summaryrefslogtreecommitdiff
path: root/mm/slub.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/slub.c')
-rw-r--r--mm/slub.c141
1 files changed, 70 insertions, 71 deletions
diff --git a/mm/slub.c b/mm/slub.c
index 31e11ef256f9..cf7c6032d5fd 100644
--- a/mm/slub.c
+++ b/mm/slub.c
@@ -23,6 +23,7 @@
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/kasan.h>
+#include <linux/node.h>
#include <linux/kmsan.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
@@ -91,14 +92,14 @@
* The partially empty slabs cached on the CPU partial list are used
* for performance reasons, which speeds up the allocation process.
* These slabs are not frozen, but are also exempt from list management,
- * by clearing the PG_workingset flag when moving out of the node
+ * by clearing the SL_partial flag when moving out of the node
* partial list. Please see __slab_free() for more details.
*
* To sum up, the current scheme is:
- * - node partial slab: PG_Workingset && !frozen
- * - cpu partial slab: !PG_Workingset && !frozen
- * - cpu slab: !PG_Workingset && frozen
- * - full slab: !PG_Workingset && !frozen
+ * - node partial slab: SL_partial && !frozen
+ * - cpu partial slab: !SL_partial && !frozen
+ * - cpu slab: !SL_partial && frozen
+ * - full slab: !SL_partial && !frozen
*
* list_lock
*
@@ -183,6 +184,22 @@
* the fast path and disables lockless freelists.
*/
+/**
+ * enum slab_flags - How the slab flags bits are used.
+ * @SL_locked: Is locked with slab_lock()
+ * @SL_partial: On the per-node partial list
+ * @SL_pfmemalloc: Was allocated from PF_MEMALLOC reserves
+ *
+ * The slab flags share space with the page flags but some bits have
+ * different interpretations. The high bits are used for information
+ * like zone/node/section.
+ */
+enum slab_flags {
+ SL_locked = PG_locked,
+ SL_partial = PG_workingset, /* Historical reasons for this bit */
+ SL_pfmemalloc = PG_active, /* Historical reasons for this bit */
+};
+
/*
* We could simply use migrate_disable()/enable() but as long as it's a
* function call even on !PREEMPT_RT, use inline preempt_disable() there.
@@ -447,7 +464,7 @@ static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
/*
* Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
- * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
+ * Corresponds to node_state[N_MEMORY], but can temporarily
* differ during memory hotplug/hotremove operations.
* Protected by slab_mutex.
*/
@@ -635,16 +652,35 @@ static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
#endif /* CONFIG_SLUB_CPU_PARTIAL */
/*
+ * If network-based swap is enabled, slub must keep track of whether memory
+ * were allocated from pfmemalloc reserves.
+ */
+static inline bool slab_test_pfmemalloc(const struct slab *slab)
+{
+ return test_bit(SL_pfmemalloc, &slab->flags);
+}
+
+static inline void slab_set_pfmemalloc(struct slab *slab)
+{
+ set_bit(SL_pfmemalloc, &slab->flags);
+}
+
+static inline void __slab_clear_pfmemalloc(struct slab *slab)
+{
+ __clear_bit(SL_pfmemalloc, &slab->flags);
+}
+
+/*
* Per slab locking using the pagelock
*/
static __always_inline void slab_lock(struct slab *slab)
{
- bit_spin_lock(PG_locked, &slab->__page_flags);
+ bit_spin_lock(SL_locked, &slab->flags);
}
static __always_inline void slab_unlock(struct slab *slab)
{
- bit_spin_unlock(PG_locked, &slab->__page_flags);
+ bit_spin_unlock(SL_locked, &slab->flags);
}
static inline bool
@@ -1010,7 +1046,7 @@ static void print_slab_info(const struct slab *slab)
{
pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
slab, slab->objects, slab->inuse, slab->freelist,
- &slab->__page_flags);
+ &slab->flags);
}
void skip_orig_size_check(struct kmem_cache *s, const void *object)
@@ -2717,23 +2753,19 @@ static void discard_slab(struct kmem_cache *s, struct slab *slab)
free_slab(s, slab);
}
-/*
- * SLUB reuses PG_workingset bit to keep track of whether it's on
- * the per-node partial list.
- */
static inline bool slab_test_node_partial(const struct slab *slab)
{
- return folio_test_workingset(slab_folio(slab));
+ return test_bit(SL_partial, &slab->flags);
}
static inline void slab_set_node_partial(struct slab *slab)
{
- set_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
+ set_bit(SL_partial, &slab->flags);
}
static inline void slab_clear_node_partial(struct slab *slab)
{
- clear_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
+ clear_bit(SL_partial, &slab->flags);
}
/*
@@ -4269,7 +4301,12 @@ static void *___kmalloc_large_node(size_t size, gfp_t flags, int node)
flags = kmalloc_fix_flags(flags);
flags |= __GFP_COMP;
- folio = (struct folio *)alloc_pages_node_noprof(node, flags, order);
+
+ if (node == NUMA_NO_NODE)
+ folio = (struct folio *)alloc_frozen_pages_noprof(flags, order);
+ else
+ folio = (struct folio *)__alloc_frozen_pages_noprof(flags, order, node, NULL);
+
if (folio) {
ptr = folio_address(folio);
lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
@@ -4765,7 +4802,7 @@ static void free_large_kmalloc(struct folio *folio, void *object)
lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
-(PAGE_SIZE << order));
__folio_clear_large_kmalloc(folio);
- folio_put(folio);
+ free_frozen_pages(&folio->page, order);
}
/*
@@ -4930,12 +4967,12 @@ alloc_new:
* When slub_debug_orig_size() is off, krealloc() only knows about the bucket
* size of an allocation (but not the exact size it was allocated with) and
* hence implements the following semantics for shrinking and growing buffers
- * with __GFP_ZERO.
+ * with __GFP_ZERO::
*
- * new bucket
- * 0 size size
- * |--------|----------------|
- * | keep | zero |
+ * new bucket
+ * 0 size size
+ * |--------|----------------|
+ * | keep | zero |
*
* Otherwise, the original allocation size 'orig_size' could be used to
* precisely clear the requested size, and the new size will also be stored
@@ -6149,7 +6186,7 @@ int __kmem_cache_shrink(struct kmem_cache *s)
return __kmem_cache_do_shrink(s);
}
-static int slab_mem_going_offline_callback(void *arg)
+static int slab_mem_going_offline_callback(void)
{
struct kmem_cache *s;
@@ -6163,46 +6200,13 @@ static int slab_mem_going_offline_callback(void *arg)
return 0;
}
-static void slab_mem_offline_callback(void *arg)
-{
- struct memory_notify *marg = arg;
- int offline_node;
-
- offline_node = marg->status_change_nid_normal;
-
- /*
- * If the node still has available memory. we need kmem_cache_node
- * for it yet.
- */
- if (offline_node < 0)
- return;
-
- mutex_lock(&slab_mutex);
- node_clear(offline_node, slab_nodes);
- /*
- * We no longer free kmem_cache_node structures here, as it would be
- * racy with all get_node() users, and infeasible to protect them with
- * slab_mutex.
- */
- mutex_unlock(&slab_mutex);
-}
-
-static int slab_mem_going_online_callback(void *arg)
+static int slab_mem_going_online_callback(int nid)
{
struct kmem_cache_node *n;
struct kmem_cache *s;
- struct memory_notify *marg = arg;
- int nid = marg->status_change_nid_normal;
int ret = 0;
/*
- * If the node's memory is already available, then kmem_cache_node is
- * already created. Nothing to do.
- */
- if (nid < 0)
- return 0;
-
- /*
* We are bringing a node online. No memory is available yet. We must
* allocate a kmem_cache_node structure in order to bring the node
* online.
@@ -6241,21 +6245,16 @@ out:
static int slab_memory_callback(struct notifier_block *self,
unsigned long action, void *arg)
{
+ struct node_notify *nn = arg;
+ int nid = nn->nid;
int ret = 0;
switch (action) {
- case MEM_GOING_ONLINE:
- ret = slab_mem_going_online_callback(arg);
- break;
- case MEM_GOING_OFFLINE:
- ret = slab_mem_going_offline_callback(arg);
- break;
- case MEM_OFFLINE:
- case MEM_CANCEL_ONLINE:
- slab_mem_offline_callback(arg);
+ case NODE_ADDING_FIRST_MEMORY:
+ ret = slab_mem_going_online_callback(nid);
break;
- case MEM_ONLINE:
- case MEM_CANCEL_OFFLINE:
+ case NODE_REMOVING_LAST_MEMORY:
+ ret = slab_mem_going_offline_callback();
break;
}
if (ret)
@@ -6324,14 +6323,14 @@ void __init kmem_cache_init(void)
* Initialize the nodemask for which we will allocate per node
* structures. Here we don't need taking slab_mutex yet.
*/
- for_each_node_state(node, N_NORMAL_MEMORY)
+ for_each_node_state(node, N_MEMORY)
node_set(node, slab_nodes);
create_boot_cache(kmem_cache_node, "kmem_cache_node",
sizeof(struct kmem_cache_node),
SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
- hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
+ hotplug_node_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
/* Able to allocate the per node structures */
slab_state = PARTIAL;