diff options
Diffstat (limited to 'lib/flex_array.c')
| -rw-r--r-- | lib/flex_array.c | 268 | 
1 files changed, 268 insertions, 0 deletions
| diff --git a/lib/flex_array.c b/lib/flex_array.c new file mode 100644 index 000000000000..7baed2fc3bc8 --- /dev/null +++ b/lib/flex_array.c @@ -0,0 +1,268 @@ +/* + * Flexible array managed in PAGE_SIZE parts + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. + * + * Copyright IBM Corporation, 2009 + * + * Author: Dave Hansen <dave@linux.vnet.ibm.com> + */ + +#include <linux/flex_array.h> +#include <linux/slab.h> +#include <linux/stddef.h> + +struct flex_array_part { +	char elements[FLEX_ARRAY_PART_SIZE]; +}; + +static inline int __elements_per_part(int element_size) +{ +	return FLEX_ARRAY_PART_SIZE / element_size; +} + +static inline int bytes_left_in_base(void) +{ +	int element_offset = offsetof(struct flex_array, parts); +	int bytes_left = FLEX_ARRAY_BASE_SIZE - element_offset; +	return bytes_left; +} + +static inline int nr_base_part_ptrs(void) +{ +	return bytes_left_in_base() / sizeof(struct flex_array_part *); +} + +/* + * If a user requests an allocation which is small + * enough, we may simply use the space in the + * flex_array->parts[] array to store the user + * data. + */ +static inline int elements_fit_in_base(struct flex_array *fa) +{ +	int data_size = fa->element_size * fa->total_nr_elements; +	if (data_size <= bytes_left_in_base()) +		return 1; +	return 0; +} + +/** + * flex_array_alloc - allocate a new flexible array + * @element_size:	the size of individual elements in the array + * @total:		total number of elements that this should hold + * + * Note: all locking must be provided by the caller. + * + * @total is used to size internal structures.  If the user ever + * accesses any array indexes >=@total, it will produce errors. + * + * The maximum number of elements is defined as: the number of + * elements that can be stored in a page times the number of + * page pointers that we can fit in the base structure or (using + * integer math): + * + * 	(PAGE_SIZE/element_size) * (PAGE_SIZE-8)/sizeof(void *) + * + * Here's a table showing example capacities.  Note that the maximum + * index that the get/put() functions is just nr_objects-1.   This + * basically means that you get 4MB of storage on 32-bit and 2MB on + * 64-bit. + * + * + * Element size | Objects | Objects | + * PAGE_SIZE=4k |  32-bit |  64-bit | + * ---------------------------------| + *      1 bytes | 4186112 | 2093056 | + *      2 bytes | 2093056 | 1046528 | + *      3 bytes | 1395030 |  697515 | + *      4 bytes | 1046528 |  523264 | + *     32 bytes |  130816 |   65408 | + *     33 bytes |  126728 |   63364 | + *   2048 bytes |    2044 |    1022 | + *   2049 bytes |    1022 |     511 | + *       void * | 1046528 |  261632 | + * + * Since 64-bit pointers are twice the size, we lose half the + * capacity in the base structure.  Also note that no effort is made + * to efficiently pack objects across page boundaries. + */ +struct flex_array *flex_array_alloc(int element_size, unsigned int total, +					gfp_t flags) +{ +	struct flex_array *ret; +	int max_size = nr_base_part_ptrs() * __elements_per_part(element_size); + +	/* max_size will end up 0 if element_size > PAGE_SIZE */ +	if (total > max_size) +		return NULL; +	ret = kzalloc(sizeof(struct flex_array), flags); +	if (!ret) +		return NULL; +	ret->element_size = element_size; +	ret->total_nr_elements = total; +	return ret; +} + +static int fa_element_to_part_nr(struct flex_array *fa, +					unsigned int element_nr) +{ +	return element_nr / __elements_per_part(fa->element_size); +} + +/** + * flex_array_free_parts - just free the second-level pages + * + * This is to be used in cases where the base 'struct flex_array' + * has been statically allocated and should not be free. + */ +void flex_array_free_parts(struct flex_array *fa) +{ +	int part_nr; +	int max_part = nr_base_part_ptrs(); + +	if (elements_fit_in_base(fa)) +		return; +	for (part_nr = 0; part_nr < max_part; part_nr++) +		kfree(fa->parts[part_nr]); +} + +void flex_array_free(struct flex_array *fa) +{ +	flex_array_free_parts(fa); +	kfree(fa); +} + +static unsigned int index_inside_part(struct flex_array *fa, +					unsigned int element_nr) +{ +	unsigned int part_offset; + +	part_offset = element_nr % __elements_per_part(fa->element_size); +	return part_offset * fa->element_size; +} + +static struct flex_array_part * +__fa_get_part(struct flex_array *fa, int part_nr, gfp_t flags) +{ +	struct flex_array_part *part = fa->parts[part_nr]; +	if (!part) { +		/* +		 * This leaves the part pages uninitialized +		 * and with potentially random data, just +		 * as if the user had kmalloc()'d the whole. +		 * __GFP_ZERO can be used to zero it. +		 */ +		part = kmalloc(FLEX_ARRAY_PART_SIZE, flags); +		if (!part) +			return NULL; +		fa->parts[part_nr] = part; +	} +	return part; +} + +/** + * flex_array_put - copy data into the array at @element_nr + * @src:	address of data to copy into the array + * @element_nr:	index of the position in which to insert + * 		the new element. + * + * Note that this *copies* the contents of @src into + * the array.  If you are trying to store an array of + * pointers, make sure to pass in &ptr instead of ptr. + * + * Locking must be provided by the caller. + */ +int flex_array_put(struct flex_array *fa, unsigned int element_nr, void *src, +			gfp_t flags) +{ +	int part_nr = fa_element_to_part_nr(fa, element_nr); +	struct flex_array_part *part; +	void *dst; + +	if (element_nr >= fa->total_nr_elements) +		return -ENOSPC; +	if (elements_fit_in_base(fa)) +		part = (struct flex_array_part *)&fa->parts[0]; +	else { +		part = __fa_get_part(fa, part_nr, flags); +		if (!part) +			return -ENOMEM; +	} +	dst = &part->elements[index_inside_part(fa, element_nr)]; +	memcpy(dst, src, fa->element_size); +	return 0; +} + +/** + * flex_array_prealloc - guarantee that array space exists + * @start:	index of first array element for which space is allocated + * @end:	index of last (inclusive) element for which space is allocated + * + * This will guarantee that no future calls to flex_array_put() + * will allocate memory.  It can be used if you are expecting to + * be holding a lock or in some atomic context while writing + * data into the array. + * + * Locking must be provided by the caller. + */ +int flex_array_prealloc(struct flex_array *fa, unsigned int start, +			unsigned int end, gfp_t flags) +{ +	int start_part; +	int end_part; +	int part_nr; +	struct flex_array_part *part; + +	if (start >= fa->total_nr_elements || end >= fa->total_nr_elements) +		return -ENOSPC; +	if (elements_fit_in_base(fa)) +		return 0; +	start_part = fa_element_to_part_nr(fa, start); +	end_part = fa_element_to_part_nr(fa, end); +	for (part_nr = start_part; part_nr <= end_part; part_nr++) { +		part = __fa_get_part(fa, part_nr, flags); +		if (!part) +			return -ENOMEM; +	} +	return 0; +} + +/** + * flex_array_get - pull data back out of the array + * @element_nr:	index of the element to fetch from the array + * + * Returns a pointer to the data at index @element_nr.  Note + * that this is a copy of the data that was passed in.  If you + * are using this to store pointers, you'll get back &ptr. + * + * Locking must be provided by the caller. + */ +void *flex_array_get(struct flex_array *fa, unsigned int element_nr) +{ +	int part_nr = fa_element_to_part_nr(fa, element_nr); +	struct flex_array_part *part; + +	if (element_nr >= fa->total_nr_elements) +		return NULL; +	if (elements_fit_in_base(fa)) +		part = (struct flex_array_part *)&fa->parts[0]; +	else { +		part = fa->parts[part_nr]; +		if (!part) +			return NULL; +	} +	return &part->elements[index_inside_part(fa, element_nr)]; +} | 
