Age | Commit message (Collapse) | Author |
|
KVM x86 MMU changes for 6.17
- Exempt nested EPT from the the !USER + CR0.WP logic, as EPT doesn't interact
with CR0.WP.
- Move the TDX hardware setup code to tdx.c to better co-locate TDX code
and eliminate a few global symbols.
- Dynamically allocation the shadow MMU's hashed page list, and defer
allocating the hashed list until it's actually needed (the TDP MMU doesn't
use the list).
|
|
KVM x86 misc changes for 6.17
- Prevert the host's DEBUGCTL.FREEZE_IN_SMM (Intel only) when running the
guest. Failure to honor FREEZE_IN_SMM can bleed host state into the guest.
- Explicitly check vmcs12.GUEST_DEBUGCTL on nested VM-Enter (Intel only) to
prevent L1 from running L2 with features that KVM doesn't support, e.g. BTF.
- Intercept SPEC_CTRL on AMD if the MSR shouldn't exist according to the
vCPU's CPUID model.
- Rework the MSR interception code so that the SVM and VMX APIs are more or
less identical.
- Recalculate all MSR intercepts from the "source" on MSR filter changes, and
drop the dedicated "shadow" bitmaps (and their awful "max" size defines).
- WARN and reject loading kvm-amd.ko instead of panicking the kernel if the
nested SVM MSRPM offsets tracker can't handle an MSR.
- Advertise support for LKGS (Load Kernel GS base), a new instruction that's
loosely related to FRED, but is supported and enumerated independently.
- Fix a user-triggerable WARN that syzkaller found by stuffing INIT_RECEIVED,
a.k.a. WFS, and then putting the vCPU into VMX Root Mode (post-VMXON). Use
the same approach KVM uses for dealing with "impossible" emulation when
running a !URG guest, and simply wait until KVM_RUN to detect that the vCPU
has architecturally impossible state.
- Add KVM_X86_DISABLE_EXITS_APERFMPERF to allow disabling interception of
APERF/MPERF reads, so that a "properly" configured VM can "virtualize"
APERF/MPERF (with many caveats).
- Reject KVM_SET_TSC_KHZ if vCPUs have been created, as changing the "default"
frequency is unsupported for VMs with a "secure" TSC, and there's no known
use case for changing the default frequency for other VM types.
|
|
Allow a guest to read the physical IA32_APERF and IA32_MPERF MSRs
without interception.
The IA32_APERF and IA32_MPERF MSRs are not virtualized. Writes are not
handled at all. The MSR values are not zeroed on vCPU creation, saved
on suspend, or restored on resume. No accommodation is made for
processor migration or for sharing a logical processor with other
tasks. No adjustments are made for non-unit TSC multipliers. The MSRs
do not account for time the same way as the comparable PMU events,
whether the PMU is virtualized by the traditional emulation method or
the new mediated pass-through approach.
Nonetheless, in a properly constrained environment, this capability
can be combined with a guest CPUID table that advertises support for
CPUID.6:ECX.APERFMPERF[bit 0] to induce a Linux guest to report the
effective physical CPU frequency in /proc/cpuinfo. Moreover, there is
no performance cost for this capability.
Signed-off-by: Jim Mattson <jmattson@google.com>
Link: https://lore.kernel.org/r/20250530185239.2335185-3-jmattson@google.com
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20250626001225.744268-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Store each "disabled exit" boolean in a single bit rather than a byte.
No functional change intended.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Link: https://lore.kernel.org/r/20250530185239.2335185-2-jmattson@google.com
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20250626001225.744268-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Extract a common function from MSR interception disabling logic and create
disabling and enabling functions based on it. This removes most of the
duplicated code for MSR interception disabling/enabling.
No functional change intended.
Signed-off-by: Chao Gao <chao.gao@intel.com>
Reviewed-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Link: https://lore.kernel.org/r/20250612081947.94081-2-chao.gao@intel.com
[sean: s/enable/set, inline the wrappers]
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Allocate VM structs via kvzalloc(), i.e. try to use a contiguous physical
allocation before falling back to __vmalloc(), to avoid the overhead of
establishing the virtual mappings. For non-debug builds, The SVM and VMX
(and TDX) structures are now just below 7000 bytes in the worst case
scenario (see below), i.e. are order-1 allocations, and will likely remain
that way for quite some time.
Add compile-time assertions in vendor code to ensure the size of the
structures, sans the memslot hash tables, are order-0 allocations, i.e.
are less than 4KiB. There's nothing fundamentally wrong with a larger
kvm_{svm,vmx,tdx} size, but given that the size of the structure (without
the memslots hash tables) is below 2KiB after 18+ years of existence,
more than doubling the size would be quite notable.
Add sanity checks on the memslot hash table sizes, partly to ensure they
aren't resized without accounting for the impact on VM structure size, and
partly to document that the majority of the size of VM structures comes
from the memslots.
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20250523001138.3182794-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Now that AVIC IRTE tracking is in a mostly sane state, WARN if a vCPU is
freed with ir_list entries, i.e. if KVM leaves a dangling IRTE.
Initialize the per-vCPU interrupt remapping list and its lock even if AVIC
is disabled so that the WARN doesn't hit false positives (and so that KVM
doesn't need to call into AVIC code for a simple sanity check).
Link: https://lore.kernel.org/r/20250611224604.313496-54-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Let userspace "disable" IPI virtualization for AVIC via the enable_ipiv
module param, by never setting IsRunning. SVM doesn't provide a way to
disable IPI virtualization in hardware, but by ensuring CPUs never see
IsRunning=1, every IPI in the guest (except for self-IPIs) will generate a
VM-Exit.
To avoid setting the real IsRunning bit, while still allowing KVM to use
each vCPU's entry to update GA log entries, simply maintain a shadow of
the entry, without propagating IsRunning updates to the real table when
IPI virtualization is disabled.
Providing a way to effectively disable IPI virtualization will allow KVM
to safely enable AVIC on hardware that is susceptible to erratum #1235,
which causes hardware to sometimes fail to detect that the IsRunning bit
has been cleared by software.
Note, the table _must_ be fully populated, as broadcast IPIs skip invalid
entries, i.e. won't generate VM-Exit if every entry is invalid, and so
simply pointing the VMCB at a common dummy table won't work.
Alternatively, KVM could allocate a shadow of the entire table, but that'd
be a waste of 4KiB since the per-vCPU entry doesn't actually consume an
additional 8 bytes of memory (vCPU structures are large enough that they
are backed by order-N pages).
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
[sean: keep "entry" variables, reuse enable_ipiv, split from erratum]
Link: https://lore.kernel.org/r/20250611224604.313496-19-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Refactor {svm,vmx}_disable_intercept_for_msr() to simplify the handling of
userspace filters that disallow access to an MSR. The more complicated
logic is no longer needed or justified now that KVM recalculates all MSR
intercepts on a userspace MSR filter change, i.e. now that KVM doesn't
need to also update shadow bitmaps.
No functional change intended.
Suggested-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Reviewed-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Link: https://lore.kernel.org/r/20250610225737.156318-32-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Add a helper to allocate and initialize an MSR or I/O permissions map, as
the logic is identical between the two map types, the only difference is
the size of the bitmap. Opportunistically add a comment to explain why
the bitmaps are initialized with 0xff, e.g. instead of the more common
zero-initialized behavior, which is the main motivation for deduplicating
the code.
No functional change intended.
Link: https://lore.kernel.org/r/20250610225737.156318-31-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Store KVM's MSRPM pointers as "void *" instead of "u32 *" to guard against
directly accessing the bitmaps outside of code that is explicitly written
to access the bitmaps with a specific type.
Opportunistically use svm_vcpu_free_msrpm() in svm_vcpu_free() instead of
open coding an equivalent.
Link: https://lore.kernel.org/r/20250610225737.156318-27-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Move svm_msrpm_offset() from svm.c to nested.c now that all usage of the
u32-index offsets is nested virtualization specific.
No functional change intended.
Link: https://lore.kernel.org/r/20250610225737.156318-26-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Now that msr_write_intercepted() defaults to true, i.e. accurately reflects
hardware behavior for out-of-range MSRs, and doesn't WARN (or BUG) on an
out-of-range MSR, drop sev_es_prevent_msr_access()'s svm_msrpm_offset()
check that guarded against calling msr_write_intercepted() with a "bad"
index.
Opportunistically clean up the helper's formatting.
Link: https://lore.kernel.org/r/20250610225737.156318-25-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Merge svm_recalc_intercepts_after_set_cpuid() and
svm_recalc_instruction_intercepts() such that the "after set CPUID" helper
simply invokes the type-specific helpers (MSRs vs. instructions), i.e.
make svm_recalc_intercepts_after_set_cpuid() a single entry point for all
intercept updates that need to be performed after a CPUID change.
No functional change intended.
Link: https://lore.kernel.org/r/20250610225737.156318-24-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Fold svm_vcpu_init_msrpm() into svm_recalc_msr_intercepts() now that there
is only the one caller (and because the "init" misnomer is even more
misleading than it was in the past).
No functional change intended.
Link: https://lore.kernel.org/r/20250610225737.156318-23-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Rename init_vmcb_after_set_cpuid() to svm_recalc_intercepts_after_set_cpuid()
to more precisely describe its role. Strictly speaking, the name isn't
perfect as toggling virtual VM{LOAD,SAVE} is arguably not recalculating an
intercept, but practically speaking it's close enough.
No functional change intended.
Link: https://lore.kernel.org/r/20250610225737.156318-22-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Rename msr_filter_changed() to recalc_msr_intercepts() and drop the
trampoline wrapper now that both SVM and VMX use a filter-agnostic recalc
helper to react to the new userspace filter.
No functional change intended.
Reviewed-by: Xin Li (Intel) <xin@zytor.com>
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Link: https://lore.kernel.org/r/20250610225737.156318-21-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
On a userspace MSR filter change, recalculate all MSR intercepts using the
filter-agnostic logic instead of maintaining a "shadow copy" of KVM's
desired intercepts. The shadow bitmaps add yet another point of failure,
are confusing (e.g. what does "handled specially" mean!?!?), an eyesore,
and a maintenance burden.
Given that KVM *must* be able to recalculate the correct intercepts at any
given time, and that MSR filter updates are not hot paths, there is zero
benefit to maintaining the shadow bitmaps.
Opportunistically switch from boot_cpu_has() to cpu_feature_enabled() as
appropriate.
Link: https://lore.kernel.org/all/aCdPbZiYmtni4Bjs@google.com
Link: https://lore.kernel.org/all/20241126180253.GAZ0YNTdXH1UGeqsu6@fat_crate.local
Cc: Francesco Lavra <francescolavra.fl@gmail.com>
Link: https://lore.kernel.org/r/20250610225737.156318-20-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Dedup the definition of X2APIC_MSR and put it in the local APIC code
where it belongs.
No functional change intended.
Reviewed-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Link: https://lore.kernel.org/r/20250610225737.156318-18-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Drop the "always" flag from the array of possible passthrough MSRs, and
instead manually initialize the permissions for the handful of MSRs that
KVM passes through by default. In addition to cutting down on boilerplate
copy+paste code and eliminating a misleading flag (the MSRs aren't always
passed through, e.g. thanks to MSR filters), this will allow for removing
the direct_access_msrs array entirely.
Link: https://lore.kernel.org/r/20250610225737.156318-17-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Disable interception of the GHCB MSR if and only if the VM is an SEV-ES
guest. While the exact behavior is completely undocumented in the APM,
common sense and testing on SEV-ES capable CPUs says that accesses to the
GHCB from non-SEV-ES guests will #GP. I.e. from the guest's perspective,
no functional change intended.
Fixes: 376c6d285017 ("KVM: SVM: Provide support for SEV-ES vCPU creation/loading")
Link: https://lore.kernel.org/r/20250610225737.156318-16-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Add and use SVM MSR interception APIs (in most paths) to match VMX's
APIs and nomenclature. Specifically, add SVM variants of:
vmx_disable_intercept_for_msr(vcpu, msr, type)
vmx_enable_intercept_for_msr(vcpu, msr, type)
vmx_set_intercept_for_msr(vcpu, msr, type, intercept)
to eventually replace SVM's single helper:
set_msr_interception(vcpu, msrpm, msr, allow_read, allow_write)
which is awkward to use (in all cases, KVM either applies the same logic
for both reads and writes, or intercepts one of read or write), and is
unintuitive due to using '0' to indicate interception should be *set*.
Keep the guts of the old API for the moment to avoid churning the MSR
filter code, as that mess will be overhauled in the near future. Leave
behind a temporary comment to call out that the shadow bitmaps have
inverted polarity relative to the bitmaps consumed by hardware.
No functional change intended.
Reviewed-by: Chao Gao <chao.gao@intel.com>
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Link: https://lore.kernel.org/r/20250610225737.156318-15-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Add macro-built helpers for testing, setting, and clearing MSRPM entries
without relying on precomputed offsets. This sets the stage for eventually
removing general KVM use of precomputed offsets, which are quite confusing
and rather inefficient for the vast majority of KVM's usage.
Outside of merging L0 and L1 bitmaps for nested SVM, using u32-indexed
offsets and accesses is at best unnecessary, and at worst introduces extra
operations to retrieve the individual bit from within the offset u32 value.
And simply calling them "offsets" is very confusing, as the "unit" of the
offset isn't immediately obvious.
Use the new helpers in set_msr_interception_bitmap() and
msr_write_intercepted() to verify the math and operations, but keep the
existing offset-based logic in set_msr_interception_bitmap() to sanity
check the "clear" and "set" operations. Manipulating MSR interceptions
isn't a hot path and no kernel release is ever expected to contain this
specific version of set_msr_interception_bitmap() (it will be removed
entirely in the near future).
Link: https://lore.kernel.org/r/20250610225737.156318-14-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Don't initialize vmcb02's MSRPM with KVM's set of "always passthrough"
MSRs, as KVM always needs to consult L1's intercepts, i.e. needs to merge
vmcb01 with vmcb12 and write the result to vmcb02. This will eventually
allow for the removal of svm_vcpu_init_msrpm().
Note, the bitmaps are truly initialized by svm_vcpu_alloc_msrpm() (default
to intercepting all MSRs), e.g. if there is a bug lurking elsewhere, the
worst case scenario from dropping the call to svm_vcpu_init_msrpm() should
be that KVM would fail to passthrough MSRs to L2.
Link: https://lore.kernel.org/r/20250610225737.156318-13-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Use a dedicated array of MSRPM offsets to merge L0 and L1 bitmaps, i.e. to
merge KVM's vmcb01 bitmap with L1's vmcb12 bitmap. This will eventually
allow for the removal of direct_access_msrs, as the only path where
tracking the offsets is truly justified is the merge for nested SVM, where
merging in chunks is an easy way to batch uaccess reads/writes.
Opportunistically omit the x2APIC MSRs from the merge-specific array
instead of filtering them out at runtime.
Note, disabling interception of DEBUGCTL, XSS, EFER, PAT, GHCB, and
TSC_AUX is mutually exclusive with nested virtualization, as KVM passes
through those MSRs only for SEV-ES guests, and KVM doesn't support nested
virtualization for SEV+ guests. Defer removing those MSRs to a future
cleanup in order to make this refactoring as benign as possible.
Link: https://lore.kernel.org/r/20250610225737.156318-11-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Move SVM's MSR Permissions Map macros to svm.h in anticipation of adding
helpers that are available to SVM code, and opportunistically replace a
variety of open-coded literals with (hopefully) informative macros.
Opportunistically open code ARRAY_SIZE(msrpm_ranges) instead of wrapping
it as NUM_MSR_MAPS, which is an ambiguous name even if it were qualified
with "SVM_MSRPM".
Deliberately leave the ranges as open coded literals, as using macros to
define the ranges actually introduces more potential failure points, since
both the definitions and the usage have to be careful to use the correct
index. The lack of clear intent behind the ranges will be addressed in
future patches.
No functional change intended.
Link: https://lore.kernel.org/r/20250610225737.156318-10-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Rename nested_svm_vmrun_msrpm() to nested_svm_merge_msrpm() to better
capture its role, and opportunistically feed it @vcpu instead of @svm, as
grabbing "svm" only to turn around and grab svm->vcpu is rather silly.
No functional change intended.
Reviewed-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Link: https://lore.kernel.org/r/20250610225737.156318-9-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Manipulate the MSR bitmaps using non-atomic bit ops APIs (two underscores),
as the bitmaps are per-vCPU and are only ever accessed while vcpu->mutex is
held.
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Link: https://lore.kernel.org/r/20250610225737.156318-8-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
WARN and kill the VM instead of panicking the host if KVM attempts to set
or query MSR interception for an unsupported MSR. Accessing the MSR
interception bitmaps only meaningfully affects post-VMRUN behavior, and
KVM_BUG_ON() is guaranteed to prevent the current vCPU from doing VMRUN,
i.e. there is no need to panic the entire host.
Opportunistically move the sanity checks about their use to index into the
MSRPM, e.g. so that bugs only WARN and terminate the VM, as opposed to
doing that _and_ generating an out-of-bounds load.
Reviewed-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Link: https://lore.kernel.org/r/20250610225737.156318-7-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Drop the unnecessary and dangerous value-terminated behavior of
direct_access_msrs, and simply iterate over the actual size of the array.
The use in svm_set_x2apic_msr_interception() is especially sketchy, as it
relies on unused capacity being zero-initialized, and '0' being outside
the range of x2APIC MSRs.
To ensure the array and shadow_msr_intercept stay synchronized, simply
assert that their sizes are identical (note the six 64-bit-only MSRs).
Note, direct_access_msrs will soon be removed entirely; keeping the assert
synchronized with the array isn't expected to be along-term maintenance
burden.
Reviewed-by: Chao Gao <chao.gao@intel.com>
Link: https://lore.kernel.org/r/20250610225737.156318-6-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Tag init_msrpm_offsets() and add_msr_offset() with __init, as they're used
only during hardware setup to map potential passthrough MSRs to offsets in
the bitmap.
Reviewed-by: Chao Gao <chao.gao@intel.com>
Link: https://lore.kernel.org/r/20250610225737.156318-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
WARN and reject module loading if there is a problem with KVM's MSR
interception bitmaps. Panicking the host in this situation is inexcusable
since it is trivially easy to propagate the error up the stack.
Link: https://lore.kernel.org/r/20250610225737.156318-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Allocate pages for the IOPM after initial setup has been completed in
svm_hardware_setup(), so that sanity checks can be added in the setup flow
without needing to free the IOPM pages. The IOPM is only referenced (via
iopm_base) in init_vmcb() and svm_hardware_unsetup(), so there's no need
to allocate it early on.
No functional change intended (beyond the obvious ordering differences,
e.g. if the allocation fails).
Link: https://lore.kernel.org/r/20250610225737.156318-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Disable interception of SPEC_CTRL when the CPU virtualizes (i.e. context
switches) SPEC_CTRL if and only if the MSR exists according to the vCPU's
CPUID model. Letting the guest access SPEC_CTRL is generally benign, but
the guest would see inconsistent behavior if KVM happened to emulate an
access to the MSR.
Fixes: d00b99c514b3 ("KVM: SVM: Add support for Virtual SPEC_CTRL")
Reported-by: Chao Gao <chao.gao@intel.com>
Link: https://lore.kernel.org/r/20250610225737.156318-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Instruct vendor code to load the guest's DR6 into hardware via a new
KVM_RUN flag, and remove kvm_x86_ops.set_dr6(), whose sole purpose was to
load vcpu->arch.dr6 into hardware when DR6 can be read/written directly
by the guest.
Note, TDX already WARNs on any run_flag being set, i.e. will yell if KVM
thinks DR6 needs to be reloaded. TDX vCPUs force KVM_DEBUGREG_AUTO_SWITCH
and never clear the flag, i.e. should never observe KVM_RUN_LOAD_GUEST_DR6.
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20250610232010.162191-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Convert kvm_x86_ops.vcpu_run()'s "force_immediate_exit" boolean parameter
into an a generic bitmap so that similar "take action" information can be
passed to vendor code without creating a pile of boolean parameters.
This will allow dropping kvm_x86_ops.set_dr6() in favor of a new flag, and
will also allow for adding similar functionality for re-loading debugctl
in the active VMCS.
Opportunistically massage the TDX WARN and comment to prepare for adding
more run_flags, all of which are expected to be mutually exclusive with
TDX, i.e. should be WARNed on.
No functional change intended.
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20250610232010.162191-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Pull more kvm updates from Paolo Bonzini:
Generic:
- Clean up locking of all vCPUs for a VM by using the *_nest_lock()
family of functions, and move duplicated code to virt/kvm/. kernel/
patches acked by Peter Zijlstra
- Add MGLRU support to the access tracking perf test
ARM fixes:
- Make the irqbypass hooks resilient to changes in the GSI<->MSI
routing, avoiding behind stale vLPI mappings being left behind. The
fix is to resolve the VGIC IRQ using the host IRQ (which is stable)
and nuking the vLPI mapping upon a routing change
- Close another VGIC race where vCPU creation races with VGIC
creation, leading to in-flight vCPUs entering the kernel w/o
private IRQs allocated
- Fix a build issue triggered by the recently added workaround for
Ampere's AC04_CPU_23 erratum
- Correctly sign-extend the VA when emulating a TLBI instruction
potentially targeting a VNCR mapping
- Avoid dereferencing a NULL pointer in the VGIC debug code, which
can happen if the device doesn't have any mapping yet
s390:
- Fix interaction between some filesystems and Secure Execution
- Some cleanups and refactorings, preparing for an upcoming big
series
x86:
- Wait for target vCPU to ack KVM_REQ_UPDATE_PROTECTED_GUEST_STATE
to fix a race between AP destroy and VMRUN
- Decrypt and dump the VMSA in dump_vmcb() if debugging enabled for
the VM
- Refine and harden handling of spurious faults
- Add support for ALLOWED_SEV_FEATURES
- Add #VMGEXIT to the set of handlers special cased for
CONFIG_RETPOLINE=y
- Treat DEBUGCTL[5:2] as reserved to pave the way for virtualizing
features that utilize those bits
- Don't account temporary allocations in sev_send_update_data()
- Add support for KVM_CAP_X86_BUS_LOCK_EXIT on SVM, via Bus Lock
Threshold
- Unify virtualization of IBRS on nested VM-Exit, and cross-vCPU
IBPB, between SVM and VMX
- Advertise support to userspace for WRMSRNS and PREFETCHI
- Rescan I/O APIC routes after handling EOI that needed to be
intercepted due to the old/previous routing, but not the
new/current routing
- Add a module param to control and enumerate support for device
posted interrupts
- Fix a potential overflow with nested virt on Intel systems running
32-bit kernels
- Flush shadow VMCSes on emergency reboot
- Add support for SNP to the various SEV selftests
- Add a selftest to verify fastops instructions via forced emulation
- Refine and optimize KVM's software processing of the posted
interrupt bitmap, and share the harvesting code between KVM and the
kernel's Posted MSI handler"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (93 commits)
rtmutex_api: provide correct extern functions
KVM: arm64: vgic-debug: Avoid dereferencing NULL ITE pointer
KVM: arm64: vgic-init: Plug vCPU vs. VGIC creation race
KVM: arm64: Unmap vLPIs affected by changes to GSI routing information
KVM: arm64: Resolve vLPI by host IRQ in vgic_v4_unset_forwarding()
KVM: arm64: Protect vLPI translation with vgic_irq::irq_lock
KVM: arm64: Use lock guard in vgic_v4_set_forwarding()
KVM: arm64: Mask out non-VA bits from TLBI VA* on VNCR invalidation
arm64: sysreg: Drag linux/kconfig.h to work around vdso build issue
KVM: s390: Simplify and move pv code
KVM: s390: Refactor and split some gmap helpers
KVM: s390: Remove unneeded srcu lock
s390: Remove unneeded includes
s390/uv: Improve splitting of large folios that cannot be split while dirty
s390/uv: Always return 0 from s390_wiggle_split_folio() if successful
s390/uv: Don't return 0 from make_hva_secure() if the operation was not successful
rust: add helper for mutex_trylock
RISC-V: KVM: use kvm_trylock_all_vcpus when locking all vCPUs
KVM: arm64: use kvm_trylock_all_vcpus when locking all vCPUs
x86: KVM: SVM: use kvm_lock_all_vcpus instead of a custom implementation
...
|
|
Pull kvm updates from Paolo Bonzini:
"As far as x86 goes this pull request "only" includes TDX host support.
Quotes are appropriate because (at 6k lines and 100+ commits) it is
much bigger than the rest, which will come later this week and
consists mostly of bugfixes and selftests. s390 changes will also come
in the second batch.
ARM:
- Add large stage-2 mapping (THP) support for non-protected guests
when pKVM is enabled, clawing back some performance.
- Enable nested virtualisation support on systems that support it,
though it is disabled by default.
- Add UBSAN support to the standalone EL2 object used in nVHE/hVHE
and protected modes.
- Large rework of the way KVM tracks architecture features and links
them with the effects of control bits. While this has no functional
impact, it ensures correctness of emulation (the data is
automatically extracted from the published JSON files), and helps
dealing with the evolution of the architecture.
- Significant changes to the way pKVM tracks ownership of pages,
avoiding page table walks by storing the state in the hypervisor's
vmemmap. This in turn enables the THP support described above.
- New selftest checking the pKVM ownership transition rules
- Fixes for FEAT_MTE_ASYNC being accidentally advertised to guests
even if the host didn't have it.
- Fixes for the address translation emulation, which happened to be
rather buggy in some specific contexts.
- Fixes for the PMU emulation in NV contexts, decoupling PMCR_EL0.N
from the number of counters exposed to a guest and addressing a
number of issues in the process.
- Add a new selftest for the SVE host state being corrupted by a
guest.
- Keep HCR_EL2.xMO set at all times for systems running with the
kernel at EL2, ensuring that the window for interrupts is slightly
bigger, and avoiding a pretty bad erratum on the AmpereOne HW.
- Add workaround for AmpereOne's erratum AC04_CPU_23, which suffers
from a pretty bad case of TLB corruption unless accesses to HCR_EL2
are heavily synchronised.
- Add a per-VM, per-ITS debugfs entry to dump the state of the ITS
tables in a human-friendly fashion.
- and the usual random cleanups.
LoongArch:
- Don't flush tlb if the host supports hardware page table walks.
- Add KVM selftests support.
RISC-V:
- Add vector registers to get-reg-list selftest
- VCPU reset related improvements
- Remove scounteren initialization from VCPU reset
- Support VCPU reset from userspace using set_mpstate() ioctl
x86:
- Initial support for TDX in KVM.
This finally makes it possible to use the TDX module to run
confidential guests on Intel processors. This is quite a large
series, including support for private page tables (managed by the
TDX module and mirrored in KVM for efficiency), forwarding some
TDVMCALLs to userspace, and handling several special VM exits from
the TDX module.
This has been in the works for literally years and it's not really
possible to describe everything here, so I'll defer to the various
merge commits up to and including commit 7bcf7246c42a ('Merge
branch 'kvm-tdx-finish-initial' into HEAD')"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (248 commits)
x86/tdx: mark tdh_vp_enter() as __flatten
Documentation: virt/kvm: remove unreferenced footnote
RISC-V: KVM: lock the correct mp_state during reset
KVM: arm64: Fix documentation for vgic_its_iter_next()
KVM: arm64: np-guest CMOs with PMD_SIZE fixmap
KVM: arm64: Stage-2 huge mappings for np-guests
KVM: arm64: Add a range to pkvm_mappings
KVM: arm64: Convert pkvm_mappings to interval tree
KVM: arm64: Add a range to __pkvm_host_test_clear_young_guest()
KVM: arm64: Add a range to __pkvm_host_wrprotect_guest()
KVM: arm64: Add a range to __pkvm_host_unshare_guest()
KVM: arm64: Add a range to __pkvm_host_share_guest()
KVM: arm64: Introduce for_each_hyp_page
KVM: arm64: Handle huge mappings for np-guest CMOs
KVM: arm64: nv: Release faulted-in VNCR page from mmu_lock critical section
KVM: arm64: nv: Handle TLBI S1E2 for VNCR invalidation with mmu_lock held
KVM: arm64: nv: Hold mmu_lock when invalidating VNCR SW-TLB before translating
RISC-V: KVM: add KVM_CAP_RISCV_MP_STATE_RESET
RISC-V: KVM: Remove scounteren initialization
KVM: RISC-V: remove unnecessary SBI reset state
...
|
|
KVM SVM changes for 6.16:
- Wait for target vCPU to acknowledge KVM_REQ_UPDATE_PROTECTED_GUEST_STATE to
fix a race between AP destroy and VMRUN.
- Decrypt and dump the VMSA in dump_vmcb() if debugging enabled for the VM.
- Add support for ALLOWED_SEV_FEATURES.
- Add #VMGEXIT to the set of handlers special cased for CONFIG_RETPOLINE=y.
- Treat DEBUGCTL[5:2] as reserved to pave the way for virtualizing features
that utilize those bits.
- Don't account temporary allocations in sev_send_update_data().
- Add support for KVM_CAP_X86_BUS_LOCK_EXIT on SVM, via Bus Lock Threshold.
|
|
KVM x86 misc changes for 6.16:
- Unify virtualization of IBRS on nested VM-Exit, and cross-vCPU IBPB, between
SVM and VMX.
- Advertise support to userspace for WRMSRNS and PREFETCHI.
- Rescan I/O APIC routes after handling EOI that needed to be intercepted due
to the old/previous routing, but not the new/current routing.
- Add a module param to control and enumerate support for device posted
interrupts.
- Misc cleanups.
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson into HEAD
LoongArch KVM changes for v6.16
1. Don't flush tlb if HW PTW supported.
2. Add LoongArch KVM selftests support.
|
|
Add support for KVM_CAP_X86_BUS_LOCK_EXIT on SVM CPUs with Bus Lock
Threshold, which is close enough to VMX's Bus Lock Detection VM-Exit to
allow reusing KVM_CAP_X86_BUS_LOCK_EXIT.
The biggest difference between the two features is that Threshold is
fault-like, whereas Detection is trap-like. To allow the guest to make
forward progress, Threshold provides a per-VMCB counter which is
decremented every time a bus lock occurs, and a VM-Exit is triggered if
and only if the counter is '0'.
To provide Detection-like semantics, initialize the counter to '0', i.e.
exit on every bus lock, and when re-executing the guilty instruction, set
the counter to '1' to effectively step past the instruction.
Note, in the unlikely scenario that re-executing the instruction doesn't
trigger a bus lock, e.g. because the guest has changed memory types or
patched the guilty instruction, the bus lock counter will be left at '1',
i.e. the guest will be able to do a bus lock on a different instruction.
In a perfect world, KVM would ensure the counter is '0' if the guest has
made forward progress, e.g. if RIP has changed. But trying to close that
hole would incur non-trivial complexity, for marginal benefit; the intent
of KVM_CAP_X86_BUS_LOCK_EXIT is to allow userspace rate-limit bus locks,
not to allow for precise detection of problematic guest code. And, it's
simply not feasible to fully close the hole, e.g. if an interrupt arrives
before the original instruction can re-execute, the guest could step past
a different bus lock.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Manali Shukla <manali.shukla@amd.com>
Link: https://lore.kernel.org/r/20250502050346.14274-5-manali.shukla@amd.com
[sean: fix typo in comment]
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Conflicts:
arch/x86/boot/startup/sme.c
arch/x86/coco/sev/core.c
arch/x86/kernel/fpu/core.c
arch/x86/kernel/fpu/xstate.c
Semantic conflict:
arch/x86/include/asm/sev-internal.h
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Set the magic BP_SPEC_REDUCE bit to mitigate SRSO when running VMs if and
only if KVM has at least one active VM. Leaving the bit set at all times
unfortunately degrades performance by a wee bit more than expected.
Use a dedicated spinlock and counter instead of hooking virtualization
enablement, as changing the behavior of kvm.enable_virt_at_load based on
SRSO_BP_SPEC_REDUCE is painful, and has its own drawbacks, e.g. could
result in performance issues for flows that are sensitive to VM creation
latency.
Defer setting BP_SPEC_REDUCE until VMRUN is imminent to avoid impacting
performance on CPUs that aren't running VMs, e.g. if a setup is using
housekeeping CPUs. Setting BP_SPEC_REDUCE in task context, i.e. without
blasting IPIs to all CPUs, also helps avoid serializing 1<=>N transitions
without incurring a gross amount of complexity (see the Link for details
on how ugly coordinating via IPIs gets).
Link: https://lore.kernel.org/all/aBOnzNCngyS_pQIW@google.com
Fixes: 8442df2b49ed ("x86/bugs: KVM: Add support for SRSO_MSR_FIX")
Reported-by: Michael Larabel <Michael@michaellarabel.com>
Closes: https://www.phoronix.com/review/linux-615-amd-regression
Cc: Borislav Petkov <bp@alien8.de>
Tested-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20250505180300.973137-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Modify the function type of native_read_msr_safe() to:
int native_read_msr_safe(u32 msr, u64 *val)
This change makes the function return an error code instead of the
MSR value, aligning it with the type of native_write_msr_safe().
Consequently, their callers can check the results in the same way.
While at it, convert leftover MSR data type "unsigned int" to u32.
Signed-off-by: Xin Li (Intel) <xin@zytor.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Uros Bizjak <ubizjak@gmail.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Link: https://lore.kernel.org/r/20250427092027.1598740-16-xin@zytor.com
|
|
An MSR value is represented as a 64-bit unsigned integer, with existing
MSR instructions storing it in EDX:EAX as two 32-bit segments.
The new immediate form MSR instructions, however, utilize a 64-bit
general-purpose register to store the MSR value. To unify the usage of
all MSR instructions, let the default MSR access APIs accept an MSR
value as a single 64-bit argument instead of two 32-bit segments.
The dual 32-bit APIs are still available as convenient wrappers over the
APIs that handle an MSR value as a single 64-bit argument.
The following illustrates the updated derivation of the MSR write APIs:
__wrmsrq(u32 msr, u64 val)
/ \
/ \
native_wrmsrq(msr, val) native_wrmsr(msr, low, high)
|
|
native_write_msr(msr, val)
/ \
/ \
wrmsrq(msr, val) wrmsr(msr, low, high)
When CONFIG_PARAVIRT is enabled, wrmsrq() and wrmsr() are defined on top
of paravirt_write_msr():
paravirt_write_msr(u32 msr, u64 val)
/ \
/ \
wrmsrq(msr, val) wrmsr(msr, low, high)
paravirt_write_msr() invokes cpu.write_msr(msr, val), an indirect layer
of pv_ops MSR write call:
If on native:
cpu.write_msr = native_write_msr
If on Xen:
cpu.write_msr = xen_write_msr
Therefore, refactor pv_cpu_ops.write_msr{_safe}() to accept an MSR value
in a single u64 argument, replacing the current dual u32 arguments.
No functional change intended.
Signed-off-by: Xin Li (Intel) <xin@zytor.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Juergen Gross <jgross@suse.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Uros Bizjak <ubizjak@gmail.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Link: https://lore.kernel.org/r/20250427092027.1598740-14-xin@zytor.com
|
|
For historic reasons there are some TSC-related functions in the
<asm/msr.h> header, even though there's an <asm/tsc.h> header.
To facilitate the relocation of rdtsc{,_ordered}() from <asm/msr.h>
to <asm/tsc.h> and to eventually eliminate the inclusion of
<asm/msr.h> in <asm/tsc.h>, add an explicit <asm/msr.h> dependency
to the source files that reference definitions from <asm/msr.h>.
[ mingo: Clarified the changelog. ]
Signed-off-by: Xin Li (Intel) <xin@zytor.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Uros Bizjak <ubizjak@gmail.com>
Link: https://lore.kernel.org/r/20250501054241.1245648-1-xin@zytor.com
|
|
Both SVM and VMX have similar implementation for executing an IBPB
between running different vCPUs on the same CPU to create separate
prediction domains for different vCPUs.
For VMX, when the currently loaded VMCS is changed in
vmx_vcpu_load_vmcs(), an IBPB is executed if there is no 'buddy', which
is the case on vCPU load. The intention is to execute an IBPB when
switching vCPUs, but not when switching the VMCS within the same vCPU.
Executing an IBPB on nested transitions within the same vCPU is handled
separately and conditionally in nested_vmx_vmexit().
For SVM, the current VMCB is tracked on vCPU load and an IBPB is
executed when it is changed. The intention is also to execute an IBPB
when switching vCPUs, although it is possible that in some cases an IBBP
is executed when switching VMCBs for the same vCPU. Executing an IBPB on
nested transitions should be handled separately, and is proposed at [1].
Unify the logic by tracking the last loaded vCPU and execuintg the IBPB
on vCPU change in kvm_arch_vcpu_load() instead. When a vCPU is
destroyed, make sure all references to it are removed from any CPU. This
is similar to how SVM clears the current_vmcb tracking on vCPU
destruction. Remove the current VMCB tracking in SVM as it is no longer
required, as well as the 'buddy' parameter to vmx_vcpu_load_vmcs().
[1] https://lore.kernel.org/lkml/20250221163352.3818347-4-yosry.ahmed@linux.dev
Link: https://lore.kernel.org/all/20250320013759.3965869-1-yosry.ahmed@linux.dev
Signed-off-by: Yosry Ahmed <yosry.ahmed@linux.dev>
[sean: tweak comment to stay at/under 80 columns]
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
When freeing a vCPU and thus its VMCB, clear current_vmcb for all possible
CPUs, not just online CPUs, as it's theoretically possible a CPU could go
offline and come back online in conjunction with KVM reusing the page for
a new VMCB.
Link: https://lore.kernel.org/all/20250320013759.3965869-1-yosry.ahmed@linux.dev
Fixes: fd65d3142f73 ("kvm: svm: Ensure an IBPB on all affected CPUs when freeing a vmcb")
Cc: stable@vger.kernel.org
Cc: Jim Mattson <jmattson@google.com>
Signed-off-by: Yosry Ahmed <yosry.ahmed@linux.dev>
[sean: split to separate patch, write changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Stop ignoring DEBUGCTL[5:2] on AMD CPUs and instead treat them as reserved.
KVM has never properly virtualized AMD's legacy PBi bits, but did allow
the guest (and host userspace) to set the bits. To avoid breaking guests
when running on CPUs with BusLockTrap, which redefined bit 2 to BLCKDB and
made bits 5:3 reserved, a previous KVM change ignored bits 5:3, e.g. so
that legacy guest software wouldn't inadvertently enable BusLockTrap or
hit a VMRUN failure due to setting reserved.
To allow for virtualizing BusLockTrap and whatever future features may use
bits 5:3, treat bits 5:2 as reserved (and hope that doing so doesn't break
any existing guests).
Reviewed-and-tested-by: Ravi Bangoria <ravi.bangoria@amd.com>
Link: https://lore.kernel.org/r/20250227222411.3490595-7-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|