diff options
Diffstat (limited to 'fs/btrfs/ctree.c')
| -rw-r--r-- | fs/btrfs/ctree.c | 3953 | 
1 files changed, 3953 insertions, 0 deletions
| diff --git a/fs/btrfs/ctree.c b/fs/btrfs/ctree.c new file mode 100644 index 000000000000..9e46c0776816 --- /dev/null +++ b/fs/btrfs/ctree.c @@ -0,0 +1,3953 @@ +/* + * Copyright (C) 2007,2008 Oracle.  All rights reserved. + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public + * License v2 as published by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU + * General Public License for more details. + * + * You should have received a copy of the GNU General Public + * License along with this program; if not, write to the + * Free Software Foundation, Inc., 59 Temple Place - Suite 330, + * Boston, MA 021110-1307, USA. + */ + +#include <linux/sched.h> +#include "ctree.h" +#include "disk-io.h" +#include "transaction.h" +#include "print-tree.h" +#include "locking.h" + +static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root +		      *root, struct btrfs_path *path, int level); +static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root +		      *root, struct btrfs_key *ins_key, +		      struct btrfs_path *path, int data_size, int extend); +static int push_node_left(struct btrfs_trans_handle *trans, +			  struct btrfs_root *root, struct extent_buffer *dst, +			  struct extent_buffer *src, int empty); +static int balance_node_right(struct btrfs_trans_handle *trans, +			      struct btrfs_root *root, +			      struct extent_buffer *dst_buf, +			      struct extent_buffer *src_buf); +static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, +		   struct btrfs_path *path, int level, int slot); + +inline void btrfs_init_path(struct btrfs_path *p) +{ +	memset(p, 0, sizeof(*p)); +} + +struct btrfs_path *btrfs_alloc_path(void) +{ +	struct btrfs_path *path; +	path = kmem_cache_alloc(btrfs_path_cachep, GFP_NOFS); +	if (path) { +		btrfs_init_path(path); +		path->reada = 1; +	} +	return path; +} + +/* this also releases the path */ +void btrfs_free_path(struct btrfs_path *p) +{ +	btrfs_release_path(NULL, p); +	kmem_cache_free(btrfs_path_cachep, p); +} + +/* + * path release drops references on the extent buffers in the path + * and it drops any locks held by this path + * + * It is safe to call this on paths that no locks or extent buffers held. + */ +noinline void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p) +{ +	int i; + +	for (i = 0; i < BTRFS_MAX_LEVEL; i++) { +		p->slots[i] = 0; +		if (!p->nodes[i]) +			continue; +		if (p->locks[i]) { +			btrfs_tree_unlock(p->nodes[i]); +			p->locks[i] = 0; +		} +		free_extent_buffer(p->nodes[i]); +		p->nodes[i] = NULL; +	} +} + +/* + * safely gets a reference on the root node of a tree.  A lock + * is not taken, so a concurrent writer may put a different node + * at the root of the tree.  See btrfs_lock_root_node for the + * looping required. + * + * The extent buffer returned by this has a reference taken, so + * it won't disappear.  It may stop being the root of the tree + * at any time because there are no locks held. + */ +struct extent_buffer *btrfs_root_node(struct btrfs_root *root) +{ +	struct extent_buffer *eb; +	spin_lock(&root->node_lock); +	eb = root->node; +	extent_buffer_get(eb); +	spin_unlock(&root->node_lock); +	return eb; +} + +/* loop around taking references on and locking the root node of the + * tree until you end up with a lock on the root.  A locked buffer + * is returned, with a reference held. + */ +struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root) +{ +	struct extent_buffer *eb; + +	while (1) { +		eb = btrfs_root_node(root); +		btrfs_tree_lock(eb); + +		spin_lock(&root->node_lock); +		if (eb == root->node) { +			spin_unlock(&root->node_lock); +			break; +		} +		spin_unlock(&root->node_lock); + +		btrfs_tree_unlock(eb); +		free_extent_buffer(eb); +	} +	return eb; +} + +/* cowonly root (everything not a reference counted cow subvolume), just get + * put onto a simple dirty list.  transaction.c walks this to make sure they + * get properly updated on disk. + */ +static void add_root_to_dirty_list(struct btrfs_root *root) +{ +	if (root->track_dirty && list_empty(&root->dirty_list)) { +		list_add(&root->dirty_list, +			 &root->fs_info->dirty_cowonly_roots); +	} +} + +/* + * used by snapshot creation to make a copy of a root for a tree with + * a given objectid.  The buffer with the new root node is returned in + * cow_ret, and this func returns zero on success or a negative error code. + */ +int btrfs_copy_root(struct btrfs_trans_handle *trans, +		      struct btrfs_root *root, +		      struct extent_buffer *buf, +		      struct extent_buffer **cow_ret, u64 new_root_objectid) +{ +	struct extent_buffer *cow; +	u32 nritems; +	int ret = 0; +	int level; +	struct btrfs_root *new_root; + +	new_root = kmalloc(sizeof(*new_root), GFP_NOFS); +	if (!new_root) +		return -ENOMEM; + +	memcpy(new_root, root, sizeof(*new_root)); +	new_root->root_key.objectid = new_root_objectid; + +	WARN_ON(root->ref_cows && trans->transid != +		root->fs_info->running_transaction->transid); +	WARN_ON(root->ref_cows && trans->transid != root->last_trans); + +	level = btrfs_header_level(buf); +	nritems = btrfs_header_nritems(buf); + +	cow = btrfs_alloc_free_block(trans, new_root, buf->len, 0, +				     new_root_objectid, trans->transid, +				     level, buf->start, 0); +	if (IS_ERR(cow)) { +		kfree(new_root); +		return PTR_ERR(cow); +	} + +	copy_extent_buffer(cow, buf, 0, 0, cow->len); +	btrfs_set_header_bytenr(cow, cow->start); +	btrfs_set_header_generation(cow, trans->transid); +	btrfs_set_header_owner(cow, new_root_objectid); +	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN); + +	write_extent_buffer(cow, root->fs_info->fsid, +			    (unsigned long)btrfs_header_fsid(cow), +			    BTRFS_FSID_SIZE); + +	WARN_ON(btrfs_header_generation(buf) > trans->transid); +	ret = btrfs_inc_ref(trans, new_root, buf, cow, NULL); +	kfree(new_root); + +	if (ret) +		return ret; + +	btrfs_mark_buffer_dirty(cow); +	*cow_ret = cow; +	return 0; +} + +/* + * does the dirty work in cow of a single block.  The parent block (if + * supplied) is updated to point to the new cow copy.  The new buffer is marked + * dirty and returned locked.  If you modify the block it needs to be marked + * dirty again. + * + * search_start -- an allocation hint for the new block + * + * empty_size -- a hint that you plan on doing more cow.  This is the size in + * bytes the allocator should try to find free next to the block it returns. + * This is just a hint and may be ignored by the allocator. + * + * prealloc_dest -- if you have already reserved a destination for the cow, + * this uses that block instead of allocating a new one. + * btrfs_alloc_reserved_extent is used to finish the allocation. + */ +static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, +			     struct btrfs_root *root, +			     struct extent_buffer *buf, +			     struct extent_buffer *parent, int parent_slot, +			     struct extent_buffer **cow_ret, +			     u64 search_start, u64 empty_size, +			     u64 prealloc_dest) +{ +	u64 parent_start; +	struct extent_buffer *cow; +	u32 nritems; +	int ret = 0; +	int level; +	int unlock_orig = 0; + +	if (*cow_ret == buf) +		unlock_orig = 1; + +	WARN_ON(!btrfs_tree_locked(buf)); + +	if (parent) +		parent_start = parent->start; +	else +		parent_start = 0; + +	WARN_ON(root->ref_cows && trans->transid != +		root->fs_info->running_transaction->transid); +	WARN_ON(root->ref_cows && trans->transid != root->last_trans); + +	level = btrfs_header_level(buf); +	nritems = btrfs_header_nritems(buf); + +	if (prealloc_dest) { +		struct btrfs_key ins; + +		ins.objectid = prealloc_dest; +		ins.offset = buf->len; +		ins.type = BTRFS_EXTENT_ITEM_KEY; + +		ret = btrfs_alloc_reserved_extent(trans, root, parent_start, +						  root->root_key.objectid, +						  trans->transid, level, &ins); +		BUG_ON(ret); +		cow = btrfs_init_new_buffer(trans, root, prealloc_dest, +					    buf->len); +	} else { +		cow = btrfs_alloc_free_block(trans, root, buf->len, +					     parent_start, +					     root->root_key.objectid, +					     trans->transid, level, +					     search_start, empty_size); +	} +	if (IS_ERR(cow)) +		return PTR_ERR(cow); + +	copy_extent_buffer(cow, buf, 0, 0, cow->len); +	btrfs_set_header_bytenr(cow, cow->start); +	btrfs_set_header_generation(cow, trans->transid); +	btrfs_set_header_owner(cow, root->root_key.objectid); +	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN); + +	write_extent_buffer(cow, root->fs_info->fsid, +			    (unsigned long)btrfs_header_fsid(cow), +			    BTRFS_FSID_SIZE); + +	WARN_ON(btrfs_header_generation(buf) > trans->transid); +	if (btrfs_header_generation(buf) != trans->transid) { +		u32 nr_extents; +		ret = btrfs_inc_ref(trans, root, buf, cow, &nr_extents); +		if (ret) +			return ret; + +		ret = btrfs_cache_ref(trans, root, buf, nr_extents); +		WARN_ON(ret); +	} else if (btrfs_header_owner(buf) == BTRFS_TREE_RELOC_OBJECTID) { +		/* +		 * There are only two places that can drop reference to +		 * tree blocks owned by living reloc trees, one is here, +		 * the other place is btrfs_drop_subtree. In both places, +		 * we check reference count while tree block is locked. +		 * Furthermore, if reference count is one, it won't get +		 * increased by someone else. +		 */ +		u32 refs; +		ret = btrfs_lookup_extent_ref(trans, root, buf->start, +					      buf->len, &refs); +		BUG_ON(ret); +		if (refs == 1) { +			ret = btrfs_update_ref(trans, root, buf, cow, +					       0, nritems); +			clean_tree_block(trans, root, buf); +		} else { +			ret = btrfs_inc_ref(trans, root, buf, cow, NULL); +		} +		BUG_ON(ret); +	} else { +		ret = btrfs_update_ref(trans, root, buf, cow, 0, nritems); +		if (ret) +			return ret; +		clean_tree_block(trans, root, buf); +	} + +	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { +		ret = btrfs_reloc_tree_cache_ref(trans, root, cow, buf->start); +		WARN_ON(ret); +	} + +	if (buf == root->node) { +		WARN_ON(parent && parent != buf); + +		spin_lock(&root->node_lock); +		root->node = cow; +		extent_buffer_get(cow); +		spin_unlock(&root->node_lock); + +		if (buf != root->commit_root) { +			btrfs_free_extent(trans, root, buf->start, +					  buf->len, buf->start, +					  root->root_key.objectid, +					  btrfs_header_generation(buf), +					  level, 1); +		} +		free_extent_buffer(buf); +		add_root_to_dirty_list(root); +	} else { +		btrfs_set_node_blockptr(parent, parent_slot, +					cow->start); +		WARN_ON(trans->transid == 0); +		btrfs_set_node_ptr_generation(parent, parent_slot, +					      trans->transid); +		btrfs_mark_buffer_dirty(parent); +		WARN_ON(btrfs_header_generation(parent) != trans->transid); +		btrfs_free_extent(trans, root, buf->start, buf->len, +				  parent_start, btrfs_header_owner(parent), +				  btrfs_header_generation(parent), level, 1); +	} +	if (unlock_orig) +		btrfs_tree_unlock(buf); +	free_extent_buffer(buf); +	btrfs_mark_buffer_dirty(cow); +	*cow_ret = cow; +	return 0; +} + +/* + * cows a single block, see __btrfs_cow_block for the real work. + * This version of it has extra checks so that a block isn't cow'd more than + * once per transaction, as long as it hasn't been written yet + */ +noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, +		    struct btrfs_root *root, struct extent_buffer *buf, +		    struct extent_buffer *parent, int parent_slot, +		    struct extent_buffer **cow_ret, u64 prealloc_dest) +{ +	u64 search_start; +	int ret; + +	if (trans->transaction != root->fs_info->running_transaction) { +		printk(KERN_CRIT "trans %llu running %llu\n", +		       (unsigned long long)trans->transid, +		       (unsigned long long) +		       root->fs_info->running_transaction->transid); +		WARN_ON(1); +	} +	if (trans->transid != root->fs_info->generation) { +		printk(KERN_CRIT "trans %llu running %llu\n", +		       (unsigned long long)trans->transid, +		       (unsigned long long)root->fs_info->generation); +		WARN_ON(1); +	} + +	spin_lock(&root->fs_info->hash_lock); +	if (btrfs_header_generation(buf) == trans->transid && +	    btrfs_header_owner(buf) == root->root_key.objectid && +	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { +		*cow_ret = buf; +		spin_unlock(&root->fs_info->hash_lock); +		WARN_ON(prealloc_dest); +		return 0; +	} +	spin_unlock(&root->fs_info->hash_lock); +	search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1); +	ret = __btrfs_cow_block(trans, root, buf, parent, +				 parent_slot, cow_ret, search_start, 0, +				 prealloc_dest); +	return ret; +} + +/* + * helper function for defrag to decide if two blocks pointed to by a + * node are actually close by + */ +static int close_blocks(u64 blocknr, u64 other, u32 blocksize) +{ +	if (blocknr < other && other - (blocknr + blocksize) < 32768) +		return 1; +	if (blocknr > other && blocknr - (other + blocksize) < 32768) +		return 1; +	return 0; +} + +/* + * compare two keys in a memcmp fashion + */ +static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2) +{ +	struct btrfs_key k1; + +	btrfs_disk_key_to_cpu(&k1, disk); + +	if (k1.objectid > k2->objectid) +		return 1; +	if (k1.objectid < k2->objectid) +		return -1; +	if (k1.type > k2->type) +		return 1; +	if (k1.type < k2->type) +		return -1; +	if (k1.offset > k2->offset) +		return 1; +	if (k1.offset < k2->offset) +		return -1; +	return 0; +} + +/* + * same as comp_keys only with two btrfs_key's + */ +static int comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2) +{ +	if (k1->objectid > k2->objectid) +		return 1; +	if (k1->objectid < k2->objectid) +		return -1; +	if (k1->type > k2->type) +		return 1; +	if (k1->type < k2->type) +		return -1; +	if (k1->offset > k2->offset) +		return 1; +	if (k1->offset < k2->offset) +		return -1; +	return 0; +} + +/* + * this is used by the defrag code to go through all the + * leaves pointed to by a node and reallocate them so that + * disk order is close to key order + */ +int btrfs_realloc_node(struct btrfs_trans_handle *trans, +		       struct btrfs_root *root, struct extent_buffer *parent, +		       int start_slot, int cache_only, u64 *last_ret, +		       struct btrfs_key *progress) +{ +	struct extent_buffer *cur; +	u64 blocknr; +	u64 gen; +	u64 search_start = *last_ret; +	u64 last_block = 0; +	u64 other; +	u32 parent_nritems; +	int end_slot; +	int i; +	int err = 0; +	int parent_level; +	int uptodate; +	u32 blocksize; +	int progress_passed = 0; +	struct btrfs_disk_key disk_key; + +	parent_level = btrfs_header_level(parent); +	if (cache_only && parent_level != 1) +		return 0; + +	if (trans->transaction != root->fs_info->running_transaction) +		WARN_ON(1); +	if (trans->transid != root->fs_info->generation) +		WARN_ON(1); + +	parent_nritems = btrfs_header_nritems(parent); +	blocksize = btrfs_level_size(root, parent_level - 1); +	end_slot = parent_nritems; + +	if (parent_nritems == 1) +		return 0; + +	for (i = start_slot; i < end_slot; i++) { +		int close = 1; + +		if (!parent->map_token) { +			map_extent_buffer(parent, +					btrfs_node_key_ptr_offset(i), +					sizeof(struct btrfs_key_ptr), +					&parent->map_token, &parent->kaddr, +					&parent->map_start, &parent->map_len, +					KM_USER1); +		} +		btrfs_node_key(parent, &disk_key, i); +		if (!progress_passed && comp_keys(&disk_key, progress) < 0) +			continue; + +		progress_passed = 1; +		blocknr = btrfs_node_blockptr(parent, i); +		gen = btrfs_node_ptr_generation(parent, i); +		if (last_block == 0) +			last_block = blocknr; + +		if (i > 0) { +			other = btrfs_node_blockptr(parent, i - 1); +			close = close_blocks(blocknr, other, blocksize); +		} +		if (!close && i < end_slot - 2) { +			other = btrfs_node_blockptr(parent, i + 1); +			close = close_blocks(blocknr, other, blocksize); +		} +		if (close) { +			last_block = blocknr; +			continue; +		} +		if (parent->map_token) { +			unmap_extent_buffer(parent, parent->map_token, +					    KM_USER1); +			parent->map_token = NULL; +		} + +		cur = btrfs_find_tree_block(root, blocknr, blocksize); +		if (cur) +			uptodate = btrfs_buffer_uptodate(cur, gen); +		else +			uptodate = 0; +		if (!cur || !uptodate) { +			if (cache_only) { +				free_extent_buffer(cur); +				continue; +			} +			if (!cur) { +				cur = read_tree_block(root, blocknr, +							 blocksize, gen); +			} else if (!uptodate) { +				btrfs_read_buffer(cur, gen); +			} +		} +		if (search_start == 0) +			search_start = last_block; + +		btrfs_tree_lock(cur); +		err = __btrfs_cow_block(trans, root, cur, parent, i, +					&cur, search_start, +					min(16 * blocksize, +					    (end_slot - i) * blocksize), 0); +		if (err) { +			btrfs_tree_unlock(cur); +			free_extent_buffer(cur); +			break; +		} +		search_start = cur->start; +		last_block = cur->start; +		*last_ret = search_start; +		btrfs_tree_unlock(cur); +		free_extent_buffer(cur); +	} +	if (parent->map_token) { +		unmap_extent_buffer(parent, parent->map_token, +				    KM_USER1); +		parent->map_token = NULL; +	} +	return err; +} + +/* + * The leaf data grows from end-to-front in the node. + * this returns the address of the start of the last item, + * which is the stop of the leaf data stack + */ +static inline unsigned int leaf_data_end(struct btrfs_root *root, +					 struct extent_buffer *leaf) +{ +	u32 nr = btrfs_header_nritems(leaf); +	if (nr == 0) +		return BTRFS_LEAF_DATA_SIZE(root); +	return btrfs_item_offset_nr(leaf, nr - 1); +} + +/* + * extra debugging checks to make sure all the items in a key are + * well formed and in the proper order + */ +static int check_node(struct btrfs_root *root, struct btrfs_path *path, +		      int level) +{ +	struct extent_buffer *parent = NULL; +	struct extent_buffer *node = path->nodes[level]; +	struct btrfs_disk_key parent_key; +	struct btrfs_disk_key node_key; +	int parent_slot; +	int slot; +	struct btrfs_key cpukey; +	u32 nritems = btrfs_header_nritems(node); + +	if (path->nodes[level + 1]) +		parent = path->nodes[level + 1]; + +	slot = path->slots[level]; +	BUG_ON(nritems == 0); +	if (parent) { +		parent_slot = path->slots[level + 1]; +		btrfs_node_key(parent, &parent_key, parent_slot); +		btrfs_node_key(node, &node_key, 0); +		BUG_ON(memcmp(&parent_key, &node_key, +			      sizeof(struct btrfs_disk_key))); +		BUG_ON(btrfs_node_blockptr(parent, parent_slot) != +		       btrfs_header_bytenr(node)); +	} +	BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root)); +	if (slot != 0) { +		btrfs_node_key_to_cpu(node, &cpukey, slot - 1); +		btrfs_node_key(node, &node_key, slot); +		BUG_ON(comp_keys(&node_key, &cpukey) <= 0); +	} +	if (slot < nritems - 1) { +		btrfs_node_key_to_cpu(node, &cpukey, slot + 1); +		btrfs_node_key(node, &node_key, slot); +		BUG_ON(comp_keys(&node_key, &cpukey) >= 0); +	} +	return 0; +} + +/* + * extra checking to make sure all the items in a leaf are + * well formed and in the proper order + */ +static int check_leaf(struct btrfs_root *root, struct btrfs_path *path, +		      int level) +{ +	struct extent_buffer *leaf = path->nodes[level]; +	struct extent_buffer *parent = NULL; +	int parent_slot; +	struct btrfs_key cpukey; +	struct btrfs_disk_key parent_key; +	struct btrfs_disk_key leaf_key; +	int slot = path->slots[0]; + +	u32 nritems = btrfs_header_nritems(leaf); + +	if (path->nodes[level + 1]) +		parent = path->nodes[level + 1]; + +	if (nritems == 0) +		return 0; + +	if (parent) { +		parent_slot = path->slots[level + 1]; +		btrfs_node_key(parent, &parent_key, parent_slot); +		btrfs_item_key(leaf, &leaf_key, 0); + +		BUG_ON(memcmp(&parent_key, &leaf_key, +		       sizeof(struct btrfs_disk_key))); +		BUG_ON(btrfs_node_blockptr(parent, parent_slot) != +		       btrfs_header_bytenr(leaf)); +	} +	if (slot != 0 && slot < nritems - 1) { +		btrfs_item_key(leaf, &leaf_key, slot); +		btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1); +		if (comp_keys(&leaf_key, &cpukey) <= 0) { +			btrfs_print_leaf(root, leaf); +			printk(KERN_CRIT "slot %d offset bad key\n", slot); +			BUG_ON(1); +		} +		if (btrfs_item_offset_nr(leaf, slot - 1) != +		       btrfs_item_end_nr(leaf, slot)) { +			btrfs_print_leaf(root, leaf); +			printk(KERN_CRIT "slot %d offset bad\n", slot); +			BUG_ON(1); +		} +	} +	if (slot < nritems - 1) { +		btrfs_item_key(leaf, &leaf_key, slot); +		btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1); +		BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0); +		if (btrfs_item_offset_nr(leaf, slot) != +			btrfs_item_end_nr(leaf, slot + 1)) { +			btrfs_print_leaf(root, leaf); +			printk(KERN_CRIT "slot %d offset bad\n", slot); +			BUG_ON(1); +		} +	} +	BUG_ON(btrfs_item_offset_nr(leaf, 0) + +	       btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root)); +	return 0; +} + +static noinline int check_block(struct btrfs_root *root, +				struct btrfs_path *path, int level) +{ +	return 0; +	if (level == 0) +		return check_leaf(root, path, level); +	return check_node(root, path, level); +} + +/* + * search for key in the extent_buffer.  The items start at offset p, + * and they are item_size apart.  There are 'max' items in p. + * + * the slot in the array is returned via slot, and it points to + * the place where you would insert key if it is not found in + * the array. + * + * slot may point to max if the key is bigger than all of the keys + */ +static noinline int generic_bin_search(struct extent_buffer *eb, +				       unsigned long p, +				       int item_size, struct btrfs_key *key, +				       int max, int *slot) +{ +	int low = 0; +	int high = max; +	int mid; +	int ret; +	struct btrfs_disk_key *tmp = NULL; +	struct btrfs_disk_key unaligned; +	unsigned long offset; +	char *map_token = NULL; +	char *kaddr = NULL; +	unsigned long map_start = 0; +	unsigned long map_len = 0; +	int err; + +	while (low < high) { +		mid = (low + high) / 2; +		offset = p + mid * item_size; + +		if (!map_token || offset < map_start || +		    (offset + sizeof(struct btrfs_disk_key)) > +		    map_start + map_len) { +			if (map_token) { +				unmap_extent_buffer(eb, map_token, KM_USER0); +				map_token = NULL; +			} + +			err = map_private_extent_buffer(eb, offset, +						sizeof(struct btrfs_disk_key), +						&map_token, &kaddr, +						&map_start, &map_len, KM_USER0); + +			if (!err) { +				tmp = (struct btrfs_disk_key *)(kaddr + offset - +							map_start); +			} else { +				read_extent_buffer(eb, &unaligned, +						   offset, sizeof(unaligned)); +				tmp = &unaligned; +			} + +		} else { +			tmp = (struct btrfs_disk_key *)(kaddr + offset - +							map_start); +		} +		ret = comp_keys(tmp, key); + +		if (ret < 0) +			low = mid + 1; +		else if (ret > 0) +			high = mid; +		else { +			*slot = mid; +			if (map_token) +				unmap_extent_buffer(eb, map_token, KM_USER0); +			return 0; +		} +	} +	*slot = low; +	if (map_token) +		unmap_extent_buffer(eb, map_token, KM_USER0); +	return 1; +} + +/* + * simple bin_search frontend that does the right thing for + * leaves vs nodes + */ +static int bin_search(struct extent_buffer *eb, struct btrfs_key *key, +		      int level, int *slot) +{ +	if (level == 0) { +		return generic_bin_search(eb, +					  offsetof(struct btrfs_leaf, items), +					  sizeof(struct btrfs_item), +					  key, btrfs_header_nritems(eb), +					  slot); +	} else { +		return generic_bin_search(eb, +					  offsetof(struct btrfs_node, ptrs), +					  sizeof(struct btrfs_key_ptr), +					  key, btrfs_header_nritems(eb), +					  slot); +	} +	return -1; +} + +/* given a node and slot number, this reads the blocks it points to.  The + * extent buffer is returned with a reference taken (but unlocked). + * NULL is returned on error. + */ +static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root, +				   struct extent_buffer *parent, int slot) +{ +	int level = btrfs_header_level(parent); +	if (slot < 0) +		return NULL; +	if (slot >= btrfs_header_nritems(parent)) +		return NULL; + +	BUG_ON(level == 0); + +	return read_tree_block(root, btrfs_node_blockptr(parent, slot), +		       btrfs_level_size(root, level - 1), +		       btrfs_node_ptr_generation(parent, slot)); +} + +/* + * node level balancing, used to make sure nodes are in proper order for + * item deletion.  We balance from the top down, so we have to make sure + * that a deletion won't leave an node completely empty later on. + */ +static noinline int balance_level(struct btrfs_trans_handle *trans, +			 struct btrfs_root *root, +			 struct btrfs_path *path, int level) +{ +	struct extent_buffer *right = NULL; +	struct extent_buffer *mid; +	struct extent_buffer *left = NULL; +	struct extent_buffer *parent = NULL; +	int ret = 0; +	int wret; +	int pslot; +	int orig_slot = path->slots[level]; +	int err_on_enospc = 0; +	u64 orig_ptr; + +	if (level == 0) +		return 0; + +	mid = path->nodes[level]; +	WARN_ON(!path->locks[level]); +	WARN_ON(btrfs_header_generation(mid) != trans->transid); + +	orig_ptr = btrfs_node_blockptr(mid, orig_slot); + +	if (level < BTRFS_MAX_LEVEL - 1) +		parent = path->nodes[level + 1]; +	pslot = path->slots[level + 1]; + +	/* +	 * deal with the case where there is only one pointer in the root +	 * by promoting the node below to a root +	 */ +	if (!parent) { +		struct extent_buffer *child; + +		if (btrfs_header_nritems(mid) != 1) +			return 0; + +		/* promote the child to a root */ +		child = read_node_slot(root, mid, 0); +		btrfs_tree_lock(child); +		BUG_ON(!child); +		ret = btrfs_cow_block(trans, root, child, mid, 0, &child, 0); +		BUG_ON(ret); + +		spin_lock(&root->node_lock); +		root->node = child; +		spin_unlock(&root->node_lock); + +		ret = btrfs_update_extent_ref(trans, root, child->start, +					      mid->start, child->start, +					      root->root_key.objectid, +					      trans->transid, level - 1); +		BUG_ON(ret); + +		add_root_to_dirty_list(root); +		btrfs_tree_unlock(child); +		path->locks[level] = 0; +		path->nodes[level] = NULL; +		clean_tree_block(trans, root, mid); +		btrfs_tree_unlock(mid); +		/* once for the path */ +		free_extent_buffer(mid); +		ret = btrfs_free_extent(trans, root, mid->start, mid->len, +					mid->start, root->root_key.objectid, +					btrfs_header_generation(mid), +					level, 1); +		/* once for the root ptr */ +		free_extent_buffer(mid); +		return ret; +	} +	if (btrfs_header_nritems(mid) > +	    BTRFS_NODEPTRS_PER_BLOCK(root) / 4) +		return 0; + +	if (btrfs_header_nritems(mid) < 2) +		err_on_enospc = 1; + +	left = read_node_slot(root, parent, pslot - 1); +	if (left) { +		btrfs_tree_lock(left); +		wret = btrfs_cow_block(trans, root, left, +				       parent, pslot - 1, &left, 0); +		if (wret) { +			ret = wret; +			goto enospc; +		} +	} +	right = read_node_slot(root, parent, pslot + 1); +	if (right) { +		btrfs_tree_lock(right); +		wret = btrfs_cow_block(trans, root, right, +				       parent, pslot + 1, &right, 0); +		if (wret) { +			ret = wret; +			goto enospc; +		} +	} + +	/* first, try to make some room in the middle buffer */ +	if (left) { +		orig_slot += btrfs_header_nritems(left); +		wret = push_node_left(trans, root, left, mid, 1); +		if (wret < 0) +			ret = wret; +		if (btrfs_header_nritems(mid) < 2) +			err_on_enospc = 1; +	} + +	/* +	 * then try to empty the right most buffer into the middle +	 */ +	if (right) { +		wret = push_node_left(trans, root, mid, right, 1); +		if (wret < 0 && wret != -ENOSPC) +			ret = wret; +		if (btrfs_header_nritems(right) == 0) { +			u64 bytenr = right->start; +			u64 generation = btrfs_header_generation(parent); +			u32 blocksize = right->len; + +			clean_tree_block(trans, root, right); +			btrfs_tree_unlock(right); +			free_extent_buffer(right); +			right = NULL; +			wret = del_ptr(trans, root, path, level + 1, pslot + +				       1); +			if (wret) +				ret = wret; +			wret = btrfs_free_extent(trans, root, bytenr, +						 blocksize, parent->start, +						 btrfs_header_owner(parent), +						 generation, level, 1); +			if (wret) +				ret = wret; +		} else { +			struct btrfs_disk_key right_key; +			btrfs_node_key(right, &right_key, 0); +			btrfs_set_node_key(parent, &right_key, pslot + 1); +			btrfs_mark_buffer_dirty(parent); +		} +	} +	if (btrfs_header_nritems(mid) == 1) { +		/* +		 * we're not allowed to leave a node with one item in the +		 * tree during a delete.  A deletion from lower in the tree +		 * could try to delete the only pointer in this node. +		 * So, pull some keys from the left. +		 * There has to be a left pointer at this point because +		 * otherwise we would have pulled some pointers from the +		 * right +		 */ +		BUG_ON(!left); +		wret = balance_node_right(trans, root, mid, left); +		if (wret < 0) { +			ret = wret; +			goto enospc; +		} +		if (wret == 1) { +			wret = push_node_left(trans, root, left, mid, 1); +			if (wret < 0) +				ret = wret; +		} +		BUG_ON(wret == 1); +	} +	if (btrfs_header_nritems(mid) == 0) { +		/* we've managed to empty the middle node, drop it */ +		u64 root_gen = btrfs_header_generation(parent); +		u64 bytenr = mid->start; +		u32 blocksize = mid->len; + +		clean_tree_block(trans, root, mid); +		btrfs_tree_unlock(mid); +		free_extent_buffer(mid); +		mid = NULL; +		wret = del_ptr(trans, root, path, level + 1, pslot); +		if (wret) +			ret = wret; +		wret = btrfs_free_extent(trans, root, bytenr, blocksize, +					 parent->start, +					 btrfs_header_owner(parent), +					 root_gen, level, 1); +		if (wret) +			ret = wret; +	} else { +		/* update the parent key to reflect our changes */ +		struct btrfs_disk_key mid_key; +		btrfs_node_key(mid, &mid_key, 0); +		btrfs_set_node_key(parent, &mid_key, pslot); +		btrfs_mark_buffer_dirty(parent); +	} + +	/* update the path */ +	if (left) { +		if (btrfs_header_nritems(left) > orig_slot) { +			extent_buffer_get(left); +			/* left was locked after cow */ +			path->nodes[level] = left; +			path->slots[level + 1] -= 1; +			path->slots[level] = orig_slot; +			if (mid) { +				btrfs_tree_unlock(mid); +				free_extent_buffer(mid); +			} +		} else { +			orig_slot -= btrfs_header_nritems(left); +			path->slots[level] = orig_slot; +		} +	} +	/* double check we haven't messed things up */ +	check_block(root, path, level); +	if (orig_ptr != +	    btrfs_node_blockptr(path->nodes[level], path->slots[level])) +		BUG(); +enospc: +	if (right) { +		btrfs_tree_unlock(right); +		free_extent_buffer(right); +	} +	if (left) { +		if (path->nodes[level] != left) +			btrfs_tree_unlock(left); +		free_extent_buffer(left); +	} +	return ret; +} + +/* Node balancing for insertion.  Here we only split or push nodes around + * when they are completely full.  This is also done top down, so we + * have to be pessimistic. + */ +static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, +					  struct btrfs_root *root, +					  struct btrfs_path *path, int level) +{ +	struct extent_buffer *right = NULL; +	struct extent_buffer *mid; +	struct extent_buffer *left = NULL; +	struct extent_buffer *parent = NULL; +	int ret = 0; +	int wret; +	int pslot; +	int orig_slot = path->slots[level]; +	u64 orig_ptr; + +	if (level == 0) +		return 1; + +	mid = path->nodes[level]; +	WARN_ON(btrfs_header_generation(mid) != trans->transid); +	orig_ptr = btrfs_node_blockptr(mid, orig_slot); + +	if (level < BTRFS_MAX_LEVEL - 1) +		parent = path->nodes[level + 1]; +	pslot = path->slots[level + 1]; + +	if (!parent) +		return 1; + +	left = read_node_slot(root, parent, pslot - 1); + +	/* first, try to make some room in the middle buffer */ +	if (left) { +		u32 left_nr; + +		btrfs_tree_lock(left); +		left_nr = btrfs_header_nritems(left); +		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { +			wret = 1; +		} else { +			ret = btrfs_cow_block(trans, root, left, parent, +					      pslot - 1, &left, 0); +			if (ret) +				wret = 1; +			else { +				wret = push_node_left(trans, root, +						      left, mid, 0); +			} +		} +		if (wret < 0) +			ret = wret; +		if (wret == 0) { +			struct btrfs_disk_key disk_key; +			orig_slot += left_nr; +			btrfs_node_key(mid, &disk_key, 0); +			btrfs_set_node_key(parent, &disk_key, pslot); +			btrfs_mark_buffer_dirty(parent); +			if (btrfs_header_nritems(left) > orig_slot) { +				path->nodes[level] = left; +				path->slots[level + 1] -= 1; +				path->slots[level] = orig_slot; +				btrfs_tree_unlock(mid); +				free_extent_buffer(mid); +			} else { +				orig_slot -= +					btrfs_header_nritems(left); +				path->slots[level] = orig_slot; +				btrfs_tree_unlock(left); +				free_extent_buffer(left); +			} +			return 0; +		} +		btrfs_tree_unlock(left); +		free_extent_buffer(left); +	} +	right = read_node_slot(root, parent, pslot + 1); + +	/* +	 * then try to empty the right most buffer into the middle +	 */ +	if (right) { +		u32 right_nr; +		btrfs_tree_lock(right); +		right_nr = btrfs_header_nritems(right); +		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { +			wret = 1; +		} else { +			ret = btrfs_cow_block(trans, root, right, +					      parent, pslot + 1, +					      &right, 0); +			if (ret) +				wret = 1; +			else { +				wret = balance_node_right(trans, root, +							  right, mid); +			} +		} +		if (wret < 0) +			ret = wret; +		if (wret == 0) { +			struct btrfs_disk_key disk_key; + +			btrfs_node_key(right, &disk_key, 0); +			btrfs_set_node_key(parent, &disk_key, pslot + 1); +			btrfs_mark_buffer_dirty(parent); + +			if (btrfs_header_nritems(mid) <= orig_slot) { +				path->nodes[level] = right; +				path->slots[level + 1] += 1; +				path->slots[level] = orig_slot - +					btrfs_header_nritems(mid); +				btrfs_tree_unlock(mid); +				free_extent_buffer(mid); +			} else { +				btrfs_tree_unlock(right); +				free_extent_buffer(right); +			} +			return 0; +		} +		btrfs_tree_unlock(right); +		free_extent_buffer(right); +	} +	return 1; +} + +/* + * readahead one full node of leaves, finding things that are close + * to the block in 'slot', and triggering ra on them. + */ +static noinline void reada_for_search(struct btrfs_root *root, +				      struct btrfs_path *path, +				      int level, int slot, u64 objectid) +{ +	struct extent_buffer *node; +	struct btrfs_disk_key disk_key; +	u32 nritems; +	u64 search; +	u64 lowest_read; +	u64 highest_read; +	u64 nread = 0; +	int direction = path->reada; +	struct extent_buffer *eb; +	u32 nr; +	u32 blocksize; +	u32 nscan = 0; + +	if (level != 1) +		return; + +	if (!path->nodes[level]) +		return; + +	node = path->nodes[level]; + +	search = btrfs_node_blockptr(node, slot); +	blocksize = btrfs_level_size(root, level - 1); +	eb = btrfs_find_tree_block(root, search, blocksize); +	if (eb) { +		free_extent_buffer(eb); +		return; +	} + +	highest_read = search; +	lowest_read = search; + +	nritems = btrfs_header_nritems(node); +	nr = slot; +	while (1) { +		if (direction < 0) { +			if (nr == 0) +				break; +			nr--; +		} else if (direction > 0) { +			nr++; +			if (nr >= nritems) +				break; +		} +		if (path->reada < 0 && objectid) { +			btrfs_node_key(node, &disk_key, nr); +			if (btrfs_disk_key_objectid(&disk_key) != objectid) +				break; +		} +		search = btrfs_node_blockptr(node, nr); +		if ((search >= lowest_read && search <= highest_read) || +		    (search < lowest_read && lowest_read - search <= 16384) || +		    (search > highest_read && search - highest_read <= 16384)) { +			readahead_tree_block(root, search, blocksize, +				     btrfs_node_ptr_generation(node, nr)); +			nread += blocksize; +		} +		nscan++; +		if (path->reada < 2 && (nread > (64 * 1024) || nscan > 32)) +			break; + +		if (nread > (256 * 1024) || nscan > 128) +			break; + +		if (search < lowest_read) +			lowest_read = search; +		if (search > highest_read) +			highest_read = search; +	} +} + +/* + * when we walk down the tree, it is usually safe to unlock the higher layers + * in the tree.  The exceptions are when our path goes through slot 0, because + * operations on the tree might require changing key pointers higher up in the + * tree. + * + * callers might also have set path->keep_locks, which tells this code to keep + * the lock if the path points to the last slot in the block.  This is part of + * walking through the tree, and selecting the next slot in the higher block. + * + * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so + * if lowest_unlock is 1, level 0 won't be unlocked + */ +static noinline void unlock_up(struct btrfs_path *path, int level, +			       int lowest_unlock) +{ +	int i; +	int skip_level = level; +	int no_skips = 0; +	struct extent_buffer *t; + +	for (i = level; i < BTRFS_MAX_LEVEL; i++) { +		if (!path->nodes[i]) +			break; +		if (!path->locks[i]) +			break; +		if (!no_skips && path->slots[i] == 0) { +			skip_level = i + 1; +			continue; +		} +		if (!no_skips && path->keep_locks) { +			u32 nritems; +			t = path->nodes[i]; +			nritems = btrfs_header_nritems(t); +			if (nritems < 1 || path->slots[i] >= nritems - 1) { +				skip_level = i + 1; +				continue; +			} +		} +		if (skip_level < i && i >= lowest_unlock) +			no_skips = 1; + +		t = path->nodes[i]; +		if (i >= lowest_unlock && i > skip_level && path->locks[i]) { +			btrfs_tree_unlock(t); +			path->locks[i] = 0; +		} +	} +} + +/* + * look for key in the tree.  path is filled in with nodes along the way + * if key is found, we return zero and you can find the item in the leaf + * level of the path (level 0) + * + * If the key isn't found, the path points to the slot where it should + * be inserted, and 1 is returned.  If there are other errors during the + * search a negative error number is returned. + * + * if ins_len > 0, nodes and leaves will be split as we walk down the + * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if + * possible) + */ +int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root +		      *root, struct btrfs_key *key, struct btrfs_path *p, int +		      ins_len, int cow) +{ +	struct extent_buffer *b; +	struct extent_buffer *tmp; +	int slot; +	int ret; +	int level; +	int should_reada = p->reada; +	int lowest_unlock = 1; +	int blocksize; +	u8 lowest_level = 0; +	u64 blocknr; +	u64 gen; +	struct btrfs_key prealloc_block; + +	lowest_level = p->lowest_level; +	WARN_ON(lowest_level && ins_len > 0); +	WARN_ON(p->nodes[0] != NULL); + +	if (ins_len < 0) +		lowest_unlock = 2; + +	prealloc_block.objectid = 0; + +again: +	if (p->skip_locking) +		b = btrfs_root_node(root); +	else +		b = btrfs_lock_root_node(root); + +	while (b) { +		level = btrfs_header_level(b); + +		/* +		 * setup the path here so we can release it under lock +		 * contention with the cow code +		 */ +		p->nodes[level] = b; +		if (!p->skip_locking) +			p->locks[level] = 1; + +		if (cow) { +			int wret; + +			/* is a cow on this block not required */ +			spin_lock(&root->fs_info->hash_lock); +			if (btrfs_header_generation(b) == trans->transid && +			    btrfs_header_owner(b) == root->root_key.objectid && +			    !btrfs_header_flag(b, BTRFS_HEADER_FLAG_WRITTEN)) { +				spin_unlock(&root->fs_info->hash_lock); +				goto cow_done; +			} +			spin_unlock(&root->fs_info->hash_lock); + +			/* ok, we have to cow, is our old prealloc the right +			 * size? +			 */ +			if (prealloc_block.objectid && +			    prealloc_block.offset != b->len) { +				btrfs_free_reserved_extent(root, +					   prealloc_block.objectid, +					   prealloc_block.offset); +				prealloc_block.objectid = 0; +			} + +			/* +			 * for higher level blocks, try not to allocate blocks +			 * with the block and the parent locks held. +			 */ +			if (level > 1 && !prealloc_block.objectid && +			    btrfs_path_lock_waiting(p, level)) { +				u32 size = b->len; +				u64 hint = b->start; + +				btrfs_release_path(root, p); +				ret = btrfs_reserve_extent(trans, root, +							   size, size, 0, +							   hint, (u64)-1, +							   &prealloc_block, 0); +				BUG_ON(ret); +				goto again; +			} + +			wret = btrfs_cow_block(trans, root, b, +					       p->nodes[level + 1], +					       p->slots[level + 1], +					       &b, prealloc_block.objectid); +			prealloc_block.objectid = 0; +			if (wret) { +				free_extent_buffer(b); +				ret = wret; +				goto done; +			} +		} +cow_done: +		BUG_ON(!cow && ins_len); +		if (level != btrfs_header_level(b)) +			WARN_ON(1); +		level = btrfs_header_level(b); + +		p->nodes[level] = b; +		if (!p->skip_locking) +			p->locks[level] = 1; + +		ret = check_block(root, p, level); +		if (ret) { +			ret = -1; +			goto done; +		} + +		ret = bin_search(b, key, level, &slot); +		if (level != 0) { +			if (ret && slot > 0) +				slot -= 1; +			p->slots[level] = slot; +			if ((p->search_for_split || ins_len > 0) && +			    btrfs_header_nritems(b) >= +			    BTRFS_NODEPTRS_PER_BLOCK(root) - 3) { +				int sret = split_node(trans, root, p, level); +				BUG_ON(sret > 0); +				if (sret) { +					ret = sret; +					goto done; +				} +				b = p->nodes[level]; +				slot = p->slots[level]; +			} else if (ins_len < 0) { +				int sret = balance_level(trans, root, p, +							 level); +				if (sret) { +					ret = sret; +					goto done; +				} +				b = p->nodes[level]; +				if (!b) { +					btrfs_release_path(NULL, p); +					goto again; +				} +				slot = p->slots[level]; +				BUG_ON(btrfs_header_nritems(b) == 1); +			} +			unlock_up(p, level, lowest_unlock); + +			/* this is only true while dropping a snapshot */ +			if (level == lowest_level) { +				ret = 0; +				goto done; +			} + +			blocknr = btrfs_node_blockptr(b, slot); +			gen = btrfs_node_ptr_generation(b, slot); +			blocksize = btrfs_level_size(root, level - 1); + +			tmp = btrfs_find_tree_block(root, blocknr, blocksize); +			if (tmp && btrfs_buffer_uptodate(tmp, gen)) { +				b = tmp; +			} else { +				/* +				 * reduce lock contention at high levels +				 * of the btree by dropping locks before +				 * we read. +				 */ +				if (level > 1) { +					btrfs_release_path(NULL, p); +					if (tmp) +						free_extent_buffer(tmp); +					if (should_reada) +						reada_for_search(root, p, +								 level, slot, +								 key->objectid); + +					tmp = read_tree_block(root, blocknr, +							 blocksize, gen); +					if (tmp) +						free_extent_buffer(tmp); +					goto again; +				} else { +					if (tmp) +						free_extent_buffer(tmp); +					if (should_reada) +						reada_for_search(root, p, +								 level, slot, +								 key->objectid); +					b = read_node_slot(root, b, slot); +				} +			} +			if (!p->skip_locking) +				btrfs_tree_lock(b); +		} else { +			p->slots[level] = slot; +			if (ins_len > 0 && +			    btrfs_leaf_free_space(root, b) < ins_len) { +				int sret = split_leaf(trans, root, key, +						      p, ins_len, ret == 0); +				BUG_ON(sret > 0); +				if (sret) { +					ret = sret; +					goto done; +				} +			} +			if (!p->search_for_split) +				unlock_up(p, level, lowest_unlock); +			goto done; +		} +	} +	ret = 1; +done: +	if (prealloc_block.objectid) { +		btrfs_free_reserved_extent(root, +			   prealloc_block.objectid, +			   prealloc_block.offset); +	} + +	return ret; +} + +int btrfs_merge_path(struct btrfs_trans_handle *trans, +		     struct btrfs_root *root, +		     struct btrfs_key *node_keys, +		     u64 *nodes, int lowest_level) +{ +	struct extent_buffer *eb; +	struct extent_buffer *parent; +	struct btrfs_key key; +	u64 bytenr; +	u64 generation; +	u32 blocksize; +	int level; +	int slot; +	int key_match; +	int ret; + +	eb = btrfs_lock_root_node(root); +	ret = btrfs_cow_block(trans, root, eb, NULL, 0, &eb, 0); +	BUG_ON(ret); + +	parent = eb; +	while (1) { +		level = btrfs_header_level(parent); +		if (level == 0 || level <= lowest_level) +			break; + +		ret = bin_search(parent, &node_keys[lowest_level], level, +				 &slot); +		if (ret && slot > 0) +			slot--; + +		bytenr = btrfs_node_blockptr(parent, slot); +		if (nodes[level - 1] == bytenr) +			break; + +		blocksize = btrfs_level_size(root, level - 1); +		generation = btrfs_node_ptr_generation(parent, slot); +		btrfs_node_key_to_cpu(eb, &key, slot); +		key_match = !memcmp(&key, &node_keys[level - 1], sizeof(key)); + +		if (generation == trans->transid) { +			eb = read_tree_block(root, bytenr, blocksize, +					     generation); +			btrfs_tree_lock(eb); +		} + +		/* +		 * if node keys match and node pointer hasn't been modified +		 * in the running transaction, we can merge the path. for +		 * blocks owened by reloc trees, the node pointer check is +		 * skipped, this is because these blocks are fully controlled +		 * by the space balance code, no one else can modify them. +		 */ +		if (!nodes[level - 1] || !key_match || +		    (generation == trans->transid && +		     btrfs_header_owner(eb) != BTRFS_TREE_RELOC_OBJECTID)) { +			if (level == 1 || level == lowest_level + 1) { +				if (generation == trans->transid) { +					btrfs_tree_unlock(eb); +					free_extent_buffer(eb); +				} +				break; +			} + +			if (generation != trans->transid) { +				eb = read_tree_block(root, bytenr, blocksize, +						generation); +				btrfs_tree_lock(eb); +			} + +			ret = btrfs_cow_block(trans, root, eb, parent, slot, +					      &eb, 0); +			BUG_ON(ret); + +			if (root->root_key.objectid == +			    BTRFS_TREE_RELOC_OBJECTID) { +				if (!nodes[level - 1]) { +					nodes[level - 1] = eb->start; +					memcpy(&node_keys[level - 1], &key, +					       sizeof(node_keys[0])); +				} else { +					WARN_ON(1); +				} +			} + +			btrfs_tree_unlock(parent); +			free_extent_buffer(parent); +			parent = eb; +			continue; +		} + +		btrfs_set_node_blockptr(parent, slot, nodes[level - 1]); +		btrfs_set_node_ptr_generation(parent, slot, trans->transid); +		btrfs_mark_buffer_dirty(parent); + +		ret = btrfs_inc_extent_ref(trans, root, +					nodes[level - 1], +					blocksize, parent->start, +					btrfs_header_owner(parent), +					btrfs_header_generation(parent), +					level - 1); +		BUG_ON(ret); + +		/* +		 * If the block was created in the running transaction, +		 * it's possible this is the last reference to it, so we +		 * should drop the subtree. +		 */ +		if (generation == trans->transid) { +			ret = btrfs_drop_subtree(trans, root, eb, parent); +			BUG_ON(ret); +			btrfs_tree_unlock(eb); +			free_extent_buffer(eb); +		} else { +			ret = btrfs_free_extent(trans, root, bytenr, +					blocksize, parent->start, +					btrfs_header_owner(parent), +					btrfs_header_generation(parent), +					level - 1, 1); +			BUG_ON(ret); +		} +		break; +	} +	btrfs_tree_unlock(parent); +	free_extent_buffer(parent); +	return 0; +} + +/* + * adjust the pointers going up the tree, starting at level + * making sure the right key of each node is points to 'key'. + * This is used after shifting pointers to the left, so it stops + * fixing up pointers when a given leaf/node is not in slot 0 of the + * higher levels + * + * If this fails to write a tree block, it returns -1, but continues + * fixing up the blocks in ram so the tree is consistent. + */ +static int fixup_low_keys(struct btrfs_trans_handle *trans, +			  struct btrfs_root *root, struct btrfs_path *path, +			  struct btrfs_disk_key *key, int level) +{ +	int i; +	int ret = 0; +	struct extent_buffer *t; + +	for (i = level; i < BTRFS_MAX_LEVEL; i++) { +		int tslot = path->slots[i]; +		if (!path->nodes[i]) +			break; +		t = path->nodes[i]; +		btrfs_set_node_key(t, key, tslot); +		btrfs_mark_buffer_dirty(path->nodes[i]); +		if (tslot != 0) +			break; +	} +	return ret; +} + +/* + * update item key. + * + * This function isn't completely safe. It's the caller's responsibility + * that the new key won't break the order + */ +int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans, +			    struct btrfs_root *root, struct btrfs_path *path, +			    struct btrfs_key *new_key) +{ +	struct btrfs_disk_key disk_key; +	struct extent_buffer *eb; +	int slot; + +	eb = path->nodes[0]; +	slot = path->slots[0]; +	if (slot > 0) { +		btrfs_item_key(eb, &disk_key, slot - 1); +		if (comp_keys(&disk_key, new_key) >= 0) +			return -1; +	} +	if (slot < btrfs_header_nritems(eb) - 1) { +		btrfs_item_key(eb, &disk_key, slot + 1); +		if (comp_keys(&disk_key, new_key) <= 0) +			return -1; +	} + +	btrfs_cpu_key_to_disk(&disk_key, new_key); +	btrfs_set_item_key(eb, &disk_key, slot); +	btrfs_mark_buffer_dirty(eb); +	if (slot == 0) +		fixup_low_keys(trans, root, path, &disk_key, 1); +	return 0; +} + +/* + * try to push data from one node into the next node left in the + * tree. + * + * returns 0 if some ptrs were pushed left, < 0 if there was some horrible + * error, and > 0 if there was no room in the left hand block. + */ +static int push_node_left(struct btrfs_trans_handle *trans, +			  struct btrfs_root *root, struct extent_buffer *dst, +			  struct extent_buffer *src, int empty) +{ +	int push_items = 0; +	int src_nritems; +	int dst_nritems; +	int ret = 0; + +	src_nritems = btrfs_header_nritems(src); +	dst_nritems = btrfs_header_nritems(dst); +	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; +	WARN_ON(btrfs_header_generation(src) != trans->transid); +	WARN_ON(btrfs_header_generation(dst) != trans->transid); + +	if (!empty && src_nritems <= 8) +		return 1; + +	if (push_items <= 0) +		return 1; + +	if (empty) { +		push_items = min(src_nritems, push_items); +		if (push_items < src_nritems) { +			/* leave at least 8 pointers in the node if +			 * we aren't going to empty it +			 */ +			if (src_nritems - push_items < 8) { +				if (push_items <= 8) +					return 1; +				push_items -= 8; +			} +		} +	} else +		push_items = min(src_nritems - 8, push_items); + +	copy_extent_buffer(dst, src, +			   btrfs_node_key_ptr_offset(dst_nritems), +			   btrfs_node_key_ptr_offset(0), +			   push_items * sizeof(struct btrfs_key_ptr)); + +	if (push_items < src_nritems) { +		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), +				      btrfs_node_key_ptr_offset(push_items), +				      (src_nritems - push_items) * +				      sizeof(struct btrfs_key_ptr)); +	} +	btrfs_set_header_nritems(src, src_nritems - push_items); +	btrfs_set_header_nritems(dst, dst_nritems + push_items); +	btrfs_mark_buffer_dirty(src); +	btrfs_mark_buffer_dirty(dst); + +	ret = btrfs_update_ref(trans, root, src, dst, dst_nritems, push_items); +	BUG_ON(ret); + +	return ret; +} + +/* + * try to push data from one node into the next node right in the + * tree. + * + * returns 0 if some ptrs were pushed, < 0 if there was some horrible + * error, and > 0 if there was no room in the right hand block. + * + * this will  only push up to 1/2 the contents of the left node over + */ +static int balance_node_right(struct btrfs_trans_handle *trans, +			      struct btrfs_root *root, +			      struct extent_buffer *dst, +			      struct extent_buffer *src) +{ +	int push_items = 0; +	int max_push; +	int src_nritems; +	int dst_nritems; +	int ret = 0; + +	WARN_ON(btrfs_header_generation(src) != trans->transid); +	WARN_ON(btrfs_header_generation(dst) != trans->transid); + +	src_nritems = btrfs_header_nritems(src); +	dst_nritems = btrfs_header_nritems(dst); +	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; +	if (push_items <= 0) +		return 1; + +	if (src_nritems < 4) +		return 1; + +	max_push = src_nritems / 2 + 1; +	/* don't try to empty the node */ +	if (max_push >= src_nritems) +		return 1; + +	if (max_push < push_items) +		push_items = max_push; + +	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), +				      btrfs_node_key_ptr_offset(0), +				      (dst_nritems) * +				      sizeof(struct btrfs_key_ptr)); + +	copy_extent_buffer(dst, src, +			   btrfs_node_key_ptr_offset(0), +			   btrfs_node_key_ptr_offset(src_nritems - push_items), +			   push_items * sizeof(struct btrfs_key_ptr)); + +	btrfs_set_header_nritems(src, src_nritems - push_items); +	btrfs_set_header_nritems(dst, dst_nritems + push_items); + +	btrfs_mark_buffer_dirty(src); +	btrfs_mark_buffer_dirty(dst); + +	ret = btrfs_update_ref(trans, root, src, dst, 0, push_items); +	BUG_ON(ret); + +	return ret; +} + +/* + * helper function to insert a new root level in the tree. + * A new node is allocated, and a single item is inserted to + * point to the existing root + * + * returns zero on success or < 0 on failure. + */ +static noinline int insert_new_root(struct btrfs_trans_handle *trans, +			   struct btrfs_root *root, +			   struct btrfs_path *path, int level) +{ +	u64 lower_gen; +	struct extent_buffer *lower; +	struct extent_buffer *c; +	struct extent_buffer *old; +	struct btrfs_disk_key lower_key; +	int ret; + +	BUG_ON(path->nodes[level]); +	BUG_ON(path->nodes[level-1] != root->node); + +	lower = path->nodes[level-1]; +	if (level == 1) +		btrfs_item_key(lower, &lower_key, 0); +	else +		btrfs_node_key(lower, &lower_key, 0); + +	c = btrfs_alloc_free_block(trans, root, root->nodesize, 0, +				   root->root_key.objectid, trans->transid, +				   level, root->node->start, 0); +	if (IS_ERR(c)) +		return PTR_ERR(c); + +	memset_extent_buffer(c, 0, 0, root->nodesize); +	btrfs_set_header_nritems(c, 1); +	btrfs_set_header_level(c, level); +	btrfs_set_header_bytenr(c, c->start); +	btrfs_set_header_generation(c, trans->transid); +	btrfs_set_header_owner(c, root->root_key.objectid); + +	write_extent_buffer(c, root->fs_info->fsid, +			    (unsigned long)btrfs_header_fsid(c), +			    BTRFS_FSID_SIZE); + +	write_extent_buffer(c, root->fs_info->chunk_tree_uuid, +			    (unsigned long)btrfs_header_chunk_tree_uuid(c), +			    BTRFS_UUID_SIZE); + +	btrfs_set_node_key(c, &lower_key, 0); +	btrfs_set_node_blockptr(c, 0, lower->start); +	lower_gen = btrfs_header_generation(lower); +	WARN_ON(lower_gen != trans->transid); + +	btrfs_set_node_ptr_generation(c, 0, lower_gen); + +	btrfs_mark_buffer_dirty(c); + +	spin_lock(&root->node_lock); +	old = root->node; +	root->node = c; +	spin_unlock(&root->node_lock); + +	ret = btrfs_update_extent_ref(trans, root, lower->start, +				      lower->start, c->start, +				      root->root_key.objectid, +				      trans->transid, level - 1); +	BUG_ON(ret); + +	/* the super has an extra ref to root->node */ +	free_extent_buffer(old); + +	add_root_to_dirty_list(root); +	extent_buffer_get(c); +	path->nodes[level] = c; +	path->locks[level] = 1; +	path->slots[level] = 0; +	return 0; +} + +/* + * worker function to insert a single pointer in a node. + * the node should have enough room for the pointer already + * + * slot and level indicate where you want the key to go, and + * blocknr is the block the key points to. + * + * returns zero on success and < 0 on any error + */ +static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root +		      *root, struct btrfs_path *path, struct btrfs_disk_key +		      *key, u64 bytenr, int slot, int level) +{ +	struct extent_buffer *lower; +	int nritems; + +	BUG_ON(!path->nodes[level]); +	lower = path->nodes[level]; +	nritems = btrfs_header_nritems(lower); +	if (slot > nritems) +		BUG(); +	if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root)) +		BUG(); +	if (slot != nritems) { +		memmove_extent_buffer(lower, +			      btrfs_node_key_ptr_offset(slot + 1), +			      btrfs_node_key_ptr_offset(slot), +			      (nritems - slot) * sizeof(struct btrfs_key_ptr)); +	} +	btrfs_set_node_key(lower, key, slot); +	btrfs_set_node_blockptr(lower, slot, bytenr); +	WARN_ON(trans->transid == 0); +	btrfs_set_node_ptr_generation(lower, slot, trans->transid); +	btrfs_set_header_nritems(lower, nritems + 1); +	btrfs_mark_buffer_dirty(lower); +	return 0; +} + +/* + * split the node at the specified level in path in two. + * The path is corrected to point to the appropriate node after the split + * + * Before splitting this tries to make some room in the node by pushing + * left and right, if either one works, it returns right away. + * + * returns 0 on success and < 0 on failure + */ +static noinline int split_node(struct btrfs_trans_handle *trans, +			       struct btrfs_root *root, +			       struct btrfs_path *path, int level) +{ +	struct extent_buffer *c; +	struct extent_buffer *split; +	struct btrfs_disk_key disk_key; +	int mid; +	int ret; +	int wret; +	u32 c_nritems; + +	c = path->nodes[level]; +	WARN_ON(btrfs_header_generation(c) != trans->transid); +	if (c == root->node) { +		/* trying to split the root, lets make a new one */ +		ret = insert_new_root(trans, root, path, level + 1); +		if (ret) +			return ret; +	} else { +		ret = push_nodes_for_insert(trans, root, path, level); +		c = path->nodes[level]; +		if (!ret && btrfs_header_nritems(c) < +		    BTRFS_NODEPTRS_PER_BLOCK(root) - 3) +			return 0; +		if (ret < 0) +			return ret; +	} + +	c_nritems = btrfs_header_nritems(c); + +	split = btrfs_alloc_free_block(trans, root, root->nodesize, +					path->nodes[level + 1]->start, +					root->root_key.objectid, +					trans->transid, level, c->start, 0); +	if (IS_ERR(split)) +		return PTR_ERR(split); + +	btrfs_set_header_flags(split, btrfs_header_flags(c)); +	btrfs_set_header_level(split, btrfs_header_level(c)); +	btrfs_set_header_bytenr(split, split->start); +	btrfs_set_header_generation(split, trans->transid); +	btrfs_set_header_owner(split, root->root_key.objectid); +	btrfs_set_header_flags(split, 0); +	write_extent_buffer(split, root->fs_info->fsid, +			    (unsigned long)btrfs_header_fsid(split), +			    BTRFS_FSID_SIZE); +	write_extent_buffer(split, root->fs_info->chunk_tree_uuid, +			    (unsigned long)btrfs_header_chunk_tree_uuid(split), +			    BTRFS_UUID_SIZE); + +	mid = (c_nritems + 1) / 2; + +	copy_extent_buffer(split, c, +			   btrfs_node_key_ptr_offset(0), +			   btrfs_node_key_ptr_offset(mid), +			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); +	btrfs_set_header_nritems(split, c_nritems - mid); +	btrfs_set_header_nritems(c, mid); +	ret = 0; + +	btrfs_mark_buffer_dirty(c); +	btrfs_mark_buffer_dirty(split); + +	btrfs_node_key(split, &disk_key, 0); +	wret = insert_ptr(trans, root, path, &disk_key, split->start, +			  path->slots[level + 1] + 1, +			  level + 1); +	if (wret) +		ret = wret; + +	ret = btrfs_update_ref(trans, root, c, split, 0, c_nritems - mid); +	BUG_ON(ret); + +	if (path->slots[level] >= mid) { +		path->slots[level] -= mid; +		btrfs_tree_unlock(c); +		free_extent_buffer(c); +		path->nodes[level] = split; +		path->slots[level + 1] += 1; +	} else { +		btrfs_tree_unlock(split); +		free_extent_buffer(split); +	} +	return ret; +} + +/* + * how many bytes are required to store the items in a leaf.  start + * and nr indicate which items in the leaf to check.  This totals up the + * space used both by the item structs and the item data + */ +static int leaf_space_used(struct extent_buffer *l, int start, int nr) +{ +	int data_len; +	int nritems = btrfs_header_nritems(l); +	int end = min(nritems, start + nr) - 1; + +	if (!nr) +		return 0; +	data_len = btrfs_item_end_nr(l, start); +	data_len = data_len - btrfs_item_offset_nr(l, end); +	data_len += sizeof(struct btrfs_item) * nr; +	WARN_ON(data_len < 0); +	return data_len; +} + +/* + * The space between the end of the leaf items and + * the start of the leaf data.  IOW, how much room + * the leaf has left for both items and data + */ +noinline int btrfs_leaf_free_space(struct btrfs_root *root, +				   struct extent_buffer *leaf) +{ +	int nritems = btrfs_header_nritems(leaf); +	int ret; +	ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems); +	if (ret < 0) { +		printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, " +		       "used %d nritems %d\n", +		       ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root), +		       leaf_space_used(leaf, 0, nritems), nritems); +	} +	return ret; +} + +/* + * push some data in the path leaf to the right, trying to free up at + * least data_size bytes.  returns zero if the push worked, nonzero otherwise + * + * returns 1 if the push failed because the other node didn't have enough + * room, 0 if everything worked out and < 0 if there were major errors. + */ +static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root +			   *root, struct btrfs_path *path, int data_size, +			   int empty) +{ +	struct extent_buffer *left = path->nodes[0]; +	struct extent_buffer *right; +	struct extent_buffer *upper; +	struct btrfs_disk_key disk_key; +	int slot; +	u32 i; +	int free_space; +	int push_space = 0; +	int push_items = 0; +	struct btrfs_item *item; +	u32 left_nritems; +	u32 nr; +	u32 right_nritems; +	u32 data_end; +	u32 this_item_size; +	int ret; + +	slot = path->slots[1]; +	if (!path->nodes[1]) +		return 1; + +	upper = path->nodes[1]; +	if (slot >= btrfs_header_nritems(upper) - 1) +		return 1; + +	WARN_ON(!btrfs_tree_locked(path->nodes[1])); + +	right = read_node_slot(root, upper, slot + 1); +	btrfs_tree_lock(right); +	free_space = btrfs_leaf_free_space(root, right); +	if (free_space < data_size) +		goto out_unlock; + +	/* cow and double check */ +	ret = btrfs_cow_block(trans, root, right, upper, +			      slot + 1, &right, 0); +	if (ret) +		goto out_unlock; + +	free_space = btrfs_leaf_free_space(root, right); +	if (free_space < data_size) +		goto out_unlock; + +	left_nritems = btrfs_header_nritems(left); +	if (left_nritems == 0) +		goto out_unlock; + +	if (empty) +		nr = 0; +	else +		nr = 1; + +	if (path->slots[0] >= left_nritems) +		push_space += data_size; + +	i = left_nritems - 1; +	while (i >= nr) { +		item = btrfs_item_nr(left, i); + +		if (!empty && push_items > 0) { +			if (path->slots[0] > i) +				break; +			if (path->slots[0] == i) { +				int space = btrfs_leaf_free_space(root, left); +				if (space + push_space * 2 > free_space) +					break; +			} +		} + +		if (path->slots[0] == i) +			push_space += data_size; + +		if (!left->map_token) { +			map_extent_buffer(left, (unsigned long)item, +					sizeof(struct btrfs_item), +					&left->map_token, &left->kaddr, +					&left->map_start, &left->map_len, +					KM_USER1); +		} + +		this_item_size = btrfs_item_size(left, item); +		if (this_item_size + sizeof(*item) + push_space > free_space) +			break; + +		push_items++; +		push_space += this_item_size + sizeof(*item); +		if (i == 0) +			break; +		i--; +	} +	if (left->map_token) { +		unmap_extent_buffer(left, left->map_token, KM_USER1); +		left->map_token = NULL; +	} + +	if (push_items == 0) +		goto out_unlock; + +	if (!empty && push_items == left_nritems) +		WARN_ON(1); + +	/* push left to right */ +	right_nritems = btrfs_header_nritems(right); + +	push_space = btrfs_item_end_nr(left, left_nritems - push_items); +	push_space -= leaf_data_end(root, left); + +	/* make room in the right data area */ +	data_end = leaf_data_end(root, right); +	memmove_extent_buffer(right, +			      btrfs_leaf_data(right) + data_end - push_space, +			      btrfs_leaf_data(right) + data_end, +			      BTRFS_LEAF_DATA_SIZE(root) - data_end); + +	/* copy from the left data area */ +	copy_extent_buffer(right, left, btrfs_leaf_data(right) + +		     BTRFS_LEAF_DATA_SIZE(root) - push_space, +		     btrfs_leaf_data(left) + leaf_data_end(root, left), +		     push_space); + +	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), +			      btrfs_item_nr_offset(0), +			      right_nritems * sizeof(struct btrfs_item)); + +	/* copy the items from left to right */ +	copy_extent_buffer(right, left, btrfs_item_nr_offset(0), +		   btrfs_item_nr_offset(left_nritems - push_items), +		   push_items * sizeof(struct btrfs_item)); + +	/* update the item pointers */ +	right_nritems += push_items; +	btrfs_set_header_nritems(right, right_nritems); +	push_space = BTRFS_LEAF_DATA_SIZE(root); +	for (i = 0; i < right_nritems; i++) { +		item = btrfs_item_nr(right, i); +		if (!right->map_token) { +			map_extent_buffer(right, (unsigned long)item, +					sizeof(struct btrfs_item), +					&right->map_token, &right->kaddr, +					&right->map_start, &right->map_len, +					KM_USER1); +		} +		push_space -= btrfs_item_size(right, item); +		btrfs_set_item_offset(right, item, push_space); +	} + +	if (right->map_token) { +		unmap_extent_buffer(right, right->map_token, KM_USER1); +		right->map_token = NULL; +	} +	left_nritems -= push_items; +	btrfs_set_header_nritems(left, left_nritems); + +	if (left_nritems) +		btrfs_mark_buffer_dirty(left); +	btrfs_mark_buffer_dirty(right); + +	ret = btrfs_update_ref(trans, root, left, right, 0, push_items); +	BUG_ON(ret); + +	btrfs_item_key(right, &disk_key, 0); +	btrfs_set_node_key(upper, &disk_key, slot + 1); +	btrfs_mark_buffer_dirty(upper); + +	/* then fixup the leaf pointer in the path */ +	if (path->slots[0] >= left_nritems) { +		path->slots[0] -= left_nritems; +		if (btrfs_header_nritems(path->nodes[0]) == 0) +			clean_tree_block(trans, root, path->nodes[0]); +		btrfs_tree_unlock(path->nodes[0]); +		free_extent_buffer(path->nodes[0]); +		path->nodes[0] = right; +		path->slots[1] += 1; +	} else { +		btrfs_tree_unlock(right); +		free_extent_buffer(right); +	} +	return 0; + +out_unlock: +	btrfs_tree_unlock(right); +	free_extent_buffer(right); +	return 1; +} + +/* + * push some data in the path leaf to the left, trying to free up at + * least data_size bytes.  returns zero if the push worked, nonzero otherwise + */ +static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root +			  *root, struct btrfs_path *path, int data_size, +			  int empty) +{ +	struct btrfs_disk_key disk_key; +	struct extent_buffer *right = path->nodes[0]; +	struct extent_buffer *left; +	int slot; +	int i; +	int free_space; +	int push_space = 0; +	int push_items = 0; +	struct btrfs_item *item; +	u32 old_left_nritems; +	u32 right_nritems; +	u32 nr; +	int ret = 0; +	int wret; +	u32 this_item_size; +	u32 old_left_item_size; + +	slot = path->slots[1]; +	if (slot == 0) +		return 1; +	if (!path->nodes[1]) +		return 1; + +	right_nritems = btrfs_header_nritems(right); +	if (right_nritems == 0) +		return 1; + +	WARN_ON(!btrfs_tree_locked(path->nodes[1])); + +	left = read_node_slot(root, path->nodes[1], slot - 1); +	btrfs_tree_lock(left); +	free_space = btrfs_leaf_free_space(root, left); +	if (free_space < data_size) { +		ret = 1; +		goto out; +	} + +	/* cow and double check */ +	ret = btrfs_cow_block(trans, root, left, +			      path->nodes[1], slot - 1, &left, 0); +	if (ret) { +		/* we hit -ENOSPC, but it isn't fatal here */ +		ret = 1; +		goto out; +	} + +	free_space = btrfs_leaf_free_space(root, left); +	if (free_space < data_size) { +		ret = 1; +		goto out; +	} + +	if (empty) +		nr = right_nritems; +	else +		nr = right_nritems - 1; + +	for (i = 0; i < nr; i++) { +		item = btrfs_item_nr(right, i); +		if (!right->map_token) { +			map_extent_buffer(right, (unsigned long)item, +					sizeof(struct btrfs_item), +					&right->map_token, &right->kaddr, +					&right->map_start, &right->map_len, +					KM_USER1); +		} + +		if (!empty && push_items > 0) { +			if (path->slots[0] < i) +				break; +			if (path->slots[0] == i) { +				int space = btrfs_leaf_free_space(root, right); +				if (space + push_space * 2 > free_space) +					break; +			} +		} + +		if (path->slots[0] == i) +			push_space += data_size; + +		this_item_size = btrfs_item_size(right, item); +		if (this_item_size + sizeof(*item) + push_space > free_space) +			break; + +		push_items++; +		push_space += this_item_size + sizeof(*item); +	} + +	if (right->map_token) { +		unmap_extent_buffer(right, right->map_token, KM_USER1); +		right->map_token = NULL; +	} + +	if (push_items == 0) { +		ret = 1; +		goto out; +	} +	if (!empty && push_items == btrfs_header_nritems(right)) +		WARN_ON(1); + +	/* push data from right to left */ +	copy_extent_buffer(left, right, +			   btrfs_item_nr_offset(btrfs_header_nritems(left)), +			   btrfs_item_nr_offset(0), +			   push_items * sizeof(struct btrfs_item)); + +	push_space = BTRFS_LEAF_DATA_SIZE(root) - +		     btrfs_item_offset_nr(right, push_items - 1); + +	copy_extent_buffer(left, right, btrfs_leaf_data(left) + +		     leaf_data_end(root, left) - push_space, +		     btrfs_leaf_data(right) + +		     btrfs_item_offset_nr(right, push_items - 1), +		     push_space); +	old_left_nritems = btrfs_header_nritems(left); +	BUG_ON(old_left_nritems <= 0); + +	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); +	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { +		u32 ioff; + +		item = btrfs_item_nr(left, i); +		if (!left->map_token) { +			map_extent_buffer(left, (unsigned long)item, +					sizeof(struct btrfs_item), +					&left->map_token, &left->kaddr, +					&left->map_start, &left->map_len, +					KM_USER1); +		} + +		ioff = btrfs_item_offset(left, item); +		btrfs_set_item_offset(left, item, +		      ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size)); +	} +	btrfs_set_header_nritems(left, old_left_nritems + push_items); +	if (left->map_token) { +		unmap_extent_buffer(left, left->map_token, KM_USER1); +		left->map_token = NULL; +	} + +	/* fixup right node */ +	if (push_items > right_nritems) { +		printk(KERN_CRIT "push items %d nr %u\n", push_items, +		       right_nritems); +		WARN_ON(1); +	} + +	if (push_items < right_nritems) { +		push_space = btrfs_item_offset_nr(right, push_items - 1) - +						  leaf_data_end(root, right); +		memmove_extent_buffer(right, btrfs_leaf_data(right) + +				      BTRFS_LEAF_DATA_SIZE(root) - push_space, +				      btrfs_leaf_data(right) + +				      leaf_data_end(root, right), push_space); + +		memmove_extent_buffer(right, btrfs_item_nr_offset(0), +			      btrfs_item_nr_offset(push_items), +			     (btrfs_header_nritems(right) - push_items) * +			     sizeof(struct btrfs_item)); +	} +	right_nritems -= push_items; +	btrfs_set_header_nritems(right, right_nritems); +	push_space = BTRFS_LEAF_DATA_SIZE(root); +	for (i = 0; i < right_nritems; i++) { +		item = btrfs_item_nr(right, i); + +		if (!right->map_token) { +			map_extent_buffer(right, (unsigned long)item, +					sizeof(struct btrfs_item), +					&right->map_token, &right->kaddr, +					&right->map_start, &right->map_len, +					KM_USER1); +		} + +		push_space = push_space - btrfs_item_size(right, item); +		btrfs_set_item_offset(right, item, push_space); +	} +	if (right->map_token) { +		unmap_extent_buffer(right, right->map_token, KM_USER1); +		right->map_token = NULL; +	} + +	btrfs_mark_buffer_dirty(left); +	if (right_nritems) +		btrfs_mark_buffer_dirty(right); + +	ret = btrfs_update_ref(trans, root, right, left, +			       old_left_nritems, push_items); +	BUG_ON(ret); + +	btrfs_item_key(right, &disk_key, 0); +	wret = fixup_low_keys(trans, root, path, &disk_key, 1); +	if (wret) +		ret = wret; + +	/* then fixup the leaf pointer in the path */ +	if (path->slots[0] < push_items) { +		path->slots[0] += old_left_nritems; +		if (btrfs_header_nritems(path->nodes[0]) == 0) +			clean_tree_block(trans, root, path->nodes[0]); +		btrfs_tree_unlock(path->nodes[0]); +		free_extent_buffer(path->nodes[0]); +		path->nodes[0] = left; +		path->slots[1] -= 1; +	} else { +		btrfs_tree_unlock(left); +		free_extent_buffer(left); +		path->slots[0] -= push_items; +	} +	BUG_ON(path->slots[0] < 0); +	return ret; +out: +	btrfs_tree_unlock(left); +	free_extent_buffer(left); +	return ret; +} + +/* + * split the path's leaf in two, making sure there is at least data_size + * available for the resulting leaf level of the path. + * + * returns 0 if all went well and < 0 on failure. + */ +static noinline int split_leaf(struct btrfs_trans_handle *trans, +			       struct btrfs_root *root, +			       struct btrfs_key *ins_key, +			       struct btrfs_path *path, int data_size, +			       int extend) +{ +	struct extent_buffer *l; +	u32 nritems; +	int mid; +	int slot; +	struct extent_buffer *right; +	int data_copy_size; +	int rt_data_off; +	int i; +	int ret = 0; +	int wret; +	int double_split; +	int num_doubles = 0; +	struct btrfs_disk_key disk_key; + +	/* first try to make some room by pushing left and right */ +	if (data_size && ins_key->type != BTRFS_DIR_ITEM_KEY) { +		wret = push_leaf_right(trans, root, path, data_size, 0); +		if (wret < 0) +			return wret; +		if (wret) { +			wret = push_leaf_left(trans, root, path, data_size, 0); +			if (wret < 0) +				return wret; +		} +		l = path->nodes[0]; + +		/* did the pushes work? */ +		if (btrfs_leaf_free_space(root, l) >= data_size) +			return 0; +	} + +	if (!path->nodes[1]) { +		ret = insert_new_root(trans, root, path, 1); +		if (ret) +			return ret; +	} +again: +	double_split = 0; +	l = path->nodes[0]; +	slot = path->slots[0]; +	nritems = btrfs_header_nritems(l); +	mid = (nritems + 1) / 2; + +	right = btrfs_alloc_free_block(trans, root, root->leafsize, +					path->nodes[1]->start, +					root->root_key.objectid, +					trans->transid, 0, l->start, 0); +	if (IS_ERR(right)) { +		BUG_ON(1); +		return PTR_ERR(right); +	} + +	memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header)); +	btrfs_set_header_bytenr(right, right->start); +	btrfs_set_header_generation(right, trans->transid); +	btrfs_set_header_owner(right, root->root_key.objectid); +	btrfs_set_header_level(right, 0); +	write_extent_buffer(right, root->fs_info->fsid, +			    (unsigned long)btrfs_header_fsid(right), +			    BTRFS_FSID_SIZE); + +	write_extent_buffer(right, root->fs_info->chunk_tree_uuid, +			    (unsigned long)btrfs_header_chunk_tree_uuid(right), +			    BTRFS_UUID_SIZE); +	if (mid <= slot) { +		if (nritems == 1 || +		    leaf_space_used(l, mid, nritems - mid) + data_size > +			BTRFS_LEAF_DATA_SIZE(root)) { +			if (slot >= nritems) { +				btrfs_cpu_key_to_disk(&disk_key, ins_key); +				btrfs_set_header_nritems(right, 0); +				wret = insert_ptr(trans, root, path, +						  &disk_key, right->start, +						  path->slots[1] + 1, 1); +				if (wret) +					ret = wret; + +				btrfs_tree_unlock(path->nodes[0]); +				free_extent_buffer(path->nodes[0]); +				path->nodes[0] = right; +				path->slots[0] = 0; +				path->slots[1] += 1; +				btrfs_mark_buffer_dirty(right); +				return ret; +			} +			mid = slot; +			if (mid != nritems && +			    leaf_space_used(l, mid, nritems - mid) + +			    data_size > BTRFS_LEAF_DATA_SIZE(root)) { +				double_split = 1; +			} +		} +	} else { +		if (leaf_space_used(l, 0, mid) + data_size > +			BTRFS_LEAF_DATA_SIZE(root)) { +			if (!extend && data_size && slot == 0) { +				btrfs_cpu_key_to_disk(&disk_key, ins_key); +				btrfs_set_header_nritems(right, 0); +				wret = insert_ptr(trans, root, path, +						  &disk_key, +						  right->start, +						  path->slots[1], 1); +				if (wret) +					ret = wret; +				btrfs_tree_unlock(path->nodes[0]); +				free_extent_buffer(path->nodes[0]); +				path->nodes[0] = right; +				path->slots[0] = 0; +				if (path->slots[1] == 0) { +					wret = fixup_low_keys(trans, root, +						      path, &disk_key, 1); +					if (wret) +						ret = wret; +				} +				btrfs_mark_buffer_dirty(right); +				return ret; +			} else if ((extend || !data_size) && slot == 0) { +				mid = 1; +			} else { +				mid = slot; +				if (mid != nritems && +				    leaf_space_used(l, mid, nritems - mid) + +				    data_size > BTRFS_LEAF_DATA_SIZE(root)) { +					double_split = 1; +				} +			} +		} +	} +	nritems = nritems - mid; +	btrfs_set_header_nritems(right, nritems); +	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l); + +	copy_extent_buffer(right, l, btrfs_item_nr_offset(0), +			   btrfs_item_nr_offset(mid), +			   nritems * sizeof(struct btrfs_item)); + +	copy_extent_buffer(right, l, +		     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) - +		     data_copy_size, btrfs_leaf_data(l) + +		     leaf_data_end(root, l), data_copy_size); + +	rt_data_off = BTRFS_LEAF_DATA_SIZE(root) - +		      btrfs_item_end_nr(l, mid); + +	for (i = 0; i < nritems; i++) { +		struct btrfs_item *item = btrfs_item_nr(right, i); +		u32 ioff; + +		if (!right->map_token) { +			map_extent_buffer(right, (unsigned long)item, +					sizeof(struct btrfs_item), +					&right->map_token, &right->kaddr, +					&right->map_start, &right->map_len, +					KM_USER1); +		} + +		ioff = btrfs_item_offset(right, item); +		btrfs_set_item_offset(right, item, ioff + rt_data_off); +	} + +	if (right->map_token) { +		unmap_extent_buffer(right, right->map_token, KM_USER1); +		right->map_token = NULL; +	} + +	btrfs_set_header_nritems(l, mid); +	ret = 0; +	btrfs_item_key(right, &disk_key, 0); +	wret = insert_ptr(trans, root, path, &disk_key, right->start, +			  path->slots[1] + 1, 1); +	if (wret) +		ret = wret; + +	btrfs_mark_buffer_dirty(right); +	btrfs_mark_buffer_dirty(l); +	BUG_ON(path->slots[0] != slot); + +	ret = btrfs_update_ref(trans, root, l, right, 0, nritems); +	BUG_ON(ret); + +	if (mid <= slot) { +		btrfs_tree_unlock(path->nodes[0]); +		free_extent_buffer(path->nodes[0]); +		path->nodes[0] = right; +		path->slots[0] -= mid; +		path->slots[1] += 1; +	} else { +		btrfs_tree_unlock(right); +		free_extent_buffer(right); +	} + +	BUG_ON(path->slots[0] < 0); + +	if (double_split) { +		BUG_ON(num_doubles != 0); +		num_doubles++; +		goto again; +	} +	return ret; +} + +/* + * This function splits a single item into two items, + * giving 'new_key' to the new item and splitting the + * old one at split_offset (from the start of the item). + * + * The path may be released by this operation.  After + * the split, the path is pointing to the old item.  The + * new item is going to be in the same node as the old one. + * + * Note, the item being split must be smaller enough to live alone on + * a tree block with room for one extra struct btrfs_item + * + * This allows us to split the item in place, keeping a lock on the + * leaf the entire time. + */ +int btrfs_split_item(struct btrfs_trans_handle *trans, +		     struct btrfs_root *root, +		     struct btrfs_path *path, +		     struct btrfs_key *new_key, +		     unsigned long split_offset) +{ +	u32 item_size; +	struct extent_buffer *leaf; +	struct btrfs_key orig_key; +	struct btrfs_item *item; +	struct btrfs_item *new_item; +	int ret = 0; +	int slot; +	u32 nritems; +	u32 orig_offset; +	struct btrfs_disk_key disk_key; +	char *buf; + +	leaf = path->nodes[0]; +	btrfs_item_key_to_cpu(leaf, &orig_key, path->slots[0]); +	if (btrfs_leaf_free_space(root, leaf) >= sizeof(struct btrfs_item)) +		goto split; + +	item_size = btrfs_item_size_nr(leaf, path->slots[0]); +	btrfs_release_path(root, path); + +	path->search_for_split = 1; +	path->keep_locks = 1; + +	ret = btrfs_search_slot(trans, root, &orig_key, path, 0, 1); +	path->search_for_split = 0; + +	/* if our item isn't there or got smaller, return now */ +	if (ret != 0 || item_size != btrfs_item_size_nr(path->nodes[0], +							path->slots[0])) { +		path->keep_locks = 0; +		return -EAGAIN; +	} + +	ret = split_leaf(trans, root, &orig_key, path, +			 sizeof(struct btrfs_item), 1); +	path->keep_locks = 0; +	BUG_ON(ret); + +	leaf = path->nodes[0]; +	BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item)); + +split: +	item = btrfs_item_nr(leaf, path->slots[0]); +	orig_offset = btrfs_item_offset(leaf, item); +	item_size = btrfs_item_size(leaf, item); + + +	buf = kmalloc(item_size, GFP_NOFS); +	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, +			    path->slots[0]), item_size); +	slot = path->slots[0] + 1; +	leaf = path->nodes[0]; + +	nritems = btrfs_header_nritems(leaf); + +	if (slot != nritems) { +		/* shift the items */ +		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), +			      btrfs_item_nr_offset(slot), +			      (nritems - slot) * sizeof(struct btrfs_item)); + +	} + +	btrfs_cpu_key_to_disk(&disk_key, new_key); +	btrfs_set_item_key(leaf, &disk_key, slot); + +	new_item = btrfs_item_nr(leaf, slot); + +	btrfs_set_item_offset(leaf, new_item, orig_offset); +	btrfs_set_item_size(leaf, new_item, item_size - split_offset); + +	btrfs_set_item_offset(leaf, item, +			      orig_offset + item_size - split_offset); +	btrfs_set_item_size(leaf, item, split_offset); + +	btrfs_set_header_nritems(leaf, nritems + 1); + +	/* write the data for the start of the original item */ +	write_extent_buffer(leaf, buf, +			    btrfs_item_ptr_offset(leaf, path->slots[0]), +			    split_offset); + +	/* write the data for the new item */ +	write_extent_buffer(leaf, buf + split_offset, +			    btrfs_item_ptr_offset(leaf, slot), +			    item_size - split_offset); +	btrfs_mark_buffer_dirty(leaf); + +	ret = 0; +	if (btrfs_leaf_free_space(root, leaf) < 0) { +		btrfs_print_leaf(root, leaf); +		BUG(); +	} +	kfree(buf); +	return ret; +} + +/* + * make the item pointed to by the path smaller.  new_size indicates + * how small to make it, and from_end tells us if we just chop bytes + * off the end of the item or if we shift the item to chop bytes off + * the front. + */ +int btrfs_truncate_item(struct btrfs_trans_handle *trans, +			struct btrfs_root *root, +			struct btrfs_path *path, +			u32 new_size, int from_end) +{ +	int ret = 0; +	int slot; +	int slot_orig; +	struct extent_buffer *leaf; +	struct btrfs_item *item; +	u32 nritems; +	unsigned int data_end; +	unsigned int old_data_start; +	unsigned int old_size; +	unsigned int size_diff; +	int i; + +	slot_orig = path->slots[0]; +	leaf = path->nodes[0]; +	slot = path->slots[0]; + +	old_size = btrfs_item_size_nr(leaf, slot); +	if (old_size == new_size) +		return 0; + +	nritems = btrfs_header_nritems(leaf); +	data_end = leaf_data_end(root, leaf); + +	old_data_start = btrfs_item_offset_nr(leaf, slot); + +	size_diff = old_size - new_size; + +	BUG_ON(slot < 0); +	BUG_ON(slot >= nritems); + +	/* +	 * item0..itemN ... dataN.offset..dataN.size .. data0.size +	 */ +	/* first correct the data pointers */ +	for (i = slot; i < nritems; i++) { +		u32 ioff; +		item = btrfs_item_nr(leaf, i); + +		if (!leaf->map_token) { +			map_extent_buffer(leaf, (unsigned long)item, +					sizeof(struct btrfs_item), +					&leaf->map_token, &leaf->kaddr, +					&leaf->map_start, &leaf->map_len, +					KM_USER1); +		} + +		ioff = btrfs_item_offset(leaf, item); +		btrfs_set_item_offset(leaf, item, ioff + size_diff); +	} + +	if (leaf->map_token) { +		unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); +		leaf->map_token = NULL; +	} + +	/* shift the data */ +	if (from_end) { +		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + +			      data_end + size_diff, btrfs_leaf_data(leaf) + +			      data_end, old_data_start + new_size - data_end); +	} else { +		struct btrfs_disk_key disk_key; +		u64 offset; + +		btrfs_item_key(leaf, &disk_key, slot); + +		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { +			unsigned long ptr; +			struct btrfs_file_extent_item *fi; + +			fi = btrfs_item_ptr(leaf, slot, +					    struct btrfs_file_extent_item); +			fi = (struct btrfs_file_extent_item *)( +			     (unsigned long)fi - size_diff); + +			if (btrfs_file_extent_type(leaf, fi) == +			    BTRFS_FILE_EXTENT_INLINE) { +				ptr = btrfs_item_ptr_offset(leaf, slot); +				memmove_extent_buffer(leaf, ptr, +				      (unsigned long)fi, +				      offsetof(struct btrfs_file_extent_item, +						 disk_bytenr)); +			} +		} + +		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + +			      data_end + size_diff, btrfs_leaf_data(leaf) + +			      data_end, old_data_start - data_end); + +		offset = btrfs_disk_key_offset(&disk_key); +		btrfs_set_disk_key_offset(&disk_key, offset + size_diff); +		btrfs_set_item_key(leaf, &disk_key, slot); +		if (slot == 0) +			fixup_low_keys(trans, root, path, &disk_key, 1); +	} + +	item = btrfs_item_nr(leaf, slot); +	btrfs_set_item_size(leaf, item, new_size); +	btrfs_mark_buffer_dirty(leaf); + +	ret = 0; +	if (btrfs_leaf_free_space(root, leaf) < 0) { +		btrfs_print_leaf(root, leaf); +		BUG(); +	} +	return ret; +} + +/* + * make the item pointed to by the path bigger, data_size is the new size. + */ +int btrfs_extend_item(struct btrfs_trans_handle *trans, +		      struct btrfs_root *root, struct btrfs_path *path, +		      u32 data_size) +{ +	int ret = 0; +	int slot; +	int slot_orig; +	struct extent_buffer *leaf; +	struct btrfs_item *item; +	u32 nritems; +	unsigned int data_end; +	unsigned int old_data; +	unsigned int old_size; +	int i; + +	slot_orig = path->slots[0]; +	leaf = path->nodes[0]; + +	nritems = btrfs_header_nritems(leaf); +	data_end = leaf_data_end(root, leaf); + +	if (btrfs_leaf_free_space(root, leaf) < data_size) { +		btrfs_print_leaf(root, leaf); +		BUG(); +	} +	slot = path->slots[0]; +	old_data = btrfs_item_end_nr(leaf, slot); + +	BUG_ON(slot < 0); +	if (slot >= nritems) { +		btrfs_print_leaf(root, leaf); +		printk(KERN_CRIT "slot %d too large, nritems %d\n", +		       slot, nritems); +		BUG_ON(1); +	} + +	/* +	 * item0..itemN ... dataN.offset..dataN.size .. data0.size +	 */ +	/* first correct the data pointers */ +	for (i = slot; i < nritems; i++) { +		u32 ioff; +		item = btrfs_item_nr(leaf, i); + +		if (!leaf->map_token) { +			map_extent_buffer(leaf, (unsigned long)item, +					sizeof(struct btrfs_item), +					&leaf->map_token, &leaf->kaddr, +					&leaf->map_start, &leaf->map_len, +					KM_USER1); +		} +		ioff = btrfs_item_offset(leaf, item); +		btrfs_set_item_offset(leaf, item, ioff - data_size); +	} + +	if (leaf->map_token) { +		unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); +		leaf->map_token = NULL; +	} + +	/* shift the data */ +	memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + +		      data_end - data_size, btrfs_leaf_data(leaf) + +		      data_end, old_data - data_end); + +	data_end = old_data; +	old_size = btrfs_item_size_nr(leaf, slot); +	item = btrfs_item_nr(leaf, slot); +	btrfs_set_item_size(leaf, item, old_size + data_size); +	btrfs_mark_buffer_dirty(leaf); + +	ret = 0; +	if (btrfs_leaf_free_space(root, leaf) < 0) { +		btrfs_print_leaf(root, leaf); +		BUG(); +	} +	return ret; +} + +/* + * Given a key and some data, insert items into the tree. + * This does all the path init required, making room in the tree if needed. + * Returns the number of keys that were inserted. + */ +int btrfs_insert_some_items(struct btrfs_trans_handle *trans, +			    struct btrfs_root *root, +			    struct btrfs_path *path, +			    struct btrfs_key *cpu_key, u32 *data_size, +			    int nr) +{ +	struct extent_buffer *leaf; +	struct btrfs_item *item; +	int ret = 0; +	int slot; +	int i; +	u32 nritems; +	u32 total_data = 0; +	u32 total_size = 0; +	unsigned int data_end; +	struct btrfs_disk_key disk_key; +	struct btrfs_key found_key; + +	for (i = 0; i < nr; i++) { +		if (total_size + data_size[i] + sizeof(struct btrfs_item) > +		    BTRFS_LEAF_DATA_SIZE(root)) { +			break; +			nr = i; +		} +		total_data += data_size[i]; +		total_size += data_size[i] + sizeof(struct btrfs_item); +	} +	BUG_ON(nr == 0); + +	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); +	if (ret == 0) +		return -EEXIST; +	if (ret < 0) +		goto out; + +	leaf = path->nodes[0]; + +	nritems = btrfs_header_nritems(leaf); +	data_end = leaf_data_end(root, leaf); + +	if (btrfs_leaf_free_space(root, leaf) < total_size) { +		for (i = nr; i >= 0; i--) { +			total_data -= data_size[i]; +			total_size -= data_size[i] + sizeof(struct btrfs_item); +			if (total_size < btrfs_leaf_free_space(root, leaf)) +				break; +		} +		nr = i; +	} + +	slot = path->slots[0]; +	BUG_ON(slot < 0); + +	if (slot != nritems) { +		unsigned int old_data = btrfs_item_end_nr(leaf, slot); + +		item = btrfs_item_nr(leaf, slot); +		btrfs_item_key_to_cpu(leaf, &found_key, slot); + +		/* figure out how many keys we can insert in here */ +		total_data = data_size[0]; +		for (i = 1; i < nr; i++) { +			if (comp_cpu_keys(&found_key, cpu_key + i) <= 0) +				break; +			total_data += data_size[i]; +		} +		nr = i; + +		if (old_data < data_end) { +			btrfs_print_leaf(root, leaf); +			printk(KERN_CRIT "slot %d old_data %d data_end %d\n", +			       slot, old_data, data_end); +			BUG_ON(1); +		} +		/* +		 * item0..itemN ... dataN.offset..dataN.size .. data0.size +		 */ +		/* first correct the data pointers */ +		WARN_ON(leaf->map_token); +		for (i = slot; i < nritems; i++) { +			u32 ioff; + +			item = btrfs_item_nr(leaf, i); +			if (!leaf->map_token) { +				map_extent_buffer(leaf, (unsigned long)item, +					sizeof(struct btrfs_item), +					&leaf->map_token, &leaf->kaddr, +					&leaf->map_start, &leaf->map_len, +					KM_USER1); +			} + +			ioff = btrfs_item_offset(leaf, item); +			btrfs_set_item_offset(leaf, item, ioff - total_data); +		} +		if (leaf->map_token) { +			unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); +			leaf->map_token = NULL; +		} + +		/* shift the items */ +		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), +			      btrfs_item_nr_offset(slot), +			      (nritems - slot) * sizeof(struct btrfs_item)); + +		/* shift the data */ +		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + +			      data_end - total_data, btrfs_leaf_data(leaf) + +			      data_end, old_data - data_end); +		data_end = old_data; +	} else { +		/* +		 * this sucks but it has to be done, if we are inserting at +		 * the end of the leaf only insert 1 of the items, since we +		 * have no way of knowing whats on the next leaf and we'd have +		 * to drop our current locks to figure it out +		 */ +		nr = 1; +	} + +	/* setup the item for the new data */ +	for (i = 0; i < nr; i++) { +		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); +		btrfs_set_item_key(leaf, &disk_key, slot + i); +		item = btrfs_item_nr(leaf, slot + i); +		btrfs_set_item_offset(leaf, item, data_end - data_size[i]); +		data_end -= data_size[i]; +		btrfs_set_item_size(leaf, item, data_size[i]); +	} +	btrfs_set_header_nritems(leaf, nritems + nr); +	btrfs_mark_buffer_dirty(leaf); + +	ret = 0; +	if (slot == 0) { +		btrfs_cpu_key_to_disk(&disk_key, cpu_key); +		ret = fixup_low_keys(trans, root, path, &disk_key, 1); +	} + +	if (btrfs_leaf_free_space(root, leaf) < 0) { +		btrfs_print_leaf(root, leaf); +		BUG(); +	} +out: +	if (!ret) +		ret = nr; +	return ret; +} + +/* + * Given a key and some data, insert items into the tree. + * This does all the path init required, making room in the tree if needed. + */ +int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, +			    struct btrfs_root *root, +			    struct btrfs_path *path, +			    struct btrfs_key *cpu_key, u32 *data_size, +			    int nr) +{ +	struct extent_buffer *leaf; +	struct btrfs_item *item; +	int ret = 0; +	int slot; +	int slot_orig; +	int i; +	u32 nritems; +	u32 total_size = 0; +	u32 total_data = 0; +	unsigned int data_end; +	struct btrfs_disk_key disk_key; + +	for (i = 0; i < nr; i++) +		total_data += data_size[i]; + +	total_size = total_data + (nr * sizeof(struct btrfs_item)); +	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); +	if (ret == 0) +		return -EEXIST; +	if (ret < 0) +		goto out; + +	slot_orig = path->slots[0]; +	leaf = path->nodes[0]; + +	nritems = btrfs_header_nritems(leaf); +	data_end = leaf_data_end(root, leaf); + +	if (btrfs_leaf_free_space(root, leaf) < total_size) { +		btrfs_print_leaf(root, leaf); +		printk(KERN_CRIT "not enough freespace need %u have %d\n", +		       total_size, btrfs_leaf_free_space(root, leaf)); +		BUG(); +	} + +	slot = path->slots[0]; +	BUG_ON(slot < 0); + +	if (slot != nritems) { +		unsigned int old_data = btrfs_item_end_nr(leaf, slot); + +		if (old_data < data_end) { +			btrfs_print_leaf(root, leaf); +			printk(KERN_CRIT "slot %d old_data %d data_end %d\n", +			       slot, old_data, data_end); +			BUG_ON(1); +		} +		/* +		 * item0..itemN ... dataN.offset..dataN.size .. data0.size +		 */ +		/* first correct the data pointers */ +		WARN_ON(leaf->map_token); +		for (i = slot; i < nritems; i++) { +			u32 ioff; + +			item = btrfs_item_nr(leaf, i); +			if (!leaf->map_token) { +				map_extent_buffer(leaf, (unsigned long)item, +					sizeof(struct btrfs_item), +					&leaf->map_token, &leaf->kaddr, +					&leaf->map_start, &leaf->map_len, +					KM_USER1); +			} + +			ioff = btrfs_item_offset(leaf, item); +			btrfs_set_item_offset(leaf, item, ioff - total_data); +		} +		if (leaf->map_token) { +			unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); +			leaf->map_token = NULL; +		} + +		/* shift the items */ +		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), +			      btrfs_item_nr_offset(slot), +			      (nritems - slot) * sizeof(struct btrfs_item)); + +		/* shift the data */ +		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + +			      data_end - total_data, btrfs_leaf_data(leaf) + +			      data_end, old_data - data_end); +		data_end = old_data; +	} + +	/* setup the item for the new data */ +	for (i = 0; i < nr; i++) { +		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); +		btrfs_set_item_key(leaf, &disk_key, slot + i); +		item = btrfs_item_nr(leaf, slot + i); +		btrfs_set_item_offset(leaf, item, data_end - data_size[i]); +		data_end -= data_size[i]; +		btrfs_set_item_size(leaf, item, data_size[i]); +	} +	btrfs_set_header_nritems(leaf, nritems + nr); +	btrfs_mark_buffer_dirty(leaf); + +	ret = 0; +	if (slot == 0) { +		btrfs_cpu_key_to_disk(&disk_key, cpu_key); +		ret = fixup_low_keys(trans, root, path, &disk_key, 1); +	} + +	if (btrfs_leaf_free_space(root, leaf) < 0) { +		btrfs_print_leaf(root, leaf); +		BUG(); +	} +out: +	return ret; +} + +/* + * Given a key and some data, insert an item into the tree. + * This does all the path init required, making room in the tree if needed. + */ +int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root +		      *root, struct btrfs_key *cpu_key, void *data, u32 +		      data_size) +{ +	int ret = 0; +	struct btrfs_path *path; +	struct extent_buffer *leaf; +	unsigned long ptr; + +	path = btrfs_alloc_path(); +	BUG_ON(!path); +	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); +	if (!ret) { +		leaf = path->nodes[0]; +		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); +		write_extent_buffer(leaf, data, ptr, data_size); +		btrfs_mark_buffer_dirty(leaf); +	} +	btrfs_free_path(path); +	return ret; +} + +/* + * delete the pointer from a given node. + * + * the tree should have been previously balanced so the deletion does not + * empty a node. + */ +static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, +		   struct btrfs_path *path, int level, int slot) +{ +	struct extent_buffer *parent = path->nodes[level]; +	u32 nritems; +	int ret = 0; +	int wret; + +	nritems = btrfs_header_nritems(parent); +	if (slot != nritems - 1) { +		memmove_extent_buffer(parent, +			      btrfs_node_key_ptr_offset(slot), +			      btrfs_node_key_ptr_offset(slot + 1), +			      sizeof(struct btrfs_key_ptr) * +			      (nritems - slot - 1)); +	} +	nritems--; +	btrfs_set_header_nritems(parent, nritems); +	if (nritems == 0 && parent == root->node) { +		BUG_ON(btrfs_header_level(root->node) != 1); +		/* just turn the root into a leaf and break */ +		btrfs_set_header_level(root->node, 0); +	} else if (slot == 0) { +		struct btrfs_disk_key disk_key; + +		btrfs_node_key(parent, &disk_key, 0); +		wret = fixup_low_keys(trans, root, path, &disk_key, level + 1); +		if (wret) +			ret = wret; +	} +	btrfs_mark_buffer_dirty(parent); +	return ret; +} + +/* + * a helper function to delete the leaf pointed to by path->slots[1] and + * path->nodes[1].  bytenr is the node block pointer, but since the callers + * already know it, it is faster to have them pass it down than to + * read it out of the node again. + * + * This deletes the pointer in path->nodes[1] and frees the leaf + * block extent.  zero is returned if it all worked out, < 0 otherwise. + * + * The path must have already been setup for deleting the leaf, including + * all the proper balancing.  path->nodes[1] must be locked. + */ +noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans, +			    struct btrfs_root *root, +			    struct btrfs_path *path, u64 bytenr) +{ +	int ret; +	u64 root_gen = btrfs_header_generation(path->nodes[1]); + +	ret = del_ptr(trans, root, path, 1, path->slots[1]); +	if (ret) +		return ret; + +	ret = btrfs_free_extent(trans, root, bytenr, +				btrfs_level_size(root, 0), +				path->nodes[1]->start, +				btrfs_header_owner(path->nodes[1]), +				root_gen, 0, 1); +	return ret; +} +/* + * delete the item at the leaf level in path.  If that empties + * the leaf, remove it from the tree + */ +int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, +		    struct btrfs_path *path, int slot, int nr) +{ +	struct extent_buffer *leaf; +	struct btrfs_item *item; +	int last_off; +	int dsize = 0; +	int ret = 0; +	int wret; +	int i; +	u32 nritems; + +	leaf = path->nodes[0]; +	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); + +	for (i = 0; i < nr; i++) +		dsize += btrfs_item_size_nr(leaf, slot + i); + +	nritems = btrfs_header_nritems(leaf); + +	if (slot + nr != nritems) { +		int data_end = leaf_data_end(root, leaf); + +		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + +			      data_end + dsize, +			      btrfs_leaf_data(leaf) + data_end, +			      last_off - data_end); + +		for (i = slot + nr; i < nritems; i++) { +			u32 ioff; + +			item = btrfs_item_nr(leaf, i); +			if (!leaf->map_token) { +				map_extent_buffer(leaf, (unsigned long)item, +					sizeof(struct btrfs_item), +					&leaf->map_token, &leaf->kaddr, +					&leaf->map_start, &leaf->map_len, +					KM_USER1); +			} +			ioff = btrfs_item_offset(leaf, item); +			btrfs_set_item_offset(leaf, item, ioff + dsize); +		} + +		if (leaf->map_token) { +			unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); +			leaf->map_token = NULL; +		} + +		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), +			      btrfs_item_nr_offset(slot + nr), +			      sizeof(struct btrfs_item) * +			      (nritems - slot - nr)); +	} +	btrfs_set_header_nritems(leaf, nritems - nr); +	nritems -= nr; + +	/* delete the leaf if we've emptied it */ +	if (nritems == 0) { +		if (leaf == root->node) { +			btrfs_set_header_level(leaf, 0); +		} else { +			ret = btrfs_del_leaf(trans, root, path, leaf->start); +			BUG_ON(ret); +		} +	} else { +		int used = leaf_space_used(leaf, 0, nritems); +		if (slot == 0) { +			struct btrfs_disk_key disk_key; + +			btrfs_item_key(leaf, &disk_key, 0); +			wret = fixup_low_keys(trans, root, path, +					      &disk_key, 1); +			if (wret) +				ret = wret; +		} + +		/* delete the leaf if it is mostly empty */ +		if (used < BTRFS_LEAF_DATA_SIZE(root) / 4) { +			/* push_leaf_left fixes the path. +			 * make sure the path still points to our leaf +			 * for possible call to del_ptr below +			 */ +			slot = path->slots[1]; +			extent_buffer_get(leaf); + +			wret = push_leaf_left(trans, root, path, 1, 1); +			if (wret < 0 && wret != -ENOSPC) +				ret = wret; + +			if (path->nodes[0] == leaf && +			    btrfs_header_nritems(leaf)) { +				wret = push_leaf_right(trans, root, path, 1, 1); +				if (wret < 0 && wret != -ENOSPC) +					ret = wret; +			} + +			if (btrfs_header_nritems(leaf) == 0) { +				path->slots[1] = slot; +				ret = btrfs_del_leaf(trans, root, path, +						     leaf->start); +				BUG_ON(ret); +				free_extent_buffer(leaf); +			} else { +				/* if we're still in the path, make sure +				 * we're dirty.  Otherwise, one of the +				 * push_leaf functions must have already +				 * dirtied this buffer +				 */ +				if (path->nodes[0] == leaf) +					btrfs_mark_buffer_dirty(leaf); +				free_extent_buffer(leaf); +			} +		} else { +			btrfs_mark_buffer_dirty(leaf); +		} +	} +	return ret; +} + +/* + * search the tree again to find a leaf with lesser keys + * returns 0 if it found something or 1 if there are no lesser leaves. + * returns < 0 on io errors. + * + * This may release the path, and so you may lose any locks held at the + * time you call it. + */ +int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) +{ +	struct btrfs_key key; +	struct btrfs_disk_key found_key; +	int ret; + +	btrfs_item_key_to_cpu(path->nodes[0], &key, 0); + +	if (key.offset > 0) +		key.offset--; +	else if (key.type > 0) +		key.type--; +	else if (key.objectid > 0) +		key.objectid--; +	else +		return 1; + +	btrfs_release_path(root, path); +	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); +	if (ret < 0) +		return ret; +	btrfs_item_key(path->nodes[0], &found_key, 0); +	ret = comp_keys(&found_key, &key); +	if (ret < 0) +		return 0; +	return 1; +} + +/* + * A helper function to walk down the tree starting at min_key, and looking + * for nodes or leaves that are either in cache or have a minimum + * transaction id.  This is used by the btree defrag code, and tree logging + * + * This does not cow, but it does stuff the starting key it finds back + * into min_key, so you can call btrfs_search_slot with cow=1 on the + * key and get a writable path. + * + * This does lock as it descends, and path->keep_locks should be set + * to 1 by the caller. + * + * This honors path->lowest_level to prevent descent past a given level + * of the tree. + * + * min_trans indicates the oldest transaction that you are interested + * in walking through.  Any nodes or leaves older than min_trans are + * skipped over (without reading them). + * + * returns zero if something useful was found, < 0 on error and 1 if there + * was nothing in the tree that matched the search criteria. + */ +int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, +			 struct btrfs_key *max_key, +			 struct btrfs_path *path, int cache_only, +			 u64 min_trans) +{ +	struct extent_buffer *cur; +	struct btrfs_key found_key; +	int slot; +	int sret; +	u32 nritems; +	int level; +	int ret = 1; + +	WARN_ON(!path->keep_locks); +again: +	cur = btrfs_lock_root_node(root); +	level = btrfs_header_level(cur); +	WARN_ON(path->nodes[level]); +	path->nodes[level] = cur; +	path->locks[level] = 1; + +	if (btrfs_header_generation(cur) < min_trans) { +		ret = 1; +		goto out; +	} +	while (1) { +		nritems = btrfs_header_nritems(cur); +		level = btrfs_header_level(cur); +		sret = bin_search(cur, min_key, level, &slot); + +		/* at the lowest level, we're done, setup the path and exit */ +		if (level == path->lowest_level) { +			if (slot >= nritems) +				goto find_next_key; +			ret = 0; +			path->slots[level] = slot; +			btrfs_item_key_to_cpu(cur, &found_key, slot); +			goto out; +		} +		if (sret && slot > 0) +			slot--; +		/* +		 * check this node pointer against the cache_only and +		 * min_trans parameters.  If it isn't in cache or is too +		 * old, skip to the next one. +		 */ +		while (slot < nritems) { +			u64 blockptr; +			u64 gen; +			struct extent_buffer *tmp; +			struct btrfs_disk_key disk_key; + +			blockptr = btrfs_node_blockptr(cur, slot); +			gen = btrfs_node_ptr_generation(cur, slot); +			if (gen < min_trans) { +				slot++; +				continue; +			} +			if (!cache_only) +				break; + +			if (max_key) { +				btrfs_node_key(cur, &disk_key, slot); +				if (comp_keys(&disk_key, max_key) >= 0) { +					ret = 1; +					goto out; +				} +			} + +			tmp = btrfs_find_tree_block(root, blockptr, +					    btrfs_level_size(root, level - 1)); + +			if (tmp && btrfs_buffer_uptodate(tmp, gen)) { +				free_extent_buffer(tmp); +				break; +			} +			if (tmp) +				free_extent_buffer(tmp); +			slot++; +		} +find_next_key: +		/* +		 * we didn't find a candidate key in this node, walk forward +		 * and find another one +		 */ +		if (slot >= nritems) { +			path->slots[level] = slot; +			sret = btrfs_find_next_key(root, path, min_key, level, +						  cache_only, min_trans); +			if (sret == 0) { +				btrfs_release_path(root, path); +				goto again; +			} else { +				goto out; +			} +		} +		/* save our key for returning back */ +		btrfs_node_key_to_cpu(cur, &found_key, slot); +		path->slots[level] = slot; +		if (level == path->lowest_level) { +			ret = 0; +			unlock_up(path, level, 1); +			goto out; +		} +		cur = read_node_slot(root, cur, slot); + +		btrfs_tree_lock(cur); +		path->locks[level - 1] = 1; +		path->nodes[level - 1] = cur; +		unlock_up(path, level, 1); +	} +out: +	if (ret == 0) +		memcpy(min_key, &found_key, sizeof(found_key)); +	return ret; +} + +/* + * this is similar to btrfs_next_leaf, but does not try to preserve + * and fixup the path.  It looks for and returns the next key in the + * tree based on the current path and the cache_only and min_trans + * parameters. + * + * 0 is returned if another key is found, < 0 if there are any errors + * and 1 is returned if there are no higher keys in the tree + * + * path->keep_locks should be set to 1 on the search made before + * calling this function. + */ +int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, +			struct btrfs_key *key, int lowest_level, +			int cache_only, u64 min_trans) +{ +	int level = lowest_level; +	int slot; +	struct extent_buffer *c; + +	WARN_ON(!path->keep_locks); +	while (level < BTRFS_MAX_LEVEL) { +		if (!path->nodes[level]) +			return 1; + +		slot = path->slots[level] + 1; +		c = path->nodes[level]; +next: +		if (slot >= btrfs_header_nritems(c)) { +			level++; +			if (level == BTRFS_MAX_LEVEL) +				return 1; +			continue; +		} +		if (level == 0) +			btrfs_item_key_to_cpu(c, key, slot); +		else { +			u64 blockptr = btrfs_node_blockptr(c, slot); +			u64 gen = btrfs_node_ptr_generation(c, slot); + +			if (cache_only) { +				struct extent_buffer *cur; +				cur = btrfs_find_tree_block(root, blockptr, +					    btrfs_level_size(root, level - 1)); +				if (!cur || !btrfs_buffer_uptodate(cur, gen)) { +					slot++; +					if (cur) +						free_extent_buffer(cur); +					goto next; +				} +				free_extent_buffer(cur); +			} +			if (gen < min_trans) { +				slot++; +				goto next; +			} +			btrfs_node_key_to_cpu(c, key, slot); +		} +		return 0; +	} +	return 1; +} + +/* + * search the tree again to find a leaf with greater keys + * returns 0 if it found something or 1 if there are no greater leaves. + * returns < 0 on io errors. + */ +int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) +{ +	int slot; +	int level = 1; +	struct extent_buffer *c; +	struct extent_buffer *next = NULL; +	struct btrfs_key key; +	u32 nritems; +	int ret; + +	nritems = btrfs_header_nritems(path->nodes[0]); +	if (nritems == 0) +		return 1; + +	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); + +	btrfs_release_path(root, path); +	path->keep_locks = 1; +	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); +	path->keep_locks = 0; + +	if (ret < 0) +		return ret; + +	nritems = btrfs_header_nritems(path->nodes[0]); +	/* +	 * by releasing the path above we dropped all our locks.  A balance +	 * could have added more items next to the key that used to be +	 * at the very end of the block.  So, check again here and +	 * advance the path if there are now more items available. +	 */ +	if (nritems > 0 && path->slots[0] < nritems - 1) { +		path->slots[0]++; +		goto done; +	} + +	while (level < BTRFS_MAX_LEVEL) { +		if (!path->nodes[level]) +			return 1; + +		slot = path->slots[level] + 1; +		c = path->nodes[level]; +		if (slot >= btrfs_header_nritems(c)) { +			level++; +			if (level == BTRFS_MAX_LEVEL) +				return 1; +			continue; +		} + +		if (next) { +			btrfs_tree_unlock(next); +			free_extent_buffer(next); +		} + +		if (level == 1 && (path->locks[1] || path->skip_locking) && +		    path->reada) +			reada_for_search(root, path, level, slot, 0); + +		next = read_node_slot(root, c, slot); +		if (!path->skip_locking) { +			WARN_ON(!btrfs_tree_locked(c)); +			btrfs_tree_lock(next); +		} +		break; +	} +	path->slots[level] = slot; +	while (1) { +		level--; +		c = path->nodes[level]; +		if (path->locks[level]) +			btrfs_tree_unlock(c); +		free_extent_buffer(c); +		path->nodes[level] = next; +		path->slots[level] = 0; +		if (!path->skip_locking) +			path->locks[level] = 1; +		if (!level) +			break; +		if (level == 1 && path->locks[1] && path->reada) +			reada_for_search(root, path, level, slot, 0); +		next = read_node_slot(root, next, 0); +		if (!path->skip_locking) { +			WARN_ON(!btrfs_tree_locked(path->nodes[level])); +			btrfs_tree_lock(next); +		} +	} +done: +	unlock_up(path, 0, 1); +	return 0; +} + +/* + * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps + * searching until it gets past min_objectid or finds an item of 'type' + * + * returns 0 if something is found, 1 if nothing was found and < 0 on error + */ +int btrfs_previous_item(struct btrfs_root *root, +			struct btrfs_path *path, u64 min_objectid, +			int type) +{ +	struct btrfs_key found_key; +	struct extent_buffer *leaf; +	u32 nritems; +	int ret; + +	while (1) { +		if (path->slots[0] == 0) { +			ret = btrfs_prev_leaf(root, path); +			if (ret != 0) +				return ret; +		} else { +			path->slots[0]--; +		} +		leaf = path->nodes[0]; +		nritems = btrfs_header_nritems(leaf); +		if (nritems == 0) +			return 1; +		if (path->slots[0] == nritems) +			path->slots[0]--; + +		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); +		if (found_key.type == type) +			return 0; +		if (found_key.objectid < min_objectid) +			break; +		if (found_key.objectid == min_objectid && +		    found_key.type < type) +			break; +	} +	return 1; +} | 
