Age | Commit message (Collapse) | Author |
|
Instead of just saying "Disabled" when MTRRs are disabled for any
reason, tell what is disabled and why.
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20221205080433.16643-3-jgross@suse.com
|
|
collect_cpu_info() is used to collect the current microcode revision and
processor flags on every CPU.
It had a weird mechanism to try to mimick a "once" functionality in the
sense that, that information should be issued only when it is differing
from the previous CPU.
However (1):
the new calling sequence started doing that in parallel:
microcode_init()
|-> schedule_on_each_cpu(setup_online_cpu)
|-> collect_cpu_info()
resulting in multiple redundant prints:
microcode: sig=0x50654, pf=0x80, revision=0x2006e05
microcode: sig=0x50654, pf=0x80, revision=0x2006e05
microcode: sig=0x50654, pf=0x80, revision=0x2006e05
However (2):
dumping this here is not that important because the kernel does not
support mixed silicon steppings microcode. Finally!
Besides, there is already a pr_info() in microcode_reload_late() that
shows both the old and new revisions.
What is more, the CPU signature (sig=0x50654) and Processor Flags
(pf=0x80) above aren't that useful to the end user, they are available
via /proc/cpuinfo and they don't change anyway.
Remove the redundant pr_info().
[ bp: Heavily massage. ]
Fixes: b6f86689d5b7 ("x86/microcode: Rip out the subsys interface gunk")
Reported-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20221103175901.164783-2-ashok.raj@intel.com
|
|
The "force" argument to write_spec_ctrl_current() is currently ambiguous
as it does not guarantee the MSR write. This is due to the optimization
that writes to the MSR happen only when the new value differs from the
cached value.
This is fine in most cases, but breaks for S3 resume when the cached MSR
value gets out of sync with the hardware MSR value due to S3 resetting
it.
When x86_spec_ctrl_current is same as x86_spec_ctrl_base, the MSR write
is skipped. Which results in SPEC_CTRL mitigations not getting restored.
Move the MSR write from write_spec_ctrl_current() to a new function that
unconditionally writes to the MSR. Update the callers accordingly and
rename functions.
[ bp: Rework a bit. ]
Fixes: caa0ff24d5d0 ("x86/bugs: Keep a per-CPU IA32_SPEC_CTRL value")
Suggested-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: <stable@kernel.org>
Link: https://lore.kernel.org/r/806d39b0bfec2fe8f50dc5446dff20f5bb24a959.1669821572.git.pawan.kumar.gupta@linux.intel.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
kmap_local_page() is the preferred way to create temporary mappings when it
is feasible, because the mappings are thread-local and CPU-local.
kmap_local_page() uses per-task maps rather than per-CPU maps. This in
effect removes the need to disable preemption on the local CPU while the
mapping is active, and thus vastly reduces overall system latency. It is
also valid to take pagefaults within the mapped region.
The use of kmap_atomic() in the SGX code was not an explicit design choice
to disable page faults or preemption, and there is no compelling design
reason to using kmap_atomic() vs. kmap_local_page().
Signed-off-by: Kristen Carlson Accardi <kristen@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Reviewed-by: Fabio M. De Francesco <fmdefrancesco@gmail.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Link: https://lore.kernel.org/linux-sgx/Y0biN3%2FJsZMa0yUr@kernel.org/
Link: https://lore.kernel.org/r/20221115161627.4169428-1-kristen@linux.intel.com
|
|
If x2apic is not available, hyperv-iommu skips remapping
irqs. This breaks root partition which always needs irqs
remapped.
Fix this by allowing irq remapping regardless of x2apic,
and change hyperv_enable_irq_remapping() to return
IRQ_REMAP_XAPIC_MODE in case x2apic is missing.
Tested with root and non-root hyperv partitions.
Signed-off-by: Nuno Das Neves <nunodasneves@linux.microsoft.com>
Reviewed-by: Tianyu Lan <Tianyu.Lan@microsoft.com>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Link: https://lore.kernel.org/r/1668715899-8971-1-git-send-email-nunodasneves@linux.microsoft.com
Signed-off-by: Wei Liu <wei.liu@kernel.org>
|
|
msr-index.h should contain all MSRs for easier grepping for MSR numbers
when dealing with unchecked MSR access warnings, for example.
Move the resctrl ones. Prefix IA32_PQR_ASSOC with "MSR_" while at it.
No functional changes.
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20221106212923.20699-1-bp@alien8.de
|
|
READ/WRITE proved to be actively confusing - the meanings are
"data destination, as used with read(2)" and "data source, as
used with write(2)", but people keep interpreting those as
"we read data from it" and "we write data to it", i.e. exactly
the wrong way.
Call them ITER_DEST and ITER_SOURCE - at least that is harder
to misinterpret...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
The devnode() in struct class should not be modifying the device that is
passed into it, so mark it as a const * and propagate the function
signature changes out into all relevant subsystems that use this
callback.
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Reinette Chatre <reinette.chatre@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: x86@kernel.org
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Justin Sanders <justin@coraid.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Sumit Semwal <sumit.semwal@linaro.org>
Cc: Benjamin Gaignard <benjamin.gaignard@collabora.com>
Cc: Liam Mark <lmark@codeaurora.org>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Brian Starkey <Brian.Starkey@arm.com>
Cc: John Stultz <jstultz@google.com>
Cc: "Christian König" <christian.koenig@amd.com>
Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
Cc: Maxime Ripard <mripard@kernel.org>
Cc: Thomas Zimmermann <tzimmermann@suse.de>
Cc: David Airlie <airlied@gmail.com>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Leon Romanovsky <leon@kernel.org>
Cc: Dennis Dalessandro <dennis.dalessandro@cornelisnetworks.com>
Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Cc: Mauro Carvalho Chehab <mchehab@kernel.org>
Cc: Sean Young <sean@mess.org>
Cc: Frank Haverkamp <haver@linux.ibm.com>
Cc: Jiri Slaby <jirislaby@kernel.org>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Alex Williamson <alex.williamson@redhat.com>
Cc: Cornelia Huck <cohuck@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Anton Vorontsov <anton@enomsg.org>
Cc: Colin Cross <ccross@android.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Jaroslav Kysela <perex@perex.cz>
Cc: Takashi Iwai <tiwai@suse.com>
Cc: Hans Verkuil <hverkuil-cisco@xs4all.nl>
Cc: Christophe JAILLET <christophe.jaillet@wanadoo.fr>
Cc: Xie Yongji <xieyongji@bytedance.com>
Cc: Gautam Dawar <gautam.dawar@xilinx.com>
Cc: Dan Carpenter <error27@gmail.com>
Cc: Eli Cohen <elic@nvidia.com>
Cc: Parav Pandit <parav@nvidia.com>
Cc: Maxime Coquelin <maxime.coquelin@redhat.com>
Cc: alsa-devel@alsa-project.org
Cc: dri-devel@lists.freedesktop.org
Cc: kvm@vger.kernel.org
Cc: linaro-mm-sig@lists.linaro.org
Cc: linux-block@vger.kernel.org
Cc: linux-input@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-media@vger.kernel.org
Cc: linux-rdma@vger.kernel.org
Cc: linux-scsi@vger.kernel.org
Cc: linux-usb@vger.kernel.org
Cc: virtualization@lists.linux-foundation.org
Link: https://lore.kernel.org/r/20221123122523.1332370-2-gregkh@linuxfoundation.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Convert the remaining cases of static_cpu_has(X86_FEATURE_XENPV) and
boot_cpu_has(X86_FEATURE_XENPV) to use cpu_feature_enabled(), allowing
more efficient code in case the kernel is configured without
CONFIG_XEN_PV.
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/r/20221104072701.20283-6-jgross@suse.com
|
|
Resolve conflicts between these commits in arch/x86/kernel/asm-offsets.c:
# upstream:
debc5a1ec0d1 ("KVM: x86: use a separate asm-offsets.c file")
# retbleed work in x86/core:
5d8213864ade ("x86/retbleed: Add SKL return thunk")
... and these commits in include/linux/bpf.h:
# upstram:
18acb7fac22f ("bpf: Revert ("Fix dispatcher patchable function entry to 5 bytes nop")")
# x86/core commits:
931ab63664f0 ("x86/ibt: Implement FineIBT")
bea75b33895f ("x86/Kconfig: Introduce function padding")
The latter two modify BPF_DISPATCHER_ATTRIBUTES(), which was removed upstream.
Conflicts:
arch/x86/kernel/asm-offsets.c
include/linux/bpf.h
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Support for the TSX control MSR is enumerated in MSR_IA32_ARCH_CAPABILITIES.
This is different from how other CPU features are enumerated i.e. via
CPUID. Currently, a call to tsx_ctrl_is_supported() is required for
enumerating the feature. In the absence of a feature bit for TSX control,
any code that relies on checking feature bits directly will not work.
In preparation for adding a feature bit check in MSR save/restore
during suspend/resume, set a new feature bit X86_FEATURE_TSX_CTRL when
MSR_IA32_TSX_CTRL is present. Also make tsx_ctrl_is_supported() use the
new feature bit to avoid any overhead of reading the MSR.
[ bp: Remove tsx_ctrl_is_supported(), add room for two more feature
bits in word 11 which are coming up in the next merge window. ]
Suggested-by: Andrew Cooper <andrew.cooper3@citrix.com>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: <stable@kernel.org>
Link: https://lore.kernel.org/r/de619764e1d98afbb7a5fa58424f1278ede37b45.1668539735.git.pawan.kumar.gupta@linux.intel.com
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Borislav Petkov:
- Do not hold fpregs lock when inheriting FPU permissions because the
fpregs lock disables preemption on RT but fpu_inherit_perms() does
spin_lock_irq(), which, on RT, uses rtmutexes and they need to be
preemptible.
- Check the page offset and the length of the data supplied by
userspace for overflow when specifying a set of pages to add to an
SGX enclave
* tag 'x86_urgent_for_v6.1_rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/fpu: Drop fpregs lock before inheriting FPU permissions
x86/sgx: Add overflow check in sgx_validate_offset_length()
|
|
IFS test images and microcode blobs use the same header format.
Microcode blobs use header type of 1, whereas IFS test images
will use header type of 2.
In preparation for IFS reusing intel_microcode_sanity_check(),
add header type as a parameter for sanity check.
[ bp: Touchups. ]
Signed-off-by: Jithu Joseph <jithu.joseph@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Ashok Raj <ashok.raj@intel.com>
Link: https://lore.kernel.org/r/20221117035935.4136738-9-jithu.joseph@intel.com
|
|
IFS test image carries the same microcode header as regular Intel
microcode blobs.
Reuse microcode_sanity_check() in the IFS driver to perform sanity check
of the IFS test images too.
Signed-off-by: Jithu Joseph <jithu.joseph@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Ashok Raj <ashok.raj@intel.com>
Reviewed-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20221117035935.4136738-8-jithu.joseph@intel.com
|
|
The data type of the @print_err parameter used by microcode_sanity_check()
is int. In preparation for exporting this function to be used by
the IFS driver convert it to a more appropriate bool type for readability.
No functional change intended.
Suggested-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Jithu Joseph <jithu.joseph@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Ashok Raj <ashok.raj@intel.com>
Reviewed-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20221117035935.4136738-7-jithu.joseph@intel.com
|
|
IFS uses test images provided by Intel that can be regarded as firmware.
An IFS test image carries microcode header with an extended signature
table.
Reuse find_matching_signature() for verifying if the test image header
or the extended signature table indicate whether that image is fit to
run on a system.
No functional changes.
Signed-off-by: Jithu Joseph <jithu.joseph@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Ashok Raj <ashok.raj@intel.com>
Reviewed-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20221117035935.4136738-6-jithu.joseph@intel.com
|
|
This has nothing to do with random.c and everything to do with stack
protectors. Yes, it uses randomness. But many things use randomness.
random.h and random.c are concerned with the generation of randomness,
not with each and every use. So move this function into the more
specific stackprotector.h file where it belongs.
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
|
|
DE_CFG contains the LFENCE serializing bit, restore it on resume too.
This is relevant to older families due to the way how they do S3.
Unify and correct naming while at it.
Fixes: e4d0e84e4907 ("x86/cpu/AMD: Make LFENCE a serializing instruction")
Reported-by: Andrew Cooper <Andrew.Cooper3@citrix.com>
Reported-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: <stable@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Commit b041b525dab9 ("x86/split_lock: Make life miserable for split lockers")
changed the way the split lock detector works when in "warn" mode;
basically, it not only shows the warn message, but also intentionally
introduces a slowdown through sleeping plus serialization mechanism
on such task. Based on discussions in [0], seems the warning alone
wasn't enough motivation for userspace developers to fix their
applications.
This slowdown is enough to totally break some proprietary (aka.
unfixable) userspace[1].
Happens that originally the proposal in [0] was to add a new mode
which would warns + slowdown the "split locking" task, keeping the
old warn mode untouched. In the end, that idea was discarded and
the regular/default "warn" mode now slows down the applications. This
is quite aggressive with regards proprietary/legacy programs that
basically are unable to properly run in kernel with this change.
While it is understandable that a malicious application could DoS
by split locking, it seems unacceptable to regress old/proprietary
userspace programs through a default configuration that previously
worked. An example of such breakage was reported in [1].
Add a sysctl to allow controlling the "misery mode" behavior, as per
Thomas suggestion on [2]. This way, users running legacy and/or
proprietary software are allowed to still execute them with a decent
performance while still observing the warning messages on kernel log.
[0] https://lore.kernel.org/lkml/20220217012721.9694-1-tony.luck@intel.com/
[1] https://github.com/doitsujin/dxvk/issues/2938
[2] https://lore.kernel.org/lkml/87pmf4bter.ffs@tglx/
[ dhansen: minor changelog tweaks, including clarifying the actual
problem ]
Fixes: b041b525dab9 ("x86/split_lock: Make life miserable for split lockers")
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Guilherme G. Piccoli <gpiccoli@igalia.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Tested-by: Andre Almeida <andrealmeid@igalia.com>
Link: https://lore.kernel.org/all/20221024200254.635256-1-gpiccoli%40igalia.com
|
|
The way mtrr_if is initialized with the correct mtrr_ops structure is
quite weird.
Simplify that by dropping the vendor specific init functions and the
mtrr_ops[] array. Replace those with direct assignments of the related
vendor specific ops array to mtrr_if.
Note that a direct assignment is okay even for 64-bit builds, where the
symbol isn't present, as the related code will be subject to "dead code
elimination" due to how cpu_feature_enabled() is implemented.
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20221102074713.21493-17-jgross@suse.com
Signed-off-by: Borislav Petkov <bp@suse.de>
|
|
Instead of explicitly calling cache_ap_init() in
identify_secondary_cpu() use a CPU hotplug callback instead. By
registering the callback only after having started the non-boot CPUs
and initializing cache_aps_delayed_init with "true", calling
set_cache_aps_delayed_init() at boot time can be dropped.
It should be noted that this change results in cache_ap_init() being
called a little bit later when hotplugging CPUs. By using a new
hotplug slot right at the start of the low level bringup this is not
problematic, as no operations requiring a specific caching mode are
performed that early in CPU initialization.
Suggested-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20221102074713.21493-15-jgross@suse.com
Signed-off-by: Borislav Petkov <bp@suse.de>
|
|
Today, PAT is usable only with MTRR being active, with some nasty tweaks
to make PAT usable when running as a Xen PV guest which doesn't support
MTRR.
The reason for this coupling is that both PAT MSR changes and MTRR
changes require a similar sequence and so full PAT support was added
using the already available MTRR handling.
Xen PV PAT handling can work without MTRR, as it just needs to consume
the PAT MSR setting done by the hypervisor without the ability and need
to change it. This in turn has resulted in a convoluted initialization
sequence and wrong decisions regarding cache mode availability due to
misguiding PAT availability flags.
Fix all of that by allowing to use PAT without MTRR and by reworking
the current PAT initialization sequence to match better with the newly
introduced generic cache initialization.
This removes the need of the recently added pat_force_disabled flag, so
remove the remnants of the patch adding it.
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20221102074713.21493-14-jgross@suse.com
Signed-off-by: Borislav Petkov <bp@suse.de>
|
|
Instead of having a stop_machine() handler for either a specific
MTRR register or all state at once, add a handler just for calling
cache_cpu_init() if appropriate.
Add functions for calling stop_machine() with this handler as well.
Add a generic replacement for mtrr_bp_restore() and a wrapper for
mtrr_bp_init().
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20221102074713.21493-13-jgross@suse.com
Signed-off-by: Borislav Petkov <bp@suse.de>
|
|
In order to prepare decoupling MTRR and PAT replace the MTRR-specific
mtrr_aps_delayed_init flag with a more generic cache_aps_delayed_init
one.
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20221102074713.21493-12-jgross@suse.com
Signed-off-by: Borislav Petkov <bp@suse.de>
|
|
There is no need for keeping __mtrr_enabled as it can easily be replaced
by testing mtrr_if to be not NULL.
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20221102074713.21493-11-jgross@suse.com
Signed-off-by: Borislav Petkov <bp@suse.de>
|
|
In case of the generic cache interface being used (Intel CPUs or a
64-bit system), the initialization sequence of the boot CPU is more
complicated than necessary:
- check if MTRR enabled, if yes, call mtrr_bp_pat_init() which will
disable caching, set the PAT MSR, and reenable caching
- call mtrr_cleanup(), in case that changed anything, call
cache_cpu_init() doing the same caching disable/enable dance as
above, but this time with setting the (modified) MTRR state (even
if MTRR was disabled) AND setting the PAT MSR (again even with
disabled MTRR)
The sequence can be simplified a lot while removing potential
inconsistencies:
- check if MTRR enabled, if yes, call mtrr_cleanup() and then
cache_cpu_init()
This ensures to:
- no longer disable/enable caching more than once
- avoid to set MTRRs and/or the PAT MSR on the boot processor in case
of MTRR cleanups even if MTRRs meant to be disabled
With that mtrr_bp_pat_init() can be removed.
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20221102074713.21493-10-jgross@suse.com
Signed-off-by: Borislav Petkov <bp@suse.de>
|
|
Instead of using an indirect call to mtrr_if->set_all just call the only
possible target cache_cpu_init() directly. Remove the set_all function
pointer from struct mtrr_ops.
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20221102074713.21493-9-jgross@suse.com
Signed-off-by: Borislav Petkov <bp@suse.de>
|
|
Add a main cache_cpu_init() init routine which initializes MTRR and/or
PAT support depending on what has been detected on the system.
Leave the MTRR-specific initialization in a MTRR-specific init function
where the smp_changes_mask setting happens now with caches disabled.
This global mask update was done with caches enabled before probably
because atomic operations while running uncached might have been quite
expensive.
But since only systems with a broken BIOS should ever require to set any
bit in smp_changes_mask, hurting those devices with a penalty of a few
microseconds during boot shouldn't be a real issue.
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20221102074713.21493-8-jgross@suse.com
Signed-off-by: Borislav Petkov <bp@suse.de>
|
|
Prepare making PAT and MTRR support independent from each other by
moving some code needed by both out of the MTRR-specific sources.
[ bp: Massage commit message. ]
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20221102074713.21493-7-jgross@suse.com
Signed-off-by: Borislav Petkov <bp@suse.de>
|
|
Split the MTRR-specific actions from cache_disable() and cache_enable()
into new functions mtrr_disable() and mtrr_enable().
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20221102074713.21493-6-jgross@suse.com
Signed-off-by: Borislav Petkov <bp@suse.de>
|
|
Rename the currently MTRR-specific functions prepare_set() and
post_set() in preparation to move them. Make them non-static and put
their prototypes into cacheinfo.h, where they will end after moving them
to their final position anyway.
Expand the comment before the functions with an introductory line and
rename two related static variables, too.
[ bp: Massage commit message. ]
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20221102074713.21493-5-jgross@suse.com
Signed-off-by: Borislav Petkov <bp@suse.de>
|
|
In MTRR code use_intel() is only used in one source file, and the
relevant use_intel_if member of struct mtrr_ops is set only in
generic_mtrr_ops.
Replace use_intel() with a single flag in cacheinfo.c which can be
set when assigning generic_mtrr_ops to mtrr_if. This allows to drop
use_intel_if from mtrr_ops, while preparing to decouple PAT from MTRR.
As another preparation for the PAT/MTRR decoupling use a bit for MTRR
control and one for PAT control. For now set both bits together, this
can be changed later.
As the new flag will be set only if mtrr_enabled is set, the test for
mtrr_enabled can be dropped at some places.
[ bp: Massage commit message. ]
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20221102074713.21493-4-jgross@suse.com
Signed-off-by: Borislav Petkov <bp@suse.de>
|
|
x86_virt_spec_ctrl only deals with the paravirtualized
MSR_IA32_VIRT_SPEC_CTRL now and does not handle MSR_IA32_SPEC_CTRL
anymore; remove the corresponding, unused argument.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Restoration of the host IA32_SPEC_CTRL value is probably too late
with respect to the return thunk training sequence.
With respect to the user/kernel boundary, AMD says, "If software chooses
to toggle STIBP (e.g., set STIBP on kernel entry, and clear it on kernel
exit), software should set STIBP to 1 before executing the return thunk
training sequence." I assume the same requirements apply to the guest/host
boundary. The return thunk training sequence is in vmenter.S, quite close
to the VM-exit. On hosts without V_SPEC_CTRL, however, the host's
IA32_SPEC_CTRL value is not restored until much later.
To avoid this, move the restoration of host SPEC_CTRL to assembly and,
for consistency, move the restoration of the guest SPEC_CTRL as well.
This is not particularly difficult, apart from some care to cover both
32- and 64-bit, and to share code between SEV-ES and normal vmentry.
Cc: stable@vger.kernel.org
Fixes: a149180fbcf3 ("x86: Add magic AMD return-thunk")
Suggested-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Simplify VM_READ|VM_WRITE|VM_EXEC with VM_ACCESS_FLAGS.
Link: https://lkml.kernel.org/r/20221019034945.93081-3-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Jarkko Sakkinen <jarkko@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Alex Deucher <alexander.deucher@amd.com>
Cc: "Christian König" <christian.koenig@amd.com>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: David Airlie <airlied@gmail.com>
Cc: Dinh Nguyen <dinguyen@kernel.org>
Cc: "Pan, Xinhui" <Xinhui.Pan@amd.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
sgx_validate_offset_length() function verifies "offset" and "length"
arguments provided by userspace, but was missing an overflow check on
their addition. Add it.
Fixes: c6d26d370767 ("x86/sgx: Add SGX_IOC_ENCLAVE_ADD_PAGES")
Signed-off-by: Borys Popławski <borysp@invisiblethingslab.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Cc: stable@vger.kernel.org # v5.11+
Link: https://lore.kernel.org/r/0d91ac79-6d84-abed-5821-4dbe59fa1a38@invisiblethingslab.com
|
|
The new Asynchronous Exit (AEX) notification mechanism (AEX-notify)
allows one enclave to receive a notification in the ERESUME after the
enclave exit due to an AEX. EDECCSSA is a new SGX user leaf function
(ENCLU[EDECCSSA]) to facilitate the AEX notification handling. The new
EDECCSSA is enumerated via CPUID(EAX=0x12,ECX=0x0):EAX[11].
Besides Allowing reporting the new AEX-notify attribute to KVM guests,
also allow reporting the new EDECCSSA user leaf function to KVM guests
so the guest can fully utilize the AEX-notify mechanism.
Similar to existing X86_FEATURE_SGX1 and X86_FEATURE_SGX2, introduce a
new scattered X86_FEATURE_SGX_EDECCSSA bit for the new EDECCSSA, and
report it in KVM's supported CPUIDs.
Note, no additional KVM enabling is required to allow the guest to use
EDECCSSA. It's impossible to trap ENCLU (without completely preventing
the guest from using SGX). Advertise EDECCSSA as supported purely so
that userspace doesn't need to special case EDECCSSA, i.e. doesn't need
to manually check host CPUID.
The inability to trap ENCLU also means that KVM can't prevent the guest
from using EDECCSSA, but that virtualization hole is benign as far as
KVM is concerned. EDECCSSA is simply a fancy way to modify internal
enclave state.
More background about how do AEX-notify and EDECCSSA work:
SGX maintains a Current State Save Area Frame (CSSA) for each enclave
thread. When AEX happens, the enclave thread context is saved to the
CSSA and the CSSA is increased by 1. For a normal ERESUME which doesn't
deliver AEX notification, it restores the saved thread context from the
previously saved SSA and decreases the CSSA. If AEX-notify is enabled
for one enclave, the ERESUME acts differently. Instead of restoring the
saved thread context and decreasing the CSSA, it acts like EENTER which
doesn't decrease the CSSA but establishes a clean slate thread context
using the CSSA for the enclave to handle the notification. After some
handling, the enclave must discard the "new-established" SSA and switch
back to the previously saved SSA (upon AEX). Otherwise, the enclave
will run out of SSA space upon further AEXs and eventually fail to run.
To solve this problem, the new EDECCSSA essentially decreases the CSSA.
It can be used by the enclave notification handler to switch back to the
previous saved SSA when needed, i.e. after it handles the notification.
Signed-off-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Sean Christopherson <seanjc@google.com>
Acked-by: Jarkko Sakkinen <jarkko@kernel.org>
Link: https://lore.kernel.org/all/20221101022422.858944-1-kai.huang%40intel.com
|
|
Short Version:
Allow enclaves to use the new Asynchronous EXit (AEX)
notification mechanism. This mechanism lets enclaves run a
handler after an AEX event. These handlers can run mitigations
for things like SGX-Step[1].
AEX Notify will be made available both on upcoming processors and
on some older processors through microcode updates.
Long Version:
== SGX Attribute Background ==
The SGX architecture includes a list of SGX "attributes". These
attributes ensure consistency and transparency around specific
enclave features.
As a simple example, the "DEBUG" attribute allows an enclave to
be debugged, but also destroys virtually all of SGX security.
Using attributes, enclaves can know that they are being debugged.
Attributes also affect enclave attestation so an enclave can, for
instance, be denied access to secrets while it is being debugged.
The kernel keeps a list of known attributes and will only
initialize enclaves that use a known set of attributes. This
kernel policy eliminates the chance that a new SGX attribute
could cause undesired effects.
For example, imagine a new attribute was added called
"PROVISIONKEY2" that provided similar functionality to
"PROVISIIONKEY". A kernel policy that allowed indiscriminate use
of unknown attributes and thus PROVISIONKEY2 would undermine the
existing kernel policy which limits use of PROVISIONKEY enclaves.
== AEX Notify Background ==
"Intel Architecture Instruction Set Extensions and Future
Features - Version 45" is out[2]. There is a new chapter:
Asynchronous Enclave Exit Notify and the EDECCSSA User Leaf Function.
Enclaves exit can be either synchronous and consensual (EEXIT for
instance) or asynchronous (on an interrupt or fault). The
asynchronous ones can evidently be exploited to single step
enclaves[1], on top of which other naughty things can be built.
AEX Notify will be made available both on upcoming processors and
on some older processors through microcode updates.
== The Problem ==
These attacks are currently entirely opaque to the enclave since
the hardware does the save/restore under the covers. The
Asynchronous Enclave Exit Notify (AEX Notify) mechanism provides
enclaves an ability to detect and mitigate potential exposure to
these kinds of attacks.
== The Solution ==
Define the new attribute value for AEX Notification. Ensure the
attribute is cleared from the list reserved attributes. Instead
of adding to the open-coded lists of individual attributes,
add named lists of privileged (disallowed by default) and
unprivileged (allowed by default) attributes. Add the AEX notify
attribute as an unprivileged attribute, which will keep the kernel
from rejecting enclaves with it set.
1. https://github.com/jovanbulck/sgx-step
2. https://cdrdv2.intel.com/v1/dl/getContent/671368?explicitVersion=true
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Jarkko Sakkinen <jarkko@kernel.org>
Tested-by: Haitao Huang <haitao.huang@intel.com>
Tested-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/all/20220720191347.1343986-1-dave.hansen%40linux.intel.com
|
|
Intel processors support additional software hint called EPB ("Energy
Performance Bias") to guide the hardware heuristic of power management
features to favor increasing dynamic performance or conserve energy
consumption.
Since this EPB hint is processor specific, the same value of hint can
result in different behavior across generations of processors.
commit 4ecc933b7d1f ("x86: intel_epb: Allow model specific normal EPB
value")' introduced capability to update the default power up EPB
based on the CPU model and updated the default EPB to 7 for Alder Lake
mobile CPUs.
The same change is required for other Alder Lake-N and Raptor Lake-P
mobile CPUs as the current default of 6 results in higher uncore power
consumption. This increase in power is related to memory clock
frequency setting based on the EPB value.
Depending on the EPB the minimum memory frequency is set by the
firmware. At EPB = 7, the minimum memory frequency is 1/4th compared to
EPB = 6. This results in significant power saving for idle and
semi-idle workload on a Chrome platform.
For example Change in power and performance from EPB change from 6 to 7
on Alder Lake-N:
Workload Performance diff (%) power diff
----------------------------------------------------
VP9 FHD30 0 (FPS) -218 mw
Google meet 0 (FPS) -385 mw
This 200+ mw power saving is very significant for mobile platform for
battery life and thermal reasons.
But as the workload demands more memory bandwidth, the memory frequency
will be increased very fast. There is no power savings for such busy
workloads.
For example:
Workload Performance diff (%) from EPB 6 to 7
-------------------------------------------------------
Speedometer 2.0 -0.8
WebGL Aquarium 10K
Fish -0.5
Unity 3D 2018 0.2
WebXPRT3 -0.5
There are run to run variations for performance scores for
such busy workloads. So the difference is not significant.
Add a new define ENERGY_PERF_BIAS_NORMAL_POWERSAVE for EPB 7
and use it for Alder Lake-N and Raptor Lake-P mobile CPUs.
This modification is done originally by
Jeremy Compostella <jeremy.compostella@intel.com>.
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Link: https://lore.kernel.org/all/20221027220056.1534264-1-srinivas.pandruvada%40linux.intel.com
|
|
It is not needed anymore.
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Ashok Raj <ashok.raj@intel.com>
Link: https://lore.kernel.org/r/20221028142638.28498-6-bp@alien8.de
|
|
Improve debugging printks and fixup formatting.
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Ashok Raj <ashok.raj@intel.com>
Link: https://lore.kernel.org/r/20221028142638.28498-5-bp@alien8.de
|
|
request_microcode_fw() can always request firmware now so drop this
superfluous argument.
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Ashok Raj <ashok.raj@intel.com>
Link: https://lore.kernel.org/r/20221028142638.28498-4-bp@alien8.de
|
|
Get rid of all the IPI-sending functions and their wrappers and use
those which are supposed to be called on each CPU.
Thus:
- microcode_init_cpu() gets called on each CPU on init, applying any new
microcode that the driver might've found on the filesystem.
- mc_cpu_starting() simply tries to apply cached microcode as this is
the cpuhp starting callback which gets called on CPU resume too.
Even if the driver init function is a late initcall, there is no
filesystem by then (not even a hdd driver has been loaded yet) so a new
firmware load attempt cannot simply be done.
It is pointless anyway - for that there's late loading if one really
needs it.
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Ashok Raj <ashok.raj@intel.com>
Link: https://lore.kernel.org/r/20221028142638.28498-3-bp@alien8.de
|
|
This is a left-over from the old days when CPU hotplug wasn't as robust
as it is now. Currently, microcode gets loaded early on the CPU init
path and there's no need to attempt to load it again, which that subsys
interface callback is doing.
The only other thing that the subsys interface init path was doing is
adding the
/sys/devices/system/cpu/cpu*/microcode/
hierarchy.
So add a function which gets called on each CPU after all the necessary
driver setup has happened. Use schedule_on_each_cpu() which can block
because the sysfs creating code does kmem_cache_zalloc() which can block
too and the initial version of this where it did that setup in an IPI
handler of on_each_cpu() can cause a deadlock of the sort:
lock(fs_reclaim);
<Interrupt>
lock(fs_reclaim);
as the IPI handler runs in IRQ context.
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Ashok Raj <ashok.raj@intel.com>
Link: https://lore.kernel.org/r/20221028142638.28498-2-bp@alien8.de
|
|
Implement an alternative CFI scheme that merges both the fine-grained
nature of kCFI but also takes full advantage of the coarse grained
hardware CFI as provided by IBT.
To contrast:
kCFI is a pure software CFI scheme and relies on being able to read
text -- specifically the instruction *before* the target symbol, and
does the hash validation *before* doing the call (otherwise control
flow is compromised already).
FineIBT is a software and hardware hybrid scheme; by ensuring every
branch target starts with a hash validation it is possible to place
the hash validation after the branch. This has several advantages:
o the (hash) load is avoided; no memop; no RX requirement.
o IBT WAIT-FOR-ENDBR state is a speculation stop; by placing
the hash validation in the immediate instruction after
the branch target there is a minimal speculation window
and the whole is a viable defence against SpectreBHB.
o Kees feels obliged to mention it is slightly more vulnerable
when the attacker can write code.
Obviously this patch relies on kCFI, but additionally it also relies
on the padding from the call-depth-tracking patches. It uses this
padding to place the hash-validation while the call-sites are
re-written to modify the indirect target to be 16 bytes in front of
the original target, thus hitting this new preamble.
Notably, there is no hardware that needs call-depth-tracking (Skylake)
and supports IBT (Tigerlake and onwards).
Suggested-by: Joao Moreira (Intel) <joao@overdrivepizza.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20221027092842.634714496@infradead.org
|
|
commit 8795359e35bc ("x86/sgx: Silence softlockup detection when
releasing large enclaves") introduced a cond_resched() during enclave
release where the EREMOVE instruction is applied to every 4k enclave
page. Giving other tasks an opportunity to run while tearing down a
large enclave placates the soft lockup detector but Iqbal found
that the fix causes a 25% performance degradation of a workload
run using Gramine.
Gramine maintains a 1:1 mapping between processes and SGX enclaves.
That means if a workload in an enclave creates a subprocess then
Gramine creates a duplicate enclave for that subprocess to run in.
The consequence is that the release of the enclave used to run
the subprocess can impact the performance of the workload that is
run in the original enclave, especially in large enclaves when
SGX2 is not in use.
The workload run by Iqbal behaves as follows:
Create enclave (enclave "A")
/* Initialize workload in enclave "A" */
Create enclave (enclave "B")
/* Run subprocess in enclave "B" and send result to enclave "A" */
Release enclave (enclave "B")
/* Run workload in enclave "A" */
Release enclave (enclave "A")
The performance impact of releasing enclave "B" in the above scenario
is amplified when there is a lot of SGX memory and the enclave size
matches the SGX memory. When there is 128GB SGX memory and an enclave
size of 128GB, from the time enclave "B" starts the 128GB SGX memory
is oversubscribed with a combined demand for 256GB from the two
enclaves.
Before commit 8795359e35bc ("x86/sgx: Silence softlockup detection when
releasing large enclaves") enclave release was done in a tight loop
without giving other tasks a chance to run. Even though the system
experienced soft lockups the workload (run in enclave "A") obtained
good performance numbers because when the workload started running
there was no interference.
Commit 8795359e35bc ("x86/sgx: Silence softlockup detection when
releasing large enclaves") gave other tasks opportunity to run while an
enclave is released. The impact of this in this scenario is that while
enclave "B" is released and needing to access each page that belongs
to it in order to run the SGX EREMOVE instruction on it, enclave "A"
is attempting to run the workload needing to access the enclave
pages that belong to it. This causes a lot of swapping due to the
demand for the oversubscribed SGX memory. Longer latencies are
experienced by the workload in enclave "A" while enclave "B" is
released.
Improve the performance of enclave release while still avoiding the
soft lockup detector with two enhancements:
- Only call cond_resched() after XA_CHECK_SCHED iterations.
- Use the xarray advanced API to keep the xarray locked for
XA_CHECK_SCHED iterations instead of locking and unlocking
at every iteration.
This batching solution is copied from sgx_encl_may_map() that
also iterates through all enclave pages using this technique.
With this enhancement the workload experiences a 5%
performance degradation when compared to a kernel without
commit 8795359e35bc ("x86/sgx: Silence softlockup detection when
releasing large enclaves"), an improvement to the reported 25%
degradation, while still placating the soft lockup detector.
Scenarios with poor performance are still possible even with these
enhancements. For example, short workloads creating sub processes
while running in large enclaves. Further performance improvements
are pursued in user space through avoiding to create duplicate enclaves
for certain sub processes, and using SGX2 that will do lazy allocation
of pages as needed so enclaves created for sub processes start quickly
and release quickly.
Fixes: 8795359e35bc ("x86/sgx: Silence softlockup detection when releasing large enclaves")
Reported-by: Md Iqbal Hossain <md.iqbal.hossain@intel.com>
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Tested-by: Md Iqbal Hossain <md.iqbal.hossain@intel.com>
Link: https://lore.kernel.org/all/00efa80dd9e35dc85753e1c5edb0344ac07bb1f0.1667236485.git.reinette.chatre%40intel.com
|
|
mce_severity_intel() has a special case to promote UC and AR errors
in kernel context to PANIC severity.
The "AR" case is already handled with separate entries in the severity
table for all instruction fetch errors, and those data fetch errors that
are not in a recoverable area of the kernel (i.e. have an extable fixup
entry).
Add an entry to the severity table for UC errors in kernel context that
reports severity = PANIC. Delete the special case code from
mce_severity_intel().
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20220922195136.54575-2-tony.luck@intel.com
|
|
AMD's MCA Thresholding feature counts errors of all severity levels, not
just correctable errors. If a deferred error causes the threshold limit
to be reached (it was the error that caused the overflow), then both a
deferred error interrupt and a thresholding interrupt will be triggered.
The order of the interrupts is not guaranteed. If the threshold
interrupt handler is executed first, then it will clear MCA_STATUS for
the error. It will not check or clear MCA_DESTAT which also holds a copy
of the deferred error. When the deferred error interrupt handler runs it
will not find an error in MCA_STATUS, but it will find the error in
MCA_DESTAT. This will cause two errors to be logged.
Check for deferred errors when handling a threshold interrupt. If a bank
contains a deferred error, then clear the bank's MCA_DESTAT register.
Define a new helper function to do the deferred error check and clearing
of MCA_DESTAT.
[ bp: Simplify, convert comment to passive voice. ]
Fixes: 37d43acfd79f ("x86/mce/AMD: Redo error logging from APIC LVT interrupt handlers")
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20220621155943.33623-1-yazen.ghannam@amd.com
|
|
The field arch_has_empty_bitmaps is not required anymore. The field
min_cbm_bits is enough to validate the CBM (capacity bit mask) if the
architecture can support the zero CBM or not.
Suggested-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Babu Moger <babu.moger@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Fenghua Yu <fenghua.yu@intel.com>
Link: https://lore.kernel.org/r/166430979654.372014.615622285687642644.stgit@bmoger-ubuntu
|
|
There's a conflict between the call-depth tracking commits in x86/core:
ee3e2469b346 ("x86/ftrace: Make it call depth tracking aware")
36b64f101219 ("x86/ftrace: Rebalance RSB")
eac828eaef29 ("x86/ftrace: Remove ftrace_epilogue()")
And these fixes in x86/urgent:
883bbbffa5a4 ("ftrace,kcfi: Separate ftrace_stub() and ftrace_stub_graph()")
b5f1fc318440 ("x86/ftrace: Remove ftrace_epilogue()")
It's non-trivial overlapping modifications - resolve them.
Conflicts:
arch/x86/kernel/ftrace_64.S
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|