summaryrefslogtreecommitdiff
path: root/kernel
diff options
context:
space:
mode:
Diffstat (limited to 'kernel')
-rw-r--r--kernel/ksysfs.c7
-rw-r--r--kernel/profile.c231
-rw-r--r--kernel/task_work.c6
-rw-r--r--kernel/time/timer_migration.c393
-rw-r--r--kernel/time/timer_migration.h27
-rw-r--r--kernel/trace/preemptirq_delay_test.c2
6 files changed, 234 insertions, 432 deletions
diff --git a/kernel/ksysfs.c b/kernel/ksysfs.c
index 07fb5987b42b..1bab21b4718f 100644
--- a/kernel/ksysfs.c
+++ b/kernel/ksysfs.c
@@ -92,7 +92,14 @@ static ssize_t profiling_store(struct kobject *kobj,
const char *buf, size_t count)
{
int ret;
+ static DEFINE_MUTEX(lock);
+ /*
+ * We need serialization, for profile_setup() initializes prof_on
+ * value and profile_init() must not reallocate prof_buffer after
+ * once allocated.
+ */
+ guard(mutex)(&lock);
if (prof_on)
return -EEXIST;
/*
diff --git a/kernel/profile.c b/kernel/profile.c
index 2b775cc5c28f..ff68d3816182 100644
--- a/kernel/profile.c
+++ b/kernel/profile.c
@@ -47,13 +47,6 @@ static unsigned short int prof_shift;
int prof_on __read_mostly;
EXPORT_SYMBOL_GPL(prof_on);
-static cpumask_var_t prof_cpu_mask;
-#if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
-static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
-static DEFINE_PER_CPU(int, cpu_profile_flip);
-static DEFINE_MUTEX(profile_flip_mutex);
-#endif /* CONFIG_SMP */
-
int profile_setup(char *str)
{
static const char schedstr[] = "schedule";
@@ -114,11 +107,6 @@ int __ref profile_init(void)
buffer_bytes = prof_len*sizeof(atomic_t);
- if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL))
- return -ENOMEM;
-
- cpumask_copy(prof_cpu_mask, cpu_possible_mask);
-
prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN);
if (prof_buffer)
return 0;
@@ -132,195 +120,16 @@ int __ref profile_init(void)
if (prof_buffer)
return 0;
- free_cpumask_var(prof_cpu_mask);
return -ENOMEM;
}
-#if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
-/*
- * Each cpu has a pair of open-addressed hashtables for pending
- * profile hits. read_profile() IPI's all cpus to request them
- * to flip buffers and flushes their contents to prof_buffer itself.
- * Flip requests are serialized by the profile_flip_mutex. The sole
- * use of having a second hashtable is for avoiding cacheline
- * contention that would otherwise happen during flushes of pending
- * profile hits required for the accuracy of reported profile hits
- * and so resurrect the interrupt livelock issue.
- *
- * The open-addressed hashtables are indexed by profile buffer slot
- * and hold the number of pending hits to that profile buffer slot on
- * a cpu in an entry. When the hashtable overflows, all pending hits
- * are accounted to their corresponding profile buffer slots with
- * atomic_add() and the hashtable emptied. As numerous pending hits
- * may be accounted to a profile buffer slot in a hashtable entry,
- * this amortizes a number of atomic profile buffer increments likely
- * to be far larger than the number of entries in the hashtable,
- * particularly given that the number of distinct profile buffer
- * positions to which hits are accounted during short intervals (e.g.
- * several seconds) is usually very small. Exclusion from buffer
- * flipping is provided by interrupt disablement (note that for
- * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
- * process context).
- * The hash function is meant to be lightweight as opposed to strong,
- * and was vaguely inspired by ppc64 firmware-supported inverted
- * pagetable hash functions, but uses a full hashtable full of finite
- * collision chains, not just pairs of them.
- *
- * -- nyc
- */
-static void __profile_flip_buffers(void *unused)
-{
- int cpu = smp_processor_id();
-
- per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
-}
-
-static void profile_flip_buffers(void)
-{
- int i, j, cpu;
-
- mutex_lock(&profile_flip_mutex);
- j = per_cpu(cpu_profile_flip, get_cpu());
- put_cpu();
- on_each_cpu(__profile_flip_buffers, NULL, 1);
- for_each_online_cpu(cpu) {
- struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
- for (i = 0; i < NR_PROFILE_HIT; ++i) {
- if (!hits[i].hits) {
- if (hits[i].pc)
- hits[i].pc = 0;
- continue;
- }
- atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
- hits[i].hits = hits[i].pc = 0;
- }
- }
- mutex_unlock(&profile_flip_mutex);
-}
-
-static void profile_discard_flip_buffers(void)
-{
- int i, cpu;
-
- mutex_lock(&profile_flip_mutex);
- i = per_cpu(cpu_profile_flip, get_cpu());
- put_cpu();
- on_each_cpu(__profile_flip_buffers, NULL, 1);
- for_each_online_cpu(cpu) {
- struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
- memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
- }
- mutex_unlock(&profile_flip_mutex);
-}
-
-static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
-{
- unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
- int i, j, cpu;
- struct profile_hit *hits;
-
- pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
- i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
- secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
- cpu = get_cpu();
- hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
- if (!hits) {
- put_cpu();
- return;
- }
- /*
- * We buffer the global profiler buffer into a per-CPU
- * queue and thus reduce the number of global (and possibly
- * NUMA-alien) accesses. The write-queue is self-coalescing:
- */
- local_irq_save(flags);
- do {
- for (j = 0; j < PROFILE_GRPSZ; ++j) {
- if (hits[i + j].pc == pc) {
- hits[i + j].hits += nr_hits;
- goto out;
- } else if (!hits[i + j].hits) {
- hits[i + j].pc = pc;
- hits[i + j].hits = nr_hits;
- goto out;
- }
- }
- i = (i + secondary) & (NR_PROFILE_HIT - 1);
- } while (i != primary);
-
- /*
- * Add the current hit(s) and flush the write-queue out
- * to the global buffer:
- */
- atomic_add(nr_hits, &prof_buffer[pc]);
- for (i = 0; i < NR_PROFILE_HIT; ++i) {
- atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
- hits[i].pc = hits[i].hits = 0;
- }
-out:
- local_irq_restore(flags);
- put_cpu();
-}
-
-static int profile_dead_cpu(unsigned int cpu)
-{
- struct page *page;
- int i;
-
- if (cpumask_available(prof_cpu_mask))
- cpumask_clear_cpu(cpu, prof_cpu_mask);
-
- for (i = 0; i < 2; i++) {
- if (per_cpu(cpu_profile_hits, cpu)[i]) {
- page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[i]);
- per_cpu(cpu_profile_hits, cpu)[i] = NULL;
- __free_page(page);
- }
- }
- return 0;
-}
-
-static int profile_prepare_cpu(unsigned int cpu)
-{
- int i, node = cpu_to_mem(cpu);
- struct page *page;
-
- per_cpu(cpu_profile_flip, cpu) = 0;
-
- for (i = 0; i < 2; i++) {
- if (per_cpu(cpu_profile_hits, cpu)[i])
- continue;
-
- page = __alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
- if (!page) {
- profile_dead_cpu(cpu);
- return -ENOMEM;
- }
- per_cpu(cpu_profile_hits, cpu)[i] = page_address(page);
-
- }
- return 0;
-}
-
-static int profile_online_cpu(unsigned int cpu)
-{
- if (cpumask_available(prof_cpu_mask))
- cpumask_set_cpu(cpu, prof_cpu_mask);
-
- return 0;
-}
-
-#else /* !CONFIG_SMP */
-#define profile_flip_buffers() do { } while (0)
-#define profile_discard_flip_buffers() do { } while (0)
-
static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
{
unsigned long pc;
pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
- atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
+ if (pc < prof_len)
+ atomic_add(nr_hits, &prof_buffer[pc]);
}
-#endif /* !CONFIG_SMP */
void profile_hits(int type, void *__pc, unsigned int nr_hits)
{
@@ -334,8 +143,8 @@ void profile_tick(int type)
{
struct pt_regs *regs = get_irq_regs();
- if (!user_mode(regs) && cpumask_available(prof_cpu_mask) &&
- cpumask_test_cpu(smp_processor_id(), prof_cpu_mask))
+ /* This is the old kernel-only legacy profiling */
+ if (!user_mode(regs))
profile_hit(type, (void *)profile_pc(regs));
}
@@ -358,7 +167,6 @@ read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
char *pnt;
unsigned long sample_step = 1UL << prof_shift;
- profile_flip_buffers();
if (p >= (prof_len+1)*sizeof(unsigned int))
return 0;
if (count > (prof_len+1)*sizeof(unsigned int) - p)
@@ -404,7 +212,6 @@ static ssize_t write_profile(struct file *file, const char __user *buf,
return -EINVAL;
}
#endif
- profile_discard_flip_buffers();
memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
return count;
}
@@ -418,40 +225,14 @@ static const struct proc_ops profile_proc_ops = {
int __ref create_proc_profile(void)
{
struct proc_dir_entry *entry;
-#ifdef CONFIG_SMP
- enum cpuhp_state online_state;
-#endif
-
int err = 0;
if (!prof_on)
return 0;
-#ifdef CONFIG_SMP
- err = cpuhp_setup_state(CPUHP_PROFILE_PREPARE, "PROFILE_PREPARE",
- profile_prepare_cpu, profile_dead_cpu);
- if (err)
- return err;
-
- err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "AP_PROFILE_ONLINE",
- profile_online_cpu, NULL);
- if (err < 0)
- goto err_state_prep;
- online_state = err;
- err = 0;
-#endif
entry = proc_create("profile", S_IWUSR | S_IRUGO,
NULL, &profile_proc_ops);
- if (!entry)
- goto err_state_onl;
- proc_set_size(entry, (1 + prof_len) * sizeof(atomic_t));
-
- return err;
-err_state_onl:
-#ifdef CONFIG_SMP
- cpuhp_remove_state(online_state);
-err_state_prep:
- cpuhp_remove_state(CPUHP_PROFILE_PREPARE);
-#endif
+ if (entry)
+ proc_set_size(entry, (1 + prof_len) * sizeof(atomic_t));
return err;
}
subsys_initcall(create_proc_profile);
diff --git a/kernel/task_work.c b/kernel/task_work.c
index 5c2daa7ad3f9..5d14d639ac71 100644
--- a/kernel/task_work.c
+++ b/kernel/task_work.c
@@ -6,12 +6,14 @@
static struct callback_head work_exited; /* all we need is ->next == NULL */
+#ifdef CONFIG_IRQ_WORK
static void task_work_set_notify_irq(struct irq_work *entry)
{
test_and_set_tsk_thread_flag(current, TIF_NOTIFY_RESUME);
}
static DEFINE_PER_CPU(struct irq_work, irq_work_NMI_resume) =
IRQ_WORK_INIT_HARD(task_work_set_notify_irq);
+#endif
/**
* task_work_add - ask the @task to execute @work->func()
@@ -57,6 +59,8 @@ int task_work_add(struct task_struct *task, struct callback_head *work,
if (notify == TWA_NMI_CURRENT) {
if (WARN_ON_ONCE(task != current))
return -EINVAL;
+ if (!IS_ENABLED(CONFIG_IRQ_WORK))
+ return -EINVAL;
} else {
/* record the work call stack in order to print it in KASAN reports */
kasan_record_aux_stack(work);
@@ -81,9 +85,11 @@ int task_work_add(struct task_struct *task, struct callback_head *work,
case TWA_SIGNAL_NO_IPI:
__set_notify_signal(task);
break;
+#ifdef CONFIG_IRQ_WORK
case TWA_NMI_CURRENT:
irq_work_queue(this_cpu_ptr(&irq_work_NMI_resume));
break;
+#endif
default:
WARN_ON_ONCE(1);
break;
diff --git a/kernel/time/timer_migration.c b/kernel/time/timer_migration.c
index 84413114db5c..8d57f7686bb0 100644
--- a/kernel/time/timer_migration.c
+++ b/kernel/time/timer_migration.c
@@ -475,9 +475,54 @@ static bool tmigr_check_lonely(struct tmigr_group *group)
return bitmap_weight(&active, BIT_CNT) <= 1;
}
-typedef bool (*up_f)(struct tmigr_group *, struct tmigr_group *, void *);
+/**
+ * struct tmigr_walk - data required for walking the hierarchy
+ * @nextexp: Next CPU event expiry information which is handed into
+ * the timer migration code by the timer code
+ * (get_next_timer_interrupt())
+ * @firstexp: Contains the first event expiry information when
+ * hierarchy is completely idle. When CPU itself was the
+ * last going idle, information makes sure, that CPU will
+ * be back in time. When using this value in the remote
+ * expiry case, firstexp is stored in the per CPU tmigr_cpu
+ * struct of CPU which expires remote timers. It is updated
+ * in top level group only. Be aware, there could occur a
+ * new top level of the hierarchy between the 'top level
+ * call' in tmigr_update_events() and the check for the
+ * parent group in walk_groups(). Then @firstexp might
+ * contain a value != KTIME_MAX even if it was not the
+ * final top level. This is not a problem, as the worst
+ * outcome is a CPU which might wake up a little early.
+ * @evt: Pointer to tmigr_event which needs to be queued (of idle
+ * child group)
+ * @childmask: groupmask of child group
+ * @remote: Is set, when the new timer path is executed in
+ * tmigr_handle_remote_cpu()
+ * @basej: timer base in jiffies
+ * @now: timer base monotonic
+ * @check: is set if there is the need to handle remote timers;
+ * required in tmigr_requires_handle_remote() only
+ * @tmc_active: this flag indicates, whether the CPU which triggers
+ * the hierarchy walk is !idle in the timer migration
+ * hierarchy. When the CPU is idle and the whole hierarchy is
+ * idle, only the first event of the top level has to be
+ * considered.
+ */
+struct tmigr_walk {
+ u64 nextexp;
+ u64 firstexp;
+ struct tmigr_event *evt;
+ u8 childmask;
+ bool remote;
+ unsigned long basej;
+ u64 now;
+ bool check;
+ bool tmc_active;
+};
+
+typedef bool (*up_f)(struct tmigr_group *, struct tmigr_group *, struct tmigr_walk *);
-static void __walk_groups(up_f up, void *data,
+static void __walk_groups(up_f up, struct tmigr_walk *data,
struct tmigr_cpu *tmc)
{
struct tmigr_group *child = NULL, *group = tmc->tmgroup;
@@ -490,64 +535,17 @@ static void __walk_groups(up_f up, void *data,
child = group;
group = group->parent;
+ data->childmask = child->groupmask;
} while (group);
}
-static void walk_groups(up_f up, void *data, struct tmigr_cpu *tmc)
+static void walk_groups(up_f up, struct tmigr_walk *data, struct tmigr_cpu *tmc)
{
lockdep_assert_held(&tmc->lock);
__walk_groups(up, data, tmc);
}
-/**
- * struct tmigr_walk - data required for walking the hierarchy
- * @nextexp: Next CPU event expiry information which is handed into
- * the timer migration code by the timer code
- * (get_next_timer_interrupt())
- * @firstexp: Contains the first event expiry information when last
- * active CPU of hierarchy is on the way to idle to make
- * sure CPU will be back in time.
- * @evt: Pointer to tmigr_event which needs to be queued (of idle
- * child group)
- * @childmask: childmask of child group
- * @remote: Is set, when the new timer path is executed in
- * tmigr_handle_remote_cpu()
- */
-struct tmigr_walk {
- u64 nextexp;
- u64 firstexp;
- struct tmigr_event *evt;
- u8 childmask;
- bool remote;
-};
-
-/**
- * struct tmigr_remote_data - data required for remote expiry hierarchy walk
- * @basej: timer base in jiffies
- * @now: timer base monotonic
- * @firstexp: returns expiry of the first timer in the idle timer
- * migration hierarchy to make sure the timer is handled in
- * time; it is stored in the per CPU tmigr_cpu struct of
- * CPU which expires remote timers
- * @childmask: childmask of child group
- * @check: is set if there is the need to handle remote timers;
- * required in tmigr_requires_handle_remote() only
- * @tmc_active: this flag indicates, whether the CPU which triggers
- * the hierarchy walk is !idle in the timer migration
- * hierarchy. When the CPU is idle and the whole hierarchy is
- * idle, only the first event of the top level has to be
- * considered.
- */
-struct tmigr_remote_data {
- unsigned long basej;
- u64 now;
- u64 firstexp;
- u8 childmask;
- bool check;
- bool tmc_active;
-};
-
/*
* Returns the next event of the timerqueue @group->events
*
@@ -618,10 +616,9 @@ static u64 tmigr_next_groupevt_expires(struct tmigr_group *group)
static bool tmigr_active_up(struct tmigr_group *group,
struct tmigr_group *child,
- void *ptr)
+ struct tmigr_walk *data)
{
union tmigr_state curstate, newstate;
- struct tmigr_walk *data = ptr;
bool walk_done;
u8 childmask;
@@ -649,8 +646,7 @@ static bool tmigr_active_up(struct tmigr_group *group,
} while (!atomic_try_cmpxchg(&group->migr_state, &curstate.state, newstate.state));
- if ((walk_done == false) && group->parent)
- data->childmask = group->childmask;
+ trace_tmigr_group_set_cpu_active(group, newstate, childmask);
/*
* The group is active (again). The group event might be still queued
@@ -666,8 +662,6 @@ static bool tmigr_active_up(struct tmigr_group *group,
*/
group->groupevt.ignore = true;
- trace_tmigr_group_set_cpu_active(group, newstate, childmask);
-
return walk_done;
}
@@ -675,7 +669,7 @@ static void __tmigr_cpu_activate(struct tmigr_cpu *tmc)
{
struct tmigr_walk data;
- data.childmask = tmc->childmask;
+ data.childmask = tmc->groupmask;
trace_tmigr_cpu_active(tmc);
@@ -860,10 +854,8 @@ unlock:
static bool tmigr_new_timer_up(struct tmigr_group *group,
struct tmigr_group *child,
- void *ptr)
+ struct tmigr_walk *data)
{
- struct tmigr_walk *data = ptr;
-
return tmigr_update_events(group, child, data);
}
@@ -995,9 +987,8 @@ unlock:
static bool tmigr_handle_remote_up(struct tmigr_group *group,
struct tmigr_group *child,
- void *ptr)
+ struct tmigr_walk *data)
{
- struct tmigr_remote_data *data = ptr;
struct tmigr_event *evt;
unsigned long jif;
u8 childmask;
@@ -1034,12 +1025,10 @@ again:
}
/*
- * Update of childmask for the next level and keep track of the expiry
- * of the first event that needs to be handled (group->next_expiry was
- * updated by tmigr_next_expired_groupevt(), next was set by
- * tmigr_handle_remote_cpu()).
+ * Keep track of the expiry of the first event that needs to be handled
+ * (group->next_expiry was updated by tmigr_next_expired_groupevt(),
+ * next was set by tmigr_handle_remote_cpu()).
*/
- data->childmask = group->childmask;
data->firstexp = group->next_expiry;
raw_spin_unlock_irq(&group->lock);
@@ -1055,12 +1044,12 @@ again:
void tmigr_handle_remote(void)
{
struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
- struct tmigr_remote_data data;
+ struct tmigr_walk data;
if (tmigr_is_not_available(tmc))
return;
- data.childmask = tmc->childmask;
+ data.childmask = tmc->groupmask;
data.firstexp = KTIME_MAX;
/*
@@ -1068,7 +1057,7 @@ void tmigr_handle_remote(void)
* in tmigr_handle_remote_up() anyway. Keep this check to speed up the
* return when nothing has to be done.
*/
- if (!tmigr_check_migrator(tmc->tmgroup, tmc->childmask)) {
+ if (!tmigr_check_migrator(tmc->tmgroup, tmc->groupmask)) {
/*
* If this CPU was an idle migrator, make sure to clear its wakeup
* value so it won't chase timers that have already expired elsewhere.
@@ -1097,9 +1086,8 @@ void tmigr_handle_remote(void)
static bool tmigr_requires_handle_remote_up(struct tmigr_group *group,
struct tmigr_group *child,
- void *ptr)
+ struct tmigr_walk *data)
{
- struct tmigr_remote_data *data = ptr;
u8 childmask;
childmask = data->childmask;
@@ -1118,7 +1106,7 @@ static bool tmigr_requires_handle_remote_up(struct tmigr_group *group,
* group before reading the next_expiry value.
*/
if (group->parent && !data->tmc_active)
- goto out;
+ return false;
/*
* The lock is required on 32bit architectures to read the variable
@@ -1143,9 +1131,6 @@ static bool tmigr_requires_handle_remote_up(struct tmigr_group *group,
raw_spin_unlock(&group->lock);
}
-out:
- /* Update of childmask for the next level */
- data->childmask = group->childmask;
return false;
}
@@ -1157,7 +1142,7 @@ out:
bool tmigr_requires_handle_remote(void)
{
struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
- struct tmigr_remote_data data;
+ struct tmigr_walk data;
unsigned long jif;
bool ret = false;
@@ -1165,7 +1150,7 @@ bool tmigr_requires_handle_remote(void)
return ret;
data.now = get_jiffies_update(&jif);
- data.childmask = tmc->childmask;
+ data.childmask = tmc->groupmask;
data.firstexp = KTIME_MAX;
data.tmc_active = !tmc->idle;
data.check = false;
@@ -1230,14 +1215,13 @@ u64 tmigr_cpu_new_timer(u64 nextexp)
if (nextexp != tmc->cpuevt.nextevt.expires ||
tmc->cpuevt.ignore) {
ret = tmigr_new_timer(tmc, nextexp);
+ /*
+ * Make sure the reevaluation of timers in idle path
+ * will not miss an event.
+ */
+ WRITE_ONCE(tmc->wakeup, ret);
}
}
- /*
- * Make sure the reevaluation of timers in idle path will not miss an
- * event.
- */
- WRITE_ONCE(tmc->wakeup, ret);
-
trace_tmigr_cpu_new_timer_idle(tmc, nextexp);
raw_spin_unlock(&tmc->lock);
return ret;
@@ -1245,10 +1229,9 @@ u64 tmigr_cpu_new_timer(u64 nextexp)
static bool tmigr_inactive_up(struct tmigr_group *group,
struct tmigr_group *child,
- void *ptr)
+ struct tmigr_walk *data)
{
union tmigr_state curstate, newstate, childstate;
- struct tmigr_walk *data = ptr;
bool walk_done;
u8 childmask;
@@ -1299,9 +1282,10 @@ static bool tmigr_inactive_up(struct tmigr_group *group,
WARN_ON_ONCE((newstate.migrator != TMIGR_NONE) && !(newstate.active));
- if (atomic_try_cmpxchg(&group->migr_state, &curstate.state,
- newstate.state))
+ if (atomic_try_cmpxchg(&group->migr_state, &curstate.state, newstate.state)) {
+ trace_tmigr_group_set_cpu_inactive(group, newstate, childmask);
break;
+ }
/*
* The memory barrier is paired with the cmpxchg() in
@@ -1317,22 +1301,6 @@ static bool tmigr_inactive_up(struct tmigr_group *group,
/* Event Handling */
tmigr_update_events(group, child, data);
- if (group->parent && (walk_done == false))
- data->childmask = group->childmask;
-
- /*
- * data->firstexp was set by tmigr_update_events() and contains the
- * expiry of the first global event which needs to be handled. It
- * differs from KTIME_MAX if:
- * - group is the top level group and
- * - group is idle (which means CPU was the last active CPU in the
- * hierarchy) and
- * - there is a pending event in the hierarchy
- */
- WARN_ON_ONCE(data->firstexp != KTIME_MAX && group->parent);
-
- trace_tmigr_group_set_cpu_inactive(group, newstate, childmask);
-
return walk_done;
}
@@ -1341,7 +1309,7 @@ static u64 __tmigr_cpu_deactivate(struct tmigr_cpu *tmc, u64 nextexp)
struct tmigr_walk data = { .nextexp = nextexp,
.firstexp = KTIME_MAX,
.evt = &tmc->cpuevt,
- .childmask = tmc->childmask };
+ .childmask = tmc->groupmask };
/*
* If nextexp is KTIME_MAX, the CPU event will be ignored because the
@@ -1400,7 +1368,7 @@ u64 tmigr_cpu_deactivate(u64 nextexp)
* the only one in the level 0 group; and if it is the
* only one in level 0 group, but there are more than a
* single group active on the way to top level)
- * * nextevt - when CPU is offline and has to handle timer on his own
+ * * nextevt - when CPU is offline and has to handle timer on its own
* or when on the way to top in every group only a single
* child is active but @nextevt is before the lowest
* next_expiry encountered while walking up to top level.
@@ -1419,7 +1387,7 @@ u64 tmigr_quick_check(u64 nextevt)
if (WARN_ON_ONCE(tmc->idle))
return nextevt;
- if (!tmigr_check_migrator_and_lonely(tmc->tmgroup, tmc->childmask))
+ if (!tmigr_check_migrator_and_lonely(tmc->tmgroup, tmc->groupmask))
return KTIME_MAX;
do {
@@ -1442,6 +1410,66 @@ u64 tmigr_quick_check(u64 nextevt)
return KTIME_MAX;
}
+/*
+ * tmigr_trigger_active() - trigger a CPU to become active again
+ *
+ * This function is executed on a CPU which is part of cpu_online_mask, when the
+ * last active CPU in the hierarchy is offlining. With this, it is ensured that
+ * the other CPU is active and takes over the migrator duty.
+ */
+static long tmigr_trigger_active(void *unused)
+{
+ struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
+
+ WARN_ON_ONCE(!tmc->online || tmc->idle);
+
+ return 0;
+}
+
+static int tmigr_cpu_offline(unsigned int cpu)
+{
+ struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
+ int migrator;
+ u64 firstexp;
+
+ raw_spin_lock_irq(&tmc->lock);
+ tmc->online = false;
+ WRITE_ONCE(tmc->wakeup, KTIME_MAX);
+
+ /*
+ * CPU has to handle the local events on his own, when on the way to
+ * offline; Therefore nextevt value is set to KTIME_MAX
+ */
+ firstexp = __tmigr_cpu_deactivate(tmc, KTIME_MAX);
+ trace_tmigr_cpu_offline(tmc);
+ raw_spin_unlock_irq(&tmc->lock);
+
+ if (firstexp != KTIME_MAX) {
+ migrator = cpumask_any_but(cpu_online_mask, cpu);
+ work_on_cpu(migrator, tmigr_trigger_active, NULL);
+ }
+
+ return 0;
+}
+
+static int tmigr_cpu_online(unsigned int cpu)
+{
+ struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
+
+ /* Check whether CPU data was successfully initialized */
+ if (WARN_ON_ONCE(!tmc->tmgroup))
+ return -EINVAL;
+
+ raw_spin_lock_irq(&tmc->lock);
+ trace_tmigr_cpu_online(tmc);
+ tmc->idle = timer_base_is_idle();
+ if (!tmc->idle)
+ __tmigr_cpu_activate(tmc);
+ tmc->online = true;
+ raw_spin_unlock_irq(&tmc->lock);
+ return 0;
+}
+
static void tmigr_init_group(struct tmigr_group *group, unsigned int lvl,
int node)
{
@@ -1514,21 +1542,25 @@ static struct tmigr_group *tmigr_get_group(unsigned int cpu, int node,
}
static void tmigr_connect_child_parent(struct tmigr_group *child,
- struct tmigr_group *parent)
+ struct tmigr_group *parent,
+ bool activate)
{
- union tmigr_state childstate;
+ struct tmigr_walk data;
raw_spin_lock_irq(&child->lock);
raw_spin_lock_nested(&parent->lock, SINGLE_DEPTH_NESTING);
child->parent = parent;
- child->childmask = BIT(parent->num_children++);
+ child->groupmask = BIT(parent->num_children++);
raw_spin_unlock(&parent->lock);
raw_spin_unlock_irq(&child->lock);
trace_tmigr_connect_child_parent(child);
+ if (!activate)
+ return;
+
/*
* To prevent inconsistent states, active children need to be active in
* the new parent as well. Inactive children are already marked inactive
@@ -1544,21 +1576,24 @@ static void tmigr_connect_child_parent(struct tmigr_group *child,
* child to the new parent. So tmigr_connect_child_parent() is
* executed with the formerly top level group (child) and the newly
* created group (parent).
+ *
+ * * It is ensured that the child is active, as this setup path is
+ * executed in hotplug prepare callback. This is exectued by an
+ * already connected and !idle CPU. Even if all other CPUs go idle,
+ * the CPU executing the setup will be responsible up to current top
+ * level group. And the next time it goes inactive, it will release
+ * the new childmask and parent to subsequent walkers through this
+ * @child. Therefore propagate active state unconditionally.
*/
- childstate.state = atomic_read(&child->migr_state);
- if (childstate.migrator != TMIGR_NONE) {
- struct tmigr_walk data;
-
- data.childmask = child->childmask;
+ data.childmask = child->groupmask;
- /*
- * There is only one new level per time. When connecting the
- * child and the parent and set the child active when the parent
- * is inactive, the parent needs to be the uppermost
- * level. Otherwise there went something wrong!
- */
- WARN_ON(!tmigr_active_up(parent, child, &data) && parent->parent);
- }
+ /*
+ * There is only one new level per time (which is protected by
+ * tmigr_mutex). When connecting the child and the parent and set the
+ * child active when the parent is inactive, the parent needs to be the
+ * uppermost level. Otherwise there went something wrong!
+ */
+ WARN_ON(!tmigr_active_up(parent, child, &data) && parent->parent);
}
static int tmigr_setup_groups(unsigned int cpu, unsigned int node)
@@ -1611,12 +1646,12 @@ static int tmigr_setup_groups(unsigned int cpu, unsigned int node)
* Update tmc -> group / child -> group connection
*/
if (i == 0) {
- struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
+ struct tmigr_cpu *tmc = per_cpu_ptr(&tmigr_cpu, cpu);
raw_spin_lock_irq(&group->lock);
tmc->tmgroup = group;
- tmc->childmask = BIT(group->num_children++);
+ tmc->groupmask = BIT(group->num_children++);
raw_spin_unlock_irq(&group->lock);
@@ -1626,7 +1661,8 @@ static int tmigr_setup_groups(unsigned int cpu, unsigned int node)
continue;
} else {
child = stack[i - 1];
- tmigr_connect_child_parent(child, group);
+ /* Will be activated at online time */
+ tmigr_connect_child_parent(child, group, false);
}
/* check if uppermost level was newly created */
@@ -1637,12 +1673,21 @@ static int tmigr_setup_groups(unsigned int cpu, unsigned int node)
lvllist = &tmigr_level_list[top];
if (group->num_children == 1 && list_is_singular(lvllist)) {
+ /*
+ * The target CPU must never do the prepare work, except
+ * on early boot when the boot CPU is the target. Otherwise
+ * it may spuriously activate the old top level group inside
+ * the new one (nevertheless whether old top level group is
+ * active or not) and/or release an uninitialized childmask.
+ */
+ WARN_ON_ONCE(cpu == raw_smp_processor_id());
+
lvllist = &tmigr_level_list[top - 1];
list_for_each_entry(child, lvllist, list) {
if (child->parent)
continue;
- tmigr_connect_child_parent(child, group);
+ tmigr_connect_child_parent(child, group, true);
}
}
}
@@ -1664,80 +1709,31 @@ static int tmigr_add_cpu(unsigned int cpu)
return ret;
}
-static int tmigr_cpu_online(unsigned int cpu)
-{
- struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
- int ret;
-
- /* First online attempt? Initialize CPU data */
- if (!tmc->tmgroup) {
- raw_spin_lock_init(&tmc->lock);
-
- ret = tmigr_add_cpu(cpu);
- if (ret < 0)
- return ret;
-
- if (tmc->childmask == 0)
- return -EINVAL;
-
- timerqueue_init(&tmc->cpuevt.nextevt);
- tmc->cpuevt.nextevt.expires = KTIME_MAX;
- tmc->cpuevt.ignore = true;
- tmc->cpuevt.cpu = cpu;
-
- tmc->remote = false;
- WRITE_ONCE(tmc->wakeup, KTIME_MAX);
- }
- raw_spin_lock_irq(&tmc->lock);
- trace_tmigr_cpu_online(tmc);
- tmc->idle = timer_base_is_idle();
- if (!tmc->idle)
- __tmigr_cpu_activate(tmc);
- tmc->online = true;
- raw_spin_unlock_irq(&tmc->lock);
- return 0;
-}
-
-/*
- * tmigr_trigger_active() - trigger a CPU to become active again
- *
- * This function is executed on a CPU which is part of cpu_online_mask, when the
- * last active CPU in the hierarchy is offlining. With this, it is ensured that
- * the other CPU is active and takes over the migrator duty.
- */
-static long tmigr_trigger_active(void *unused)
+static int tmigr_cpu_prepare(unsigned int cpu)
{
- struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
+ struct tmigr_cpu *tmc = per_cpu_ptr(&tmigr_cpu, cpu);
+ int ret = 0;
- WARN_ON_ONCE(!tmc->online || tmc->idle);
-
- return 0;
-}
-
-static int tmigr_cpu_offline(unsigned int cpu)
-{
- struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
- int migrator;
- u64 firstexp;
+ /* Not first online attempt? */
+ if (tmc->tmgroup)
+ return ret;
- raw_spin_lock_irq(&tmc->lock);
- tmc->online = false;
+ raw_spin_lock_init(&tmc->lock);
+ timerqueue_init(&tmc->cpuevt.nextevt);
+ tmc->cpuevt.nextevt.expires = KTIME_MAX;
+ tmc->cpuevt.ignore = true;
+ tmc->cpuevt.cpu = cpu;
+ tmc->remote = false;
WRITE_ONCE(tmc->wakeup, KTIME_MAX);
- /*
- * CPU has to handle the local events on his own, when on the way to
- * offline; Therefore nextevt value is set to KTIME_MAX
- */
- firstexp = __tmigr_cpu_deactivate(tmc, KTIME_MAX);
- trace_tmigr_cpu_offline(tmc);
- raw_spin_unlock_irq(&tmc->lock);
+ ret = tmigr_add_cpu(cpu);
+ if (ret < 0)
+ return ret;
- if (firstexp != KTIME_MAX) {
- migrator = cpumask_any_but(cpu_online_mask, cpu);
- work_on_cpu(migrator, tmigr_trigger_active, NULL);
- }
+ if (tmc->groupmask == 0)
+ return -EINVAL;
- return 0;
+ return ret;
}
static int __init tmigr_init(void)
@@ -1796,6 +1792,11 @@ static int __init tmigr_init(void)
tmigr_hierarchy_levels, TMIGR_CHILDREN_PER_GROUP,
tmigr_crossnode_level);
+ ret = cpuhp_setup_state(CPUHP_TMIGR_PREPARE, "tmigr:prepare",
+ tmigr_cpu_prepare, NULL);
+ if (ret)
+ goto err;
+
ret = cpuhp_setup_state(CPUHP_AP_TMIGR_ONLINE, "tmigr:online",
tmigr_cpu_online, tmigr_cpu_offline);
if (ret)
@@ -1807,4 +1808,4 @@ err:
pr_err("Timer migration setup failed\n");
return ret;
}
-late_initcall(tmigr_init);
+early_initcall(tmigr_init);
diff --git a/kernel/time/timer_migration.h b/kernel/time/timer_migration.h
index 6c37d94a37d9..154accc7a543 100644
--- a/kernel/time/timer_migration.h
+++ b/kernel/time/timer_migration.h
@@ -22,7 +22,17 @@ struct tmigr_event {
* struct tmigr_group - timer migration hierarchy group
* @lock: Lock protecting the event information and group hierarchy
* information during setup
- * @parent: Pointer to the parent group
+ * @parent: Pointer to the parent group. Pointer is updated when a
+ * new hierarchy level is added because of a CPU coming
+ * online the first time. Once it is set, the pointer will
+ * not be removed or updated. When accessing parent pointer
+ * lock less to decide whether to abort a propagation or
+ * not, it is not a problem. The worst outcome is an
+ * unnecessary/early CPU wake up. But do not access parent
+ * pointer several times in the same 'action' (like
+ * activation, deactivation, check for remote expiry,...)
+ * without holding the lock as it is not ensured that value
+ * will not change.
* @groupevt: Next event of the group which is only used when the
* group is !active. The group event is then queued into
* the parent timer queue.
@@ -41,9 +51,8 @@ struct tmigr_event {
* @num_children: Counter of group children to make sure the group is only
* filled with TMIGR_CHILDREN_PER_GROUP; Required for setup
* only
- * @childmask: childmask of the group in the parent group; is set
- * during setup and will never change; can be read
- * lockless
+ * @groupmask: mask of the group in the parent group; is set during
+ * setup and will never change; can be read lockless
* @list: List head that is added to the per level
* tmigr_level_list; is required during setup when a
* new group needs to be connected to the existing
@@ -59,7 +68,7 @@ struct tmigr_group {
unsigned int level;
int numa_node;
unsigned int num_children;
- u8 childmask;
+ u8 groupmask;
struct list_head list;
};
@@ -79,7 +88,7 @@ struct tmigr_group {
* hierarchy
* @remote: Is set when timers of the CPU are expired remotely
* @tmgroup: Pointer to the parent group
- * @childmask: childmask of tmigr_cpu in the parent group
+ * @groupmask: mask of tmigr_cpu in the parent group
* @wakeup: Stores the first timer when the timer migration
* hierarchy is completely idle and remote expiry was done;
* is returned to timer code in the idle path and is only
@@ -92,7 +101,7 @@ struct tmigr_cpu {
bool idle;
bool remote;
struct tmigr_group *tmgroup;
- u8 childmask;
+ u8 groupmask;
u64 wakeup;
struct tmigr_event cpuevt;
};
@@ -108,8 +117,8 @@ union tmigr_state {
u32 state;
/**
* struct - split state of tmigr_group
- * @active: Contains each childmask bit of the active children
- * @migrator: Contains childmask of the child which is migrator
+ * @active: Contains each mask bit of the active children
+ * @migrator: Contains mask of the child which is migrator
* @seq: Sequence counter needs to be increased when an update
* to the tmigr_state is done. It prevents a race when
* updates in the child groups are propagated in changed
diff --git a/kernel/trace/preemptirq_delay_test.c b/kernel/trace/preemptirq_delay_test.c
index cb0871fbdb07..314ffc143039 100644
--- a/kernel/trace/preemptirq_delay_test.c
+++ b/kernel/trace/preemptirq_delay_test.c
@@ -34,8 +34,6 @@ MODULE_PARM_DESC(cpu_affinity, "Cpu num test is running on");
static struct completion done;
-#define MIN(x, y) ((x) < (y) ? (x) : (y))
-
static void busy_wait(ulong time)
{
u64 start, end;