summaryrefslogtreecommitdiff
path: root/drivers/remoteproc/ti_k3_m4_remoteproc.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/remoteproc/ti_k3_m4_remoteproc.c')
-rw-r--r--drivers/remoteproc/ti_k3_m4_remoteproc.c583
1 files changed, 37 insertions, 546 deletions
diff --git a/drivers/remoteproc/ti_k3_m4_remoteproc.c b/drivers/remoteproc/ti_k3_m4_remoteproc.c
index a16fb165fced..3a11fd24eb52 100644
--- a/drivers/remoteproc/ti_k3_m4_remoteproc.c
+++ b/drivers/remoteproc/ti_k3_m4_remoteproc.c
@@ -19,552 +19,35 @@
#include "omap_remoteproc.h"
#include "remoteproc_internal.h"
#include "ti_sci_proc.h"
-
-#define K3_M4_IRAM_DEV_ADDR 0x00000
-#define K3_M4_DRAM_DEV_ADDR 0x30000
-
-/**
- * struct k3_m4_rproc_mem - internal memory structure
- * @cpu_addr: MPU virtual address of the memory region
- * @bus_addr: Bus address used to access the memory region
- * @dev_addr: Device address of the memory region from remote processor view
- * @size: Size of the memory region
- */
-struct k3_m4_rproc_mem {
- void __iomem *cpu_addr;
- phys_addr_t bus_addr;
- u32 dev_addr;
- size_t size;
-};
-
-/**
- * struct k3_m4_rproc_mem_data - memory definitions for a remote processor
- * @name: name for this memory entry
- * @dev_addr: device address for the memory entry
- */
-struct k3_m4_rproc_mem_data {
- const char *name;
- const u32 dev_addr;
-};
-
-/**
- * struct k3_m4_rproc - k3 remote processor driver structure
- * @dev: cached device pointer
- * @mem: internal memory regions data
- * @num_mems: number of internal memory regions
- * @rmem: reserved memory regions data
- * @num_rmems: number of reserved memory regions
- * @reset: reset control handle
- * @tsp: TI-SCI processor control handle
- * @ti_sci: TI-SCI handle
- * @ti_sci_id: TI-SCI device identifier
- * @mbox: mailbox channel handle
- * @client: mailbox client to request the mailbox channel
- */
-struct k3_m4_rproc {
- struct device *dev;
- struct k3_m4_rproc_mem *mem;
- int num_mems;
- struct k3_m4_rproc_mem *rmem;
- int num_rmems;
- struct reset_control *reset;
- struct ti_sci_proc *tsp;
- const struct ti_sci_handle *ti_sci;
- u32 ti_sci_id;
- struct mbox_chan *mbox;
- struct mbox_client client;
-};
-
-/**
- * k3_m4_rproc_mbox_callback() - inbound mailbox message handler
- * @client: mailbox client pointer used for requesting the mailbox channel
- * @data: mailbox payload
- *
- * This handler is invoked by the K3 mailbox driver whenever a mailbox
- * message is received. Usually, the mailbox payload simply contains
- * the index of the virtqueue that is kicked by the remote processor,
- * and we let remoteproc core handle it.
- *
- * In addition to virtqueue indices, we also have some out-of-band values
- * that indicate different events. Those values are deliberately very
- * large so they don't coincide with virtqueue indices.
- */
-static void k3_m4_rproc_mbox_callback(struct mbox_client *client, void *data)
-{
- struct device *dev = client->dev;
- struct rproc *rproc = dev_get_drvdata(dev);
- u32 msg = (u32)(uintptr_t)(data);
-
- dev_dbg(dev, "mbox msg: 0x%x\n", msg);
-
- switch (msg) {
- case RP_MBOX_CRASH:
- /*
- * remoteproc detected an exception, but error recovery is not
- * supported. So, just log this for now
- */
- dev_err(dev, "K3 rproc %s crashed\n", rproc->name);
- break;
- case RP_MBOX_ECHO_REPLY:
- dev_info(dev, "received echo reply from %s\n", rproc->name);
- break;
- default:
- /* silently handle all other valid messages */
- if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG)
- return;
- if (msg > rproc->max_notifyid) {
- dev_dbg(dev, "dropping unknown message 0x%x", msg);
- return;
- }
- /* msg contains the index of the triggered vring */
- if (rproc_vq_interrupt(rproc, msg) == IRQ_NONE)
- dev_dbg(dev, "no message was found in vqid %d\n", msg);
- }
-}
-
-/*
- * Kick the remote processor to notify about pending unprocessed messages.
- * The vqid usage is not used and is inconsequential, as the kick is performed
- * through a simulated GPIO (a bit in an IPC interrupt-triggering register),
- * the remote processor is expected to process both its Tx and Rx virtqueues.
- */
-static void k3_m4_rproc_kick(struct rproc *rproc, int vqid)
-{
- struct k3_m4_rproc *kproc = rproc->priv;
- struct device *dev = kproc->dev;
- u32 msg = (u32)vqid;
- int ret;
-
- /*
- * Send the index of the triggered virtqueue in the mailbox payload.
- * NOTE: msg is cast to uintptr_t to prevent compiler warnings when
- * void* is 64bit. It is safely cast back to u32 in the mailbox driver.
- */
- ret = mbox_send_message(kproc->mbox, (void *)(uintptr_t)msg);
- if (ret < 0)
- dev_err(dev, "failed to send mailbox message, status = %d\n",
- ret);
-}
-
-static int k3_m4_rproc_ping_mbox(struct k3_m4_rproc *kproc)
-{
- struct device *dev = kproc->dev;
- int ret;
-
- /*
- * Ping the remote processor, this is only for sanity-sake for now;
- * there is no functional effect whatsoever.
- *
- * Note that the reply will _not_ arrive immediately: this message
- * will wait in the mailbox fifo until the remote processor is booted.
- */
- ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST);
- if (ret < 0) {
- dev_err(dev, "mbox_send_message failed: %d\n", ret);
- return ret;
- }
-
- return 0;
-}
-
-/*
- * The M4 cores have a local reset that affects only the CPU, and a
- * generic module reset that powers on the device and allows the internal
- * memories to be accessed while the local reset is asserted. This function is
- * used to release the global reset on remote cores to allow loading into the
- * internal RAMs. The .prepare() ops is invoked by remoteproc core before any
- * firmware loading, and is followed by the .start() ops after loading to
- * actually let the remote cores to run.
- */
-static int k3_m4_rproc_prepare(struct rproc *rproc)
-{
- struct k3_m4_rproc *kproc = rproc->priv;
- struct device *dev = kproc->dev;
- int ret;
-
- /* If the core is running already no need to deassert the module reset */
- if (rproc->state == RPROC_DETACHED)
- return 0;
-
- /*
- * Ensure the local reset is asserted so the core doesn't
- * execute bogus code when the module reset is released.
- */
- ret = reset_control_assert(kproc->reset);
- if (ret) {
- dev_err(dev, "could not assert local reset\n");
- return ret;
- }
-
- ret = reset_control_status(kproc->reset);
- if (ret <= 0) {
- dev_err(dev, "local reset still not asserted\n");
- return ret;
- }
-
- ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci,
- kproc->ti_sci_id);
- if (ret) {
- dev_err(dev, "could not deassert module-reset for internal RAM loading\n");
- return ret;
- }
-
- return 0;
-}
-
-/*
- * This function implements the .unprepare() ops and performs the complimentary
- * operations to that of the .prepare() ops. The function is used to assert the
- * global reset on applicable cores. This completes the second portion of
- * powering down the remote core. The cores themselves are only halted in the
- * .stop() callback through the local reset, and the .unprepare() ops is invoked
- * by the remoteproc core after the remoteproc is stopped to balance the global
- * reset.
- */
-static int k3_m4_rproc_unprepare(struct rproc *rproc)
-{
- struct k3_m4_rproc *kproc = rproc->priv;
- struct device *dev = kproc->dev;
- int ret;
-
- /* If the core is going to be detached do not assert the module reset */
- if (rproc->state == RPROC_ATTACHED)
- return 0;
-
- ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci,
- kproc->ti_sci_id);
- if (ret) {
- dev_err(dev, "module-reset assert failed\n");
- return ret;
- }
-
- return 0;
-}
-
-/*
- * This function implements the .get_loaded_rsc_table() callback and is used
- * to provide the resource table for a booted remote processor in IPC-only
- * mode. The remote processor firmwares follow a design-by-contract approach
- * and are expected to have the resource table at the base of the DDR region
- * reserved for firmware usage. This provides flexibility for the remote
- * processor to be booted by different bootloaders that may or may not have the
- * ability to publish the resource table address and size through a DT
- * property.
- */
-static struct resource_table *k3_m4_get_loaded_rsc_table(struct rproc *rproc,
- size_t *rsc_table_sz)
-{
- struct k3_m4_rproc *kproc = rproc->priv;
- struct device *dev = kproc->dev;
-
- if (!kproc->rmem[0].cpu_addr) {
- dev_err(dev, "memory-region #1 does not exist, loaded rsc table can't be found");
- return ERR_PTR(-ENOMEM);
- }
-
- /*
- * NOTE: The resource table size is currently hard-coded to a maximum
- * of 256 bytes. The most common resource table usage for K3 firmwares
- * is to only have the vdev resource entry and an optional trace entry.
- * The exact size could be computed based on resource table address, but
- * the hard-coded value suffices to support the IPC-only mode.
- */
- *rsc_table_sz = 256;
- return (__force struct resource_table *)kproc->rmem[0].cpu_addr;
-}
-
-/*
- * Custom function to translate a remote processor device address (internal
- * RAMs only) to a kernel virtual address. The remote processors can access
- * their RAMs at either an internal address visible only from a remote
- * processor, or at the SoC-level bus address. Both these addresses need to be
- * looked through for translation. The translated addresses can be used either
- * by the remoteproc core for loading (when using kernel remoteproc loader), or
- * by any rpmsg bus drivers.
- */
-static void *k3_m4_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
-{
- struct k3_m4_rproc *kproc = rproc->priv;
- void __iomem *va = NULL;
- phys_addr_t bus_addr;
- u32 dev_addr, offset;
- size_t size;
- int i;
-
- if (len == 0)
- return NULL;
-
- for (i = 0; i < kproc->num_mems; i++) {
- bus_addr = kproc->mem[i].bus_addr;
- dev_addr = kproc->mem[i].dev_addr;
- size = kproc->mem[i].size;
-
- /* handle M4-view addresses */
- if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
- offset = da - dev_addr;
- va = kproc->mem[i].cpu_addr + offset;
- return (__force void *)va;
- }
-
- /* handle SoC-view addresses */
- if (da >= bus_addr && ((da + len) <= (bus_addr + size))) {
- offset = da - bus_addr;
- va = kproc->mem[i].cpu_addr + offset;
- return (__force void *)va;
- }
- }
-
- /* handle static DDR reserved memory regions */
- for (i = 0; i < kproc->num_rmems; i++) {
- dev_addr = kproc->rmem[i].dev_addr;
- size = kproc->rmem[i].size;
-
- if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
- offset = da - dev_addr;
- va = kproc->rmem[i].cpu_addr + offset;
- return (__force void *)va;
- }
- }
-
- return NULL;
-}
-
-static int k3_m4_rproc_of_get_memories(struct platform_device *pdev,
- struct k3_m4_rproc *kproc)
-{
- static const char * const mem_names[] = { "iram", "dram" };
- static const u32 mem_addrs[] = { K3_M4_IRAM_DEV_ADDR, K3_M4_DRAM_DEV_ADDR };
- struct device *dev = &pdev->dev;
- struct resource *res;
- int num_mems;
- int i;
-
- num_mems = ARRAY_SIZE(mem_names);
- kproc->mem = devm_kcalloc(kproc->dev, num_mems,
- sizeof(*kproc->mem), GFP_KERNEL);
- if (!kproc->mem)
- return -ENOMEM;
-
- for (i = 0; i < num_mems; i++) {
- res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
- mem_names[i]);
- if (!res) {
- dev_err(dev, "found no memory resource for %s\n",
- mem_names[i]);
- return -EINVAL;
- }
- if (!devm_request_mem_region(dev, res->start,
- resource_size(res),
- dev_name(dev))) {
- dev_err(dev, "could not request %s region for resource\n",
- mem_names[i]);
- return -EBUSY;
- }
-
- kproc->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start,
- resource_size(res));
- if (!kproc->mem[i].cpu_addr) {
- dev_err(dev, "failed to map %s memory\n",
- mem_names[i]);
- return -ENOMEM;
- }
- kproc->mem[i].bus_addr = res->start;
- kproc->mem[i].dev_addr = mem_addrs[i];
- kproc->mem[i].size = resource_size(res);
-
- dev_dbg(dev, "memory %8s: bus addr %pa size 0x%zx va %pK da 0x%x\n",
- mem_names[i], &kproc->mem[i].bus_addr,
- kproc->mem[i].size, kproc->mem[i].cpu_addr,
- kproc->mem[i].dev_addr);
- }
- kproc->num_mems = num_mems;
-
- return 0;
-}
-
-static void k3_m4_rproc_dev_mem_release(void *data)
-{
- struct device *dev = data;
-
- of_reserved_mem_device_release(dev);
-}
-
-static int k3_m4_reserved_mem_init(struct k3_m4_rproc *kproc)
-{
- struct device *dev = kproc->dev;
- struct device_node *np = dev->of_node;
- struct device_node *rmem_np;
- struct reserved_mem *rmem;
- int num_rmems;
- int ret, i;
-
- num_rmems = of_property_count_elems_of_size(np, "memory-region",
- sizeof(phandle));
- if (num_rmems < 0) {
- dev_err(dev, "device does not reserved memory regions (%d)\n",
- num_rmems);
- return -EINVAL;
- }
- if (num_rmems < 2) {
- dev_err(dev, "device needs at least two memory regions to be defined, num = %d\n",
- num_rmems);
- return -EINVAL;
- }
-
- /* use reserved memory region 0 for vring DMA allocations */
- ret = of_reserved_mem_device_init_by_idx(dev, np, 0);
- if (ret) {
- dev_err(dev, "device cannot initialize DMA pool (%d)\n", ret);
- return ret;
- }
- ret = devm_add_action_or_reset(dev, k3_m4_rproc_dev_mem_release, dev);
- if (ret)
- return ret;
-
- num_rmems--;
- kproc->rmem = devm_kcalloc(dev, num_rmems, sizeof(*kproc->rmem), GFP_KERNEL);
- if (!kproc->rmem)
- return -ENOMEM;
-
- /* use remaining reserved memory regions for static carveouts */
- for (i = 0; i < num_rmems; i++) {
- rmem_np = of_parse_phandle(np, "memory-region", i + 1);
- if (!rmem_np)
- return -EINVAL;
-
- rmem = of_reserved_mem_lookup(rmem_np);
- of_node_put(rmem_np);
- if (!rmem)
- return -EINVAL;
-
- kproc->rmem[i].bus_addr = rmem->base;
- /* 64-bit address regions currently not supported */
- kproc->rmem[i].dev_addr = (u32)rmem->base;
- kproc->rmem[i].size = rmem->size;
- kproc->rmem[i].cpu_addr = devm_ioremap_wc(dev, rmem->base, rmem->size);
- if (!kproc->rmem[i].cpu_addr) {
- dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n",
- i + 1, &rmem->base, &rmem->size);
- return -ENOMEM;
- }
-
- dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %pK da 0x%x\n",
- i + 1, &kproc->rmem[i].bus_addr,
- kproc->rmem[i].size, kproc->rmem[i].cpu_addr,
- kproc->rmem[i].dev_addr);
- }
- kproc->num_rmems = num_rmems;
-
- return 0;
-}
-
-static void k3_m4_release_tsp(void *data)
-{
- struct ti_sci_proc *tsp = data;
-
- ti_sci_proc_release(tsp);
-}
-
-/*
- * Power up the M4 remote processor.
- *
- * This function will be invoked only after the firmware for this rproc
- * was loaded, parsed successfully, and all of its resource requirements
- * were met. This callback is invoked only in remoteproc mode.
- */
-static int k3_m4_rproc_start(struct rproc *rproc)
-{
- struct k3_m4_rproc *kproc = rproc->priv;
- struct device *dev = kproc->dev;
- int ret;
-
- ret = k3_m4_rproc_ping_mbox(kproc);
- if (ret)
- return ret;
-
- ret = reset_control_deassert(kproc->reset);
- if (ret) {
- dev_err(dev, "local-reset deassert failed, ret = %d\n", ret);
- return ret;
- }
-
- return 0;
-}
-
-/*
- * Stop the M4 remote processor.
- *
- * This function puts the M4 processor into reset, and finishes processing
- * of any pending messages. This callback is invoked only in remoteproc mode.
- */
-static int k3_m4_rproc_stop(struct rproc *rproc)
-{
- struct k3_m4_rproc *kproc = rproc->priv;
- struct device *dev = kproc->dev;
- int ret;
-
- ret = reset_control_assert(kproc->reset);
- if (ret) {
- dev_err(dev, "local-reset assert failed, ret = %d\n", ret);
- return ret;
- }
-
- return 0;
-}
-
-/*
- * Attach to a running M4 remote processor (IPC-only mode)
- *
- * The remote processor is already booted, so there is no need to issue any
- * TI-SCI commands to boot the M4 core. This callback is used only in IPC-only
- * mode.
- */
-static int k3_m4_rproc_attach(struct rproc *rproc)
-{
- struct k3_m4_rproc *kproc = rproc->priv;
- int ret;
-
- ret = k3_m4_rproc_ping_mbox(kproc);
- if (ret)
- return ret;
-
- return 0;
-}
-
-/*
- * Detach from a running M4 remote processor (IPC-only mode)
- *
- * This rproc detach callback performs the opposite operation to attach
- * callback, the M4 core is not stopped and will be left to continue to
- * run its booted firmware. This callback is invoked only in IPC-only mode.
- */
-static int k3_m4_rproc_detach(struct rproc *rproc)
-{
- return 0;
-}
+#include "ti_k3_common.h"
static const struct rproc_ops k3_m4_rproc_ops = {
- .prepare = k3_m4_rproc_prepare,
- .unprepare = k3_m4_rproc_unprepare,
- .start = k3_m4_rproc_start,
- .stop = k3_m4_rproc_stop,
- .attach = k3_m4_rproc_attach,
- .detach = k3_m4_rproc_detach,
- .kick = k3_m4_rproc_kick,
- .da_to_va = k3_m4_rproc_da_to_va,
- .get_loaded_rsc_table = k3_m4_get_loaded_rsc_table,
+ .prepare = k3_rproc_prepare,
+ .unprepare = k3_rproc_unprepare,
+ .start = k3_rproc_start,
+ .stop = k3_rproc_stop,
+ .attach = k3_rproc_attach,
+ .detach = k3_rproc_detach,
+ .kick = k3_rproc_kick,
+ .da_to_va = k3_rproc_da_to_va,
+ .get_loaded_rsc_table = k3_get_loaded_rsc_table,
};
static int k3_m4_rproc_probe(struct platform_device *pdev)
{
+ const struct k3_rproc_dev_data *data;
struct device *dev = &pdev->dev;
- struct k3_m4_rproc *kproc;
+ struct k3_rproc *kproc;
struct rproc *rproc;
const char *fw_name;
bool r_state = false;
bool p_state = false;
int ret;
+ data = of_device_get_match_data(dev);
+ if (!data)
+ return -ENODEV;
+
ret = rproc_of_parse_firmware(dev, 0, &fw_name);
if (ret)
return dev_err_probe(dev, ret, "failed to parse firmware-name property\n");
@@ -578,6 +61,8 @@ static int k3_m4_rproc_probe(struct platform_device *pdev)
rproc->recovery_disabled = true;
kproc = rproc->priv;
kproc->dev = dev;
+ kproc->rproc = rproc;
+ kproc->data = data;
platform_set_drvdata(pdev, rproc);
kproc->ti_sci = devm_ti_sci_get_by_phandle(dev, "ti,sci");
@@ -601,15 +86,15 @@ static int k3_m4_rproc_probe(struct platform_device *pdev)
ret = ti_sci_proc_request(kproc->tsp);
if (ret < 0)
return dev_err_probe(dev, ret, "ti_sci_proc_request failed\n");
- ret = devm_add_action_or_reset(dev, k3_m4_release_tsp, kproc->tsp);
+ ret = devm_add_action_or_reset(dev, k3_release_tsp, kproc->tsp);
if (ret)
return ret;
- ret = k3_m4_rproc_of_get_memories(pdev, kproc);
+ ret = k3_rproc_of_get_memories(pdev, kproc);
if (ret)
return ret;
- ret = k3_m4_reserved_mem_init(kproc);
+ ret = k3_reserved_mem_init(kproc);
if (ret)
return dev_err_probe(dev, ret, "reserved memory init failed\n");
@@ -627,15 +112,9 @@ static int k3_m4_rproc_probe(struct platform_device *pdev)
dev_info(dev, "configured M4F for remoteproc mode\n");
}
- kproc->client.dev = dev;
- kproc->client.tx_done = NULL;
- kproc->client.rx_callback = k3_m4_rproc_mbox_callback;
- kproc->client.tx_block = false;
- kproc->client.knows_txdone = false;
- kproc->mbox = mbox_request_channel(&kproc->client, 0);
- if (IS_ERR(kproc->mbox))
- return dev_err_probe(dev, PTR_ERR(kproc->mbox),
- "mbox_request_channel failed\n");
+ ret = k3_rproc_request_mbox(rproc);
+ if (ret)
+ return ret;
ret = devm_rproc_add(dev, rproc);
if (ret)
@@ -645,8 +124,20 @@ static int k3_m4_rproc_probe(struct platform_device *pdev)
return 0;
}
+static const struct k3_rproc_mem_data am64_m4_mems[] = {
+ { .name = "iram", .dev_addr = 0x0 },
+ { .name = "dram", .dev_addr = 0x30000 },
+};
+
+static const struct k3_rproc_dev_data am64_m4_data = {
+ .mems = am64_m4_mems,
+ .num_mems = ARRAY_SIZE(am64_m4_mems),
+ .boot_align_addr = SZ_1K,
+ .uses_lreset = true,
+};
+
static const struct of_device_id k3_m4_of_match[] = {
- { .compatible = "ti,am64-m4fss", },
+ { .compatible = "ti,am64-m4fss", .data = &am64_m4_data, },
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, k3_m4_of_match);