if the given transaction is the current transaction for this thread. + fn is_current_transaction(&self, transaction: &DArc<Transaction>) -> bool { + let inner = self.inner.lock(); + match &inner.current_transaction { + None => false, + Some(current) => Arc::ptr_eq(current, transaction), + } + } + + /// Determines the current top of the transaction stack. It fails if the top is in another + /// thread (i.e., this thread belongs to a stack but it has called another thread). The top is + /// [`None`] if the thread is not currently participating in a transaction stack. + fn top_of_transaction_stack(&self) -> Result<Option<DArc<Transaction>>> { + let inner = self.inner.lock(); + if let Some(cur) = &inner.current_transaction { + if core::ptr::eq(self, cur.from.as_ref()) { + pr_warn!("got new transaction with bad transaction stack"); + return Err(EINVAL); + } + Ok(Some(cur.clone())) + } else { + Ok(None) + } + } + + fn transaction<T>(self: &Arc<Self>, tr: &BinderTransactionDataSg, inner: T) + where + T: FnOnce(&Arc<Self>, &BinderTransactionDataSg) -> BinderResult, + { + if let Err(err) = inner(self, tr) { + if err.should_pr_warn() { + let mut ee = self.inner.lock().extended_error; + ee.command = err.reply; + ee.param = err.as_errno(); + pr_warn!( + "Transaction failed: {:?} my_pid:{}", + err, + self.process.pid_in_current_ns() + ); + } + + self.push_return_work(err.reply); + } + } + + fn transaction_inner(self: &Arc<Self>, tr: &BinderTransactionDataSg) -> BinderResult { + // SAFETY: Handle's type has no invalid bit patterns. + let handle = unsafe { tr.transaction_data.target.handle }; + let node_ref = self.process.get_transaction_node(handle)?; + security::binder_transaction(&self.process.cred, &node_ref.node.owner.cred)?; + // TODO: We need to ensure that there isn't a pending transaction in the work queue. How + // could this happen? + let top = self.top_of_transaction_stack()?; + let list_completion = DTRWrap::arc_try_new(DeliverCode::new(BR_TRANSACTION_COMPLETE))?; + let completion = list_completion.clone_arc(); + let transaction = Transaction::new(node_ref, top, self, tr)?; + + // Check that the transaction stack hasn't changed while the lock was released, then update + // it with the new transaction. + { + let mut inner = self.inner.lock(); + if !transaction.is_stacked_on(&inner.current_transaction) { + pr_warn!("Transaction stack changed during transaction!"); + return Err(EINVAL.into()); + } + inner.current_transaction = Some(transaction.clone_arc()); + // We push the completion as a deferred work so that we wait for the reply before + // returning to userland. + inner.push_work_deferred(list_completion); + } + + if let Err(e) = transaction.submit() { + completion.skip(); + // Define `transaction` first to drop it after `inner`. + let transaction; + let mut inner = self.inner.lock(); + transaction = inner.current_transaction.take().unwrap(); + inner.current_transaction = transaction.clone_next(); + Err(e) + } else { + Ok(()) + } + } + + fn reply_inner(self: &Arc<Self>, tr: &BinderTransactionDataSg) -> BinderResult { + let orig = self.inner.lock().pop_transaction_to_reply(self)?; + if !orig.from.is_current_transaction(&orig) { + return Err(EINVAL.into()); + } + + // We need to complete the transaction even if we cannot complete building the reply. + let out = (|| -> BinderResult<_> { + let completion = DTRWrap::arc_try_new(DeliverCode::new(BR_TRANSACTION_COMPLETE))?; + let process = orig.from.process.clone(); + let allow_fds = orig.flags & TF_ACCEPT_FDS != 0; + let reply = Transaction::new_reply(self, process, tr, allow_fds)?; + self.inner.lock().push_work(completion); + orig.from.deliver_reply(Ok(reply), &orig); + Ok(()) + })() + .map_err(|mut err| { + // At this point we only return `BR_TRANSACTION_COMPLETE` to the caller, and we must let + // the sender know that the transaction has completed (with an error in this case). + pr_warn!( + "Failure {:?} during reply - delivering BR_FAILED_REPLY to sender.", + err + ); + let reply = Err(BR_FAILED_REPLY); + orig.from.deliver_reply(reply, &orig); + err.reply = BR_TRANSACTION_COMPLETE; + err + }); + + out + } + + fn oneway_transaction_inner(self: &Arc<Self>, tr: &BinderTransactionDataSg) -> BinderResult { + // SAFETY: The `handle` field is valid for all possible byte values, so reading from the + // union is okay. + let handle = unsafe { tr.transaction_data.target.handle }; + let node_ref = self.process.get_transaction_node(handle)?; + security::binder_transaction(&self.process.cred, &node_ref.node.owner.cred)?; + let transaction = Transaction::new(node_ref, None, self, tr)?; + let code = if self.process.is_oneway_spam_detection_enabled() + && transaction.oneway_spam_detected + { + BR_ONEWAY_SPAM_SUSPECT + } else { + BR_TRANSACTION_COMPLETE + }; + let list_completion = DTRWrap::arc_try_new(DeliverCode::new(code))?; + let completion = list_completion.clone_arc(); + self.inner.lock().push_work(list_completion); + match transaction.submit() { + Ok(()) => Ok(()), + Err(err) => { + completion.skip(); + Err(err) + } + } + } + + fn write(self: &Arc<Self>, req: &mut BinderWriteRead) -> Result { + let write_start = req.write_buffer.wrapping_add(req.write_consumed); + let write_len = req.write_size.saturating_sub(req.write_consumed); + let mut reader = + UserSlice::new(UserPtr::from_addr(write_start as _), write_len as _).reader(); + + while reader.len() >= size_of::<u32>() && self.inner.lock().return_work.is_unused() { + let before = reader.len(); + let cmd = reader.read::<u32>()?; + GLOBAL_STATS.inc_bc(cmd); + self.process.stats.inc_bc(cmd); + match cmd { + BC_TRANSACTION => { + let tr = reader.read::<BinderTransactionData>()?.with_buffers_size(0); + if tr.transaction_data.flags & TF_ONE_WAY != 0 { + self.transaction(&tr, Self::oneway_transaction_inner); + } else { + self.transaction(&tr, Self::transaction_inner); + } + } + BC_TRANSACTION_SG => { + let tr = reader.read::<BinderTransactionDataSg>()?; + if tr.transaction_data.flags & TF_ONE_WAY != 0 { + self.transaction(&tr, Self::oneway_transaction_inner); + } else { + self.transaction(&tr, Self::transaction_inner); + } + } + BC_REPLY => { + let tr = reader.read::<BinderTransactionData>()?.with_buffers_size(0); + self.transaction(&tr, Self::reply_inner) + } + BC_REPLY_SG => { + let tr = reader.read::<BinderTransactionDataSg>()?; + self.transaction(&tr, Self::reply_inner) + } + BC_FREE_BUFFER => { + let buffer = self.process.buffer_get(reader.read()?); + if let Some(buffer) = &buffer { + if buffer.looper_need_return_on_free() { + self.inner.lock().looper_need_return = true; + } + } + drop(buffer); + } + BC_INCREFS => { + self.process + .as_arc_borrow() + .update_ref(reader.read()?, true, false)? + } + BC_ACQUIRE => { + self.process + .as_arc_borrow() + .update_ref(reader.read()?, true, true)? + } + BC_RELEASE => { + self.process + .as_arc_borrow() + .update_ref(reader.read()?, false, true)? + } + BC_DECREFS => { + self.process + .as_arc_borrow() + .update_ref(reader.read()?, false, false)? + } + BC_INCREFS_DONE => self.process.inc_ref_done(&mut reader, false)?, + BC_ACQUIRE_DONE => self.process.inc_ref_done(&mut reader, true)?, + BC_REQUEST_DEATH_NOTIFICATION => self.process.request_death(&mut reader, self)?, + BC_CLEAR_DEATH_NOTIFICATION => self.process.clear_death(&mut reader, self)?, + BC_DEAD_BINDER_DONE => self.process.dead_binder_done(reader.read()?, self), + BC_REGISTER_LOOPER => { + let valid = self.process.register_thread(); + self.inner.lock().looper_register(valid); + } + BC_ENTER_LOOPER => self.inner.lock().looper_enter(), + BC_EXIT_LOOPER => self.inner.lock().looper_exit(), + BC_REQUEST_FREEZE_NOTIFICATION => self.process.request_freeze_notif(&mut reader)?, + BC_CLEAR_FREEZE_NOTIFICATION => self.process.clear_freeze_notif(&mut reader)?, + BC_FREEZE_NOTIFICATION_DONE => self.process.freeze_notif_done(&mut reader)?, + + // Fail if given an unknown error code. + // BC_ATTEMPT_ACQUIRE and BC_ACQUIRE_RESULT are no longer supported. + _ => return Err(EINVAL), + } + // Update the number of write bytes consumed. + req.write_consumed += (before - reader.len()) as u64; + } + + Ok(()) + } + + fn read(self: &Arc<Self>, req: &mut BinderWriteRead, wait: bool) -> Result { + let read_start = req.read_buffer.wrapping_add(req.read_consumed); + let read_len = req.read_size.saturating_sub(req.read_consumed); + let mut writer = BinderReturnWriter::new( + UserSlice::new(UserPtr::from_addr(read_start as _), read_len as _).writer(), + self, + ); + let (in_pool, use_proc_queue) = { + let inner = self.inner.lock(); + (inner.is_looper(), inner.should_use_process_work_queue()) + }; + + let getter = if use_proc_queue { + Self::get_work + } else { + Self::get_work_local + }; + + // Reserve some room at the beginning of the read buffer so that we can send a + // BR_SPAWN_LOOPER if we need to. + let mut has_noop_placeholder = false; + if req.read_consumed == 0 { + if let Err(err) = writer.write_code(BR_NOOP) { + pr_warn!("Failure when writing BR_NOOP at beginning of buffer."); + return Err(err); + } + has_noop_placeholder = true; + } + + // Loop doing work while there is room in the buffer. + let initial_len = writer.len(); + while writer.len() >= size_of::<uapi::binder_transaction_data_secctx>() + 4 { + match getter(self, wait && initial_len == writer.len()) { + Ok(Some(work)) => match work.into_arc().do_work(self, &mut writer) { + Ok(true) => {} + Ok(false) => break, + Err(err) => { + return Err(err); + } + }, + Ok(None) => { + break; + } + Err(err) => { + // Propagate the error if we haven't written anything else. + if err != EINTR && err != EAGAIN { + pr_warn!("Failure in work getter: {:?}", err); + } + if initial_len == writer.len() { + return Err(err); + } else { + break; + } + } + } + } + + req.read_consumed += read_len - writer.len() as u64; + + // Write BR_SPAWN_LOOPER if the process needs more threads for its pool. + if has_noop_placeholder && in_pool && self.process.needs_thread() { + let mut writer = + UserSlice::new(UserPtr::from_addr(req.read_buffer as _), req.read_size as _) + .writer(); + writer.write(&BR_SPAWN_LOOPER)?; + } + Ok(()) + } + + pub(crate) fn write_read(self: &Arc<Self>, data: UserSlice, wait: bool) -> Result { + let (mut reader, mut writer) = data.reader_writer(); + let mut req = reader.read::<BinderWriteRead>()?; + + // Go through the write buffer. + let mut ret = Ok(()); + if req.write_size > 0 { + ret = self.write(&mut req); + if let Err(err) = ret { + pr_warn!( + "Write failure {:?} in pid:{}", + err, + self.process.pid_in_current_ns() + ); + req.read_consumed = 0; + writer.write(&req)?; + self.inner.lock().looper_need_return = false; + return ret; + } + } + + // Go through the work queue. + if req.read_size > 0 { + ret = self.read(&mut req, wait); + if ret.is_err() && ret != Err(EINTR) { + pr_warn!( + "Read failure {:?} in pid:{}", + ret, + self.process.pid_in_current_ns() + ); + } + } + + // Write the request back so that the consumed fields are visible to the caller. + writer.write(&req)?; + + self.inner.lock().looper_need_return = false; + + ret + } + + pub(crate) fn poll(&self, file: &File, table: PollTable<'_>) -> (bool, u32) { + table.register_wait(file, &self.work_condvar); + let mut inner = self.inner.lock(); + (inner.should_use_process_work_queue(), inner.poll()) + } + + /// Make the call to `get_work` or `get_work_local` return immediately, if any. + pub(crate) fn exit_looper(&self) { + let mut inner = self.inner.lock(); + let should_notify = inner.looper_flags & LOOPER_WAITING != 0; + if should_notify { + inner.looper_need_return = true; + } + drop(inner); + + if should_notify { + self.work_condvar.notify_one(); + } + } + + pub(crate) fn notify_if_poll_ready(&self, sync: bool) { + // Determine if we need to notify. This requires the lock. + let inner = self.inner.lock(); + let notify = inner.looper_flags & LOOPER_POLL != 0 && inner.should_use_process_work_queue(); + drop(inner); + + // Now that the lock is no longer held, notify the waiters if we have to. + if notify { + if sync { + self.work_condvar.notify_sync(); + } else { + self.work_condvar.notify_one(); + } + } + } + + pub(crate) fn release(self: &Arc<Self>) { + self.inner.lock().is_dead = true; + + //self.work_condvar.clear(); + self.unwind_transaction_stack(); + + // Cancel all pending work items. + while let Ok(Some(work)) = self.get_work_local(false) { + work.into_arc().cancel(); + } + } +} + +#[pin_data] +struct ThreadError { + error_code: AtomicU32, + #[pin] + links_track: AtomicTracker, +} + +impl ThreadError { + fn try_new() -> Result<DArc<Self>> { + DTRWrap::arc_pin_init(pin_init!(Self { + error_code: AtomicU32::new(BR_OK), + links_track <- AtomicTracker::new(), + })) + .map(ListArc::into_arc) + } + + fn set_error_code(&self, code: u32) { + self.error_code.store(code, Ordering::Relaxed); + } + + fn is_unused(&self) -> bool { + self.error_code.load(Ordering::Relaxed) == BR_OK + } +} + +impl DeliverToRead for ThreadError { + fn do_work( + self: DArc<Self>, + _thread: &Thread, + writer: &mut BinderReturnWriter<'_>, + ) -> Result<bool> { + let code = self.error_code.load(Ordering::Relaxed); + self.error_code.store(BR_OK, Ordering::Relaxed); + writer.write_code(code)?; + Ok(true) + } + + fn cancel(self: DArc<Self>) {} + + fn should_sync_wakeup(&self) -> bool { + false + } + + fn debug_print(&self, m: &SeqFile, prefix: &str, _tprefix: &str) -> Result<()> { + seq_print!( + m, + "{}transaction error: {}\n", + prefix, + self.error_code.load(Ordering::Relaxed) + ); + Ok(()) + } +} + +kernel::list::impl_list_arc_safe! { + impl ListArcSafe<0> for ThreadError { + tracked_by links_track: AtomicTracker; + } +} |