summaryrefslogtreecommitdiff
path: root/include/linux/damon.h
AgeCommit message (Collapse)Author
2025-07-19mm/damon/core: remove damon_callbackSeongJae Park
All damon_callback usages are replicated by damon_call() and damos_walk(). Time to say goodbye. Remove damon_callback. Link: https://lkml.kernel.org/r/20250712195016.151108-15-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-07-19mm/damon/core: add cleanup_target() ops callbackSeongJae Park
Some DAMON operation sets may need additional cleanup per target. For example, [f]vaddr need to put pids of each target. Each user and core logic is doing that redundantly. Add another DAMON ops callback that will be used for doing such cleanups in operations set layer. [sj@kernel.org: add kernel-doc comment for damon_operations->cleanup_target] Link: https://lkml.kernel.org/r/20250715185239.89152-2-sj@kernel.org [sj@kernel.org: remove damon_ctx->callback kernel-doc comment] Link: https://lkml.kernel.org/r/20250715185239.89152-3-sj@kernel.org Link: https://lkml.kernel.org/r/20250712195016.151108-10-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-07-19mm/damon/core: introduce repeat mode damon_call()SeongJae Park
damon_call() can be useful for reading or writing DAMON internal data for one time. A common pattern of DAMON core usage from DAMON modules is doing such reads and writes repeatedly, for example, to periodically update the DAMOS stats. To do that with damon_call(), callers should call damon_call() repeatedly, with their own delay loop. Each caller doing that is repetitive. Introduce a repeat mode damon_call(). Callers can use the mode by setting a new field in damon_call_control. If the mode is turned on, damon_call() returns success immediately, and DAMON repeats invoking the callback function inside the kdamond main loop. Link: https://lkml.kernel.org/r/20250712195016.151108-3-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-07-19mm/damon: accept parallel damon_call() requestsSeongJae Park
Patch series "mm/damon: remove damon_callback". damon_callback was the only way for communicating with DAMON for contexts running on its worker thread. The interface is flexible and simple. But as DAMON evolves with more features, damon_callback has become somewhat too old. With runtime parameters update, for example, its lack of synchronization support was found to be inconvenient. Arguably it is also not easy to use correctly since the callers should understand when each callback is called, and implication of the return values from the callbacks. To replace it, damon_call() and damos_walk() are introduced. And those replaced a few damon_callback use cases. Some use cases of damon_callback such as parallel or repetitive DAMON internal data reading and additional cleanups cannot simply be replaced by damon_call() and damos_walk(), though. To allow those replaceable, extend damon_call() for parallel and/or repeated callbacks and modify the core/ops layers for additional resources cleanup. With the updates, replace the remaining damon_callback usages and finally say goodbye to damon_callback. This patch (of 14): Calling damon_call() while it is serving for another parallel thread immediately fails with -EBUSY. The caller should call it again, later. Each caller implementing such retry logic would be redundant. Accept parallel damon_call() requests and do the wait instead of the caller. Link: https://lkml.kernel.org/r/20250712195016.151108-1-sj@kernel.org Link: https://lkml.kernel.org/r/20250712195016.151108-2-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-07-19mm/damon/core: add damos->migrate_dests fieldSeongJae Park
Add a new field to 'struct damos', namely migrate_dests, to allow DAMON API callers specify multiple migration destination nodes and their weights. Also update 'struct damos' creation and destruction functions accordingly to initialize the new field and free up the API caller-allocated buffers on those, respectively. Link: https://lkml.kernel.org/r/20250709005952.17776-3-bijan311@gmail.com Signed-off-by: SeongJae Park <sj@kernel.org> Signed-off-by: Bijan Tabatabai <bijantabatab@micron.com> Reviewed-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ravi Shankar Jonnalagadda <ravis.opensrc@micron.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-07-19mm/damon: add struct damos_migrate_destsSeongJae Park
Patch series "mm/damon/vaddr: Allow interleaving in migrate_{hot,cold} actions", v4. A recent patchset automatically sets the interleave weight for each node according to the node's maximum bandwidth [1]. In another thread, the patch set's author, Joshua Hahn, wondered if/how thes weights should be changed if the bandwidth utilization of the system changes [2]. This patch set adds the mechanism for dynamically changing how application data is interleaved across nodes while leaving the policy of what the interleave weights should be to userspace. It does this by having the migrate_{hot,cold} operating schemes interleave application data according to the list of migration nodes and weights passed in via the DAMON sysfs interface. This functionality can be used to dynamically adjust how folios are interleaved by having a userspace process adjust those weights. If no specific destination nodes or weights are provided, the migrate_{hot,cold} actions will only migrate folios to damos->target_nid as before. The algorithm used to interleave the folios is similar to the one used for the weighted interleave mempolicy [3]. It uses the offset from which a folio is mapped into a VMA to determine the node the folio should be placed in. This method is convenient because for a given set of interleave weights, a folio has only one valid node it can be placed in, limitng the amount of unnecessary data movement. However, finding out how a folio is mapped inside of a VMA requires a costly rmap walk when using a paddr scheme. As such, we have decided that this functionality makes more sense as a vaddr scheme [4]. To this end, this patch set also adds vaddr versions of the migrate_{hot,cold}. Motivation ========== There have been prior discussions about how changing the interleave weights in response to the system's bandwidth utilization can be beneficial [2]. However, currently the interleave weights only are applied when data is allocated. Migrating already allocated pages according to the dynamically changing weights will better help balance the bandwidth utilization across nodes. As a toy example, imagine some application that uses 75% of the local bandwidth. Assuming sufficient capacity, when running alone, we want to keep that application's data in local memory. However, if a second instance of that application begins, using the same amount of bandwidth, it would be best to interleave the data of both processes to alleviate the bandwidth pressure from the local node. Likewise, when one of the processes ends, the data should be moves back to local memory. We imagine there would be a userspace application that would monitor system performance characteristics, such as bandwidth utilization or memory access latency, and uses that information to tune the interleave weights. Others seem to have come to a similar conclusion in previous discussions [5]. We are currently working on a userspace program that does this, but it is not quite ready to be published yet. After the userspace application tunes the interleave weights, there must be some mechanism that actually migrates pages to be consistent with those weights. This patchset is what provides this mechanism. We believe DAMON is the correct venue for the interleaving mechanism for a few reasons. First, we noticed that we don't have to migrate all of the application's pages to improve performance. we just need to migrate the frequently accessed pages. DAMON's existing hotness traching is very useful for this. Second, DAMON's quota system can be used to ensure we are not using too much bandwidth for migrations. Finally, as Ying pointed out [6], a complete solution must also handle when a memory node is at capacity. The existing migrate_cold action can be used in conjunction with the functionality added in this patch set to provide that complete solution. Functionality Test ================== Below is an example of this new functionality in use to confirm that these patches behave as intended. In this example, the user starts an application, alloc_data, which allocates 1GB using the default memory policy (i.e. allocate to local memory) then sleeps. Afterwards, we start DAMON to interleave the data at a 1:1 ratio. Using numastat, we show that DAMON has migrated the application's data to match the new interleave ratio. For this example, I modified the userspace damo tool [8] to write to the migration_dest sysfs files. I plan to upstream these changes when these patches are merged. $ # Allocate the data initially $ ./alloc_data 1G & [1] 6587 $ numastat -c -p alloc_data Per-node process memory usage (in MBs) for PID 6587 (alloc_data) Node 0 Node 1 Total ------ ------ ----- Huge 0 0 0 Heap 0 0 0 Stack 0 0 0 Private 1027 0 1027 ------- ------ ------ ----- Total 1027 0 1027 $ # Start DAMON to interleave data at a 1:1 ratio $ cat ./interleave_vaddr.yaml kdamonds: - contexts: - ops: vaddr addr_unit: null targets: - pid: 6587 regions: [] intervals: sample_us: 500 ms aggr_us: 5 s ops_update_us: 20 s intervals_goal: access_bp: 0 % aggrs: '0' min_sample_us: 0 ns max_sample_us: 0 ns nr_regions: min: '20' max: '50' schemes: - action: migrate_hot dests: - nid: 0 weight: 1 - nid: 1 weight: 1 access_pattern: sz_bytes: min: 0 B max: max nr_accesses: min: 0 % max: 100 % age: min: 0 ns max: max $ sudo ./damo/damo interleave_vaddr.yaml $ # Verify that DAMON has migrated data to match the 1:1 ratio $ numastat -c -p alloc_data Per-node process memory usage (in MBs) for PID 6587 (alloc_data) Node 0 Node 1 Total ------ ------ ----- Huge 0 0 0 Heap 0 0 0 Stack 0 0 0 Private 514 514 1027 ------- ------ ------ ----- Total 514 514 1027 Performance Test ================ Below is a simple example showing that interleaving application data using these patches can improve application performance. To do this, we run a bandwidth intensive embedding reduction application [7]. This workload is useful for this test because it reports the time it takes each iteration to run and each iteration reuses the same allocation, allowing us to see the benefits of the migration. We evaluate this on a 128 core/256 thread AMD CPU with 72GB/s of local DDR bandwidth and 26 GB/s of CXL bandwidth. Before we start the workload, the system bandwidth utilization is low, so we start with the interleave weights of 1:0, i.e. allocating all data to local memory. When the workload beings, it saturates the local bandwidth, making the page placement suboptimal. To alleviate this, we modify the interleave weights, triggering DAMON to migrate the workload's data. We use the same interleave_vaddr.yaml file to setup DAMON, except we configure it to begin with a 1:0 interleave ratio, and attach it to the shell and its children processes. $ sudo ./damo/damo start interleave_vaddr.yaml --include_child_tasks & $ <path>/eval_baseline -d amazon_All -c 255 -r 100 <clip startup output> Eval Phase 3: Running Baseline... REPEAT # 0 Baseline Total time : 7323.54 ms REPEAT # 1 Baseline Total time : 7624.56 ms REPEAT # 2 Baseline Total time : 7619.61 ms REPEAT # 3 Baseline Total time : 7617.12 ms REPEAT # 4 Baseline Total time : 7638.64 ms REPEAT # 5 Baseline Total time : 7611.27 ms REPEAT # 6 Baseline Total time : 7629.32 ms REPEAT # 7 Baseline Total time : 7695.63 ms # Interleave weights set to 3:1 REPEAT # 8 Baseline Total time : 7077.5 ms REPEAT # 9 Baseline Total time : 5633.23 ms REPEAT # 10 Baseline Total time : 5644.6 ms REPEAT # 11 Baseline Total time : 5627.66 ms REPEAT # 12 Baseline Total time : 5629.76 ms REPEAT # 13 Baseline Total time : 5633.05 ms REPEAT # 14 Baseline Total time : 5641.24 ms REPEAT # 15 Baseline Total time : 5631.18 ms REPEAT # 16 Baseline Total time : 5631.33 ms Updating the interleave weights and having DAMON migrate the workload data according to the weights resulted in an approximarely 25% speedup. Patches Sequence ================ Patches 1-7 extend the DAMON API to specify multiple destination nodes and weights for the migrate_{hot,cold} actions. These patches are from SJ'S RFC [8]. Patches 8-10 add a vaddr implementation of the migrate_{hot,cold} schemes. Patch 11 modifies the vaddr migrate_{hot,cold} schemes to interleave data according to the weights provided by damos->migrate_dest. Patches 12-13 allow the vaddr migrate_{hot,cold} implementation to filter out folios like the paddr version. This patch (of 13): Introduce a new struct, namely damos_migrate_dests, for specifying multiple DAMOS' migration destination nodes and their weights. Link: https://lkml.kernel.org/r/20250709005952.17776-1-bijan311@gmail.com Link: https://lkml.kernel.org/r/20250709005952.17776-2-bijan311@gmail.com Link: https://lore.kernel.org/linux-mm/20250520141236.2987309-1-joshua.hahnjy@gmail.com/ [1] Link: https://lore.kernel.org/linux-mm/20250313155705.1943522-1-joshua.hahnjy@gmail.com/ [2] Link: https://elixir.bootlin.com/linux/v6.15.4/source/mm/mempolicy.c#L2015 [3] Link: https://lore.kernel.org/damon/20250624223310.55786-1-sj@kernel.org/ [4] Link: https://lore.kernel.org/linux-mm/20250314151137.892379-1-joshua.hahnjy@gmail.com/ [5] Link: https://lore.kernel.org/linux-mm/87frjfx6u4.fsf@DESKTOP-5N7EMDA/ [6] Link: https://github.com/SNU-ARC/MERCI [7] Link: https://lore.kernel.org/damon/20250702051558.54138-1-sj@kernel.org/ [8] Signed-off-by: SeongJae Park <sj@kernel.org> Signed-off-by: Bijan Tabatabai <bijantabatab@micron.com> Reviewed-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ravi Shankar Jonnalagadda <ravis.opensrc@micron.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-07-19mm/damon/sysfs: use DAMON core API damon_is_running()SeongJae Park
DAMON core implements a static function to see if a given DAMON context is running. DAMON sysfs interface is implementing the same one on its own. Make the core function non-static and reuse it from the DAMON sysfs interface. Link: https://lkml.kernel.org/r/20250705175000.56259-5-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-07-09mm/damon: fix minor typos in damon headerNathan Gao
Fix typos in include/linux/damon.h. Link: https://lkml.kernel.org/r/20250618163331.54910-1-sj@kernel.org Signed-off-by: Nathan Gao <zcgao@amazon.com> Reviewed-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-12mm/damon/core: introduce damos quota goal metrics for memory node utilizationSeongJae Park
Patch series "mm/damon: auto-tune DAMOS for NUMA setups including tiered memory". Utilizing DAMON for memory tiering usually requires manual tuning and/or tedious controls. Let it self-tune hotness and coldness thresholds for promotion and demotion aiming high utilization of high memory tiers, by introducing new DAMOS quota goal metrics representing the used and the free memory ratios of specific NUMA nodes. And introduce a sample DAMON module that demonstrates how the new feature can be used for memory tiering use cases. Backgrounds =========== A type of tiered memory system exposes the memory tiers as NUMA nodes. A straightforward pages placement strategy for such systems is placing access-hot and cold pages on upper and lower tiers, reespectively, pursuing higher utilization of upper tiers. Since access temperature can be dynamic, periodically finding and migrating hot pages and cold pages to proper tiers (promoting and demoting) is also required. Linux kernel provides several features for such dynamic and transparent pages placement. Page Faults and LRU ------------------- One widely known way is using NUMA balancing in tiering mode (a.k.a NUMAB-2) and reclaim-based demotion features. In the setup, NUMAB-2 finds hot pages using access check-purpose page faults (a.k.a prot_none) and promote those inside each process' context, until there is no more pages to promote, or the upper tier is filled up and memory pressure happens. In the latter case, LRU-based reclaim logic wakes up as a response to the memory pressure and demotes cold pages to lower tiers in asynchronous (kswapd) and/or synchronous ways (direct reclaim). DAMON ----- Yet another available solution is using DAMOS with migrate_hot and migrate_cold DAMOS actions for promotions and demotions, respectively. To make it optimum, users need to specify aggressiveness and access temperature thresholds for promotions and demotions in a good balance that results in high utilization of upper tiers. The number of parameters is not small, and optimum parameter values depend on characteristics of the underlying hardware and the workload. As a result, it often requires manual, time consuming and repetitive tuning of the DAMOS schemes for given workloads and systems combinations. Self-tuned DAMON-based Memory Tiering ===================================== To solve such manual tuning problems, DAMOS provides aim-oriented feedback-driven quotas self-tuning. Using the feature, we design a self-tuned DAMON-based memory tiering for general multi-tier memory systems. For each memory tier node, if it has a lower tier, run a DAMOS scheme that demotes cold pages of the node, auto-tuning the aggressiveness aiming an amount of free space of the node. The free space is for keeping the headroom that avoids significant memory pressure during upper tier memory usage spike, and promoting hot pages from the lower tier. For each memory tier node, if it has an upper tier, run a DAMOS scheme that promotes hot pages of the current node to the upper tier, auto-tuning the aggressiveness aiming a high utilization ratio of the upper tier. The target ratio is to ensure higher tiers are utilized as much as possible. It should match with the headroom for demotion scheme, but have slight overlap, to ensure promotion and demotion are not entirely stopped. The aim-oriented aggressiveness auto-tuning of DAMOS is already available. Hence, to make such tiering solution implementation, only new quota goal metrics for utilization and free space ratio of specific NUMA node need to be developed. Discussions =========== The design imposes below discussion points. Expected Behaviors ------------------ The system will let upper tier memory node accommodates as many hot data as possible. If total amount of the data is less than the top tier memory's promotion/demotion target utilization, entire data will be just placed on the top tier. Promotion scheme will do nothing since there is no data to promote. Demotion scheme will also do nothing since the free space ratio of the top tier is higher than the goal. Only if the amount of data is larger than the top tier's utilization ratio, demotion scheme will demote cold pages and ensure the headroom free space. Since the promotion and demotion schemes for a single node has small overlap at their target utilization and free space goals, promotions and demotions will continue working with a moderate aggressiveness level. It will keep all data is placed on access hotness under dynamic access pattern, while minimizing the migration overhead. In any case, each node will keep headroom free space and as many upper tiers are utilized as possible. Ease of Use ----------- Users still need to set the target utilization and free space ratio, but it will be easier to set. We argue 99.7 % utilization and 0.5 % free space ratios can be good default values. It can be easily adjusted based on desired headroom size of given use case. Users are also still required to answer the minimum coldness and hotness thresholds. Together with monitoring intervals auto-tuning[2], DAMON will always show meaningful amount of hot and cold memory. And DAMOS quota's prioritization mechanism will make good decision as long as the source information is that colorful. Hence, users can very naively set the minimum criterias. We believe any access observation and no access observation within last one aggregation interval is enough for minimum hot and cold regions criterias. General Tiered Memory Setup Applicability ----------------------------------------- The design can be applied to any number of tiers having any performance characteristics, as long as they can be hierarchical. Hence, applying the system to different tiered memory system will be straightforward. Note that this assumes only single CPU NUMA node case. Because today's DAMON is not aware of which CPU made each access, applying this on systems having multiple CPU NUMA nodes can be complicated. We are planning to extend DAMON for the use case, but that's out of the scope of this patch series. How To Use ---------- Users can implement the auto-tuned DAMON-based memory tiering using DAMON sysfs interface. It can be easily done using DAMON user-space tool like user-space tool. Below evaluation results section shows an example DAMON user-space tool command for that. For wider and simpler deployment, having a kernel module that sets up and run the DAMOS schemes via DAMON kernel API can be useful. The module can enable the memory tiering at boot time via kernel command line parameter or at run time with single command. This patch series implements a sample DAMON kernel module that shows how such module can be implemented. Comparison To Page Faults and LRU-based Approaches -------------------------------------------------- The existing page faults based promotion (NUMAB-2) does hot pages detection and migration in the process context. When there are many pages to promote, it can block the progress of the application's real works. DAMOS works in asynchronous worker thread, so it doesn't block the real works. NUMAB-2 doesn't provide a way to control aggressiveness of promotion other than the maximum amount of pages to promote per given time widnow. If hot pages are found, promotions can happen in the upper-bound speed, regardless of upper tier's memory pressure. If the maximum speed is not well set for the given workload, it can result in slow promotion or unnecessary memory pressure. Self-tuned DAMON-based memory tiering alleviates the problem by adjusting the speed based on current utilization of the upper tier. LRU-based demotion can be triggered in both asynchronous (kswapd) and synchronous (direct reclaim) ways. Other than the way of finding cold pages, asynchronous LRU-based demotion and DAMON-based demotion has no big difference. DAMON-based demotion can make a better balancing with DAMON-based promotion, though. The LRU-based demotion can do better than DAMON-based demotion when the tier is having significant memory pressure. It would be wise to use DAMON-based demotion as a proactive and primary one, but utilizing LRU-based demotions together as a fast backup solution. Evaluation ========== In short, under a setup that requires fast and frequent promotions, self-tuned DAMON-based memory tiering's hot pages promotion improves performance about 4.42 %. We believe this shows self-tuned DAMON-based promotion's effectiveness. Meanwhile, NUMAB-2's hot pages promotion degrades the performance about 7.34 %. We suspect the degradation is mostly due to NUMAB-2's synchronous nature that can block the application's progress, which highlights the advantage of DAMON-based solution's asynchronous nature. Note that the test was done with the RFC version of this patch series. We don't run it again since this patch series got no meaningful change after the RFC, while the test takes pretty long time. Setup ----- Hardware. Use a machine that equips 250 GiB DRAM memory tier and 50 GiB CXL memory tier. The tiers are exposed as NUMA nodes 0 and 1, respectively. Kernel. Use Linux kernel v6.13 that modified as following. Add all DAMON patches that available on mm tree of 2025-03-15, and this patch series. Also modify it to ignore mempolicy() system calls, to avoid bad effects from application's traditional NUMA systems assumed optimizations. Workload. Use a modified version of Taobench benchmark[3] that available on DCPerf benchmark suite. It represents an in-memory caching workload. We set its 'memsize', 'warmup_time', and 'test_time' parameter as 340 GiB, 2,500 seconds and 1,440 seconds. The parameters are chosen to ensure the workload uses more than DRAM memory tier. Its RSS under the parameter grows to 270 GiB within the warmup time. It turned out the workload has a very static access pattrn. Only about 13 % of the RSS is frequently accessed from the beginning to end. Hence promotion shows no meaningful performance difference regardless of different design and implementations. We therefore modify the kernel to periodically demote up to 10 GiB hot pages and promote up to 10 GiB cold pages once per minute. The intention is to simulate periodic access pattern changes. The hotness and coldness threshold is very naively set so that it is more like random access pattern change rather than strict hot/cold pages exchange. This is why we call the workload as "modified". It is implemented as two DAMOS schemes each running on an asynchronous thread. It can be reproduced with DAMON user-space tool like below. # ./damo start \ --ops paddr --numa_node 0 --monitoring_intervals 10s 200s 200s \ --damos_action migrate_hot 1 \ --damos_quota_interval 60s --damos_quota_space 10G \ --ops paddr --numa_node 1 --monitoring_intervals 10s 200s 200s \ --damos_action migrate_cold 0 \ --damos_quota_interval 60s --damos_quota_space 10G \ --nr_schemes 1 1 --nr_targets 1 1 --nr_ctxs 1 1 System configurations. Use below variant system configurations. - Baseline. No memory tiering features are turned on. - Numab_tiering. On the baseline, enable NUMAB-2 and relcaim-based demotion. In detail, following command is executed: echo 2 > /proc/sys/kernel/numa_balancing; echo 1 > /sys/kernel/mm/numa/demotion_enabled; echo 7 > /proc/sys/vm/zone_reclaim_mode - DAMON_tiering. On the baseline, utilize self-tuned DAMON-based memory tiering implementation via DAMON user-space tool. It utilizes two kernel threads, namely promotion thread and demotion thread. Demotion thread monitors access pattern of DRAM node using DAMON with auto-tuned monitoring intervals aiming 4% DAMON-observed access ratio, and demote coldest pages up to 200 MiB per second aiming 0.5% free space of DRAM node. Promotion thread monitors CXL node using same intervals auto-tuning, and promote hot pages in same way but aiming for 99.7% utilization of DRAM node. Because DAMON provides only best-effort accuracy, add young page DAMOS filters to allow only and reject all young pages at promoting and demoting, respectively. It can be reproduced with DAMON user-space tool like below. # ./damo start \ --numa_node 0 --monitoring_intervals_goal 4% 3 5ms 10s \ --damos_action migrate_cold 1 --damos_access_rate 0% 0% \ --damos_apply_interval 1s \ --damos_quota_interval 1s --damos_quota_space 200MB \ --damos_quota_goal node_mem_free_bp 0.5% 0 \ --damos_filter reject young \ --numa_node 1 --monitoring_intervals_goal 4% 3 5ms 10s \ --damos_action migrate_hot 0 --damos_access_rate 5% max \ --damos_apply_interval 1s \ --damos_quota_interval 1s --damos_quota_space 200MB \ --damos_quota_goal node_mem_used_bp 99.7% 0 \ --damos_filter allow young \ --damos_nr_quota_goals 1 1 --damos_nr_filters 1 1 \ --nr_targets 1 1 --nr_schemes 1 1 --nr_ctxs 1 1 Measurment Results ------------------ On each system configuration, run the modified version of Taobench and collect 'score'. 'score' is a metric that calculated and provided by Taobench to represents the performance of the run on the system. To handle the measurement errors, repeat the measurement five times. The results are as below. Config Score Stdev (%) Normalized Baseline 1.6165 0.0319 1.9764 1.0000 Numab_tiering 1.4976 0.0452 3.0209 0.9264 DAMON_tiering 1.6881 0.0249 1.4767 1.0443 'Config' column shows the system config of the measurement. 'Score' column shows the 'score' measurement in average of the five runs on the system config. 'Stdev' column shows the standsard deviation of the five measurements of the scores. '(%)' column shows the 'Stdev' to 'Score' ratio in percentage. Finally, 'Normalized' column shows the averaged score values of the configs that normalized to that of 'Baseline'. The periodic hot pages demotion and cold pages promotion that was conducted to simulate dynamic access pattern was started from the beginning of the workload. It resulted in the DRAM tier utilization always under the watermark, and hence no real demotion was happened for all test runs. This means the above results show no difference between LRU-based and DAMON-based demotions. Only difference between NUMAB-2 and DAMON-based promotions are represented on the results. Numab_tiering config degraded the performance about 7.36 %. We suspect this happened because NUMAB-2's synchronous promotion was blocking the Taobench's real work progress. DAMON_tiering config improved the performance about 4.43 %. We believe this shows effectiveness of DAMON-based promotion that didn't block Taobench's real work progress due to its asynchronous nature. Also this means DAMON's monitoring results are accurate enough to provide visible amount of improvement. Evaluation Limitations ---------------------- As mentioned above, this evaluation shows only comparison of promotion mechanisms. DAMON-based tiering is recommended to be used together with reclaim-based demotion as a faster backup under significant memory pressure, though. From some perspective, the modified version of Taobench may seems making the picture distorted too much. It would be better to evaluate with more realistic workload, or more finely tuned micro benchmarks. Patch Sequence ============== The first patch (patch 1) implements two new quota goal metrics on core layer and expose it to DAMON core kernel API. The second and third ones (patches 2 and 3) further link it to DAMON sysfs interface. Three following patches (patches 4-6) document the new feature and sysfs file on design, usage, and ABI documents. The final one (patch 7) implements a working version of a self-tuned DAMON-based memory tiering solution in an incomplete but easy to understand form as a kernel module under samples/damon/ directory. References ========== [1] https://lore.kernel.org/20231112195602.61525-1-sj@kernel.org/ [2] https://lore.kernel.org/20250303221726.484227-1-sj@kernel.org [3] https://github.com/facebookresearch/DCPerf/blob/main/packages/tao_bench/README.md This patch (of 7): Used and free space ratios for specific NUMA nodes can be useful inputs for NUMA-specific DAMOS schemes' aggressiveness self-tuning feedback loop. Implement DAMOS quota goal metrics for such self-tuned schemes. Link: https://lkml.kernel.org/r/20250420194030.75838-1-sj@kernel.org Link: https://lkml.kernel.org/r/20250420194030.75838-2-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Yunjeong Mun <yunjeong.mun@sk.com> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-21mm/damon: implement a new DAMOS filter type for active pagesNhat Pham
Patch series "mm/damon: introduce DAMOS filter type for active pages". The memory reclaim algorithm categorizes pages into active and inactive lists, separately for file and anon pages. The system's performance relies heavily on the (relative and absolute) accuracy of this categorization. This patch series add a new DAMOS filter for pages' activeness, giving us visibility into the access frequency of the pages on each list. This insight can help us diagnose issues with the active-inactive balancing dynamics, and make decisions to optimize reclaim efficiency and memory utilization. For instance, we might decide to enable DAMON_LRU_SORT, if we find that there are pages on the active list that are infrequently accessed, or less frequently accessed than pages on the inactive list. This patch (of 2): Implement a DAMOS filter type for active pages on DAMON kernel API, and add support of it from the physical address space DAMON operations set (paddr). Link: https://lkml.kernel.org/r/20250318183029.2062917-1-nphamcs@gmail.com Link: https://lkml.kernel.org/r/20250318183029.2062917-2-nphamcs@gmail.com Signed-off-by: Nhat Pham <nphamcs@gmail.com> Suggested-by: SeongJae Park <sj@kernel.org> Reviewed-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17mm/damon: remove damon_operations->reset_aggregatedSeongJae Park
The operations layer hook was introduced to let operations set do any aggregation data reset if needed. But it is not really be used now. Remove it. Link: https://lkml.kernel.org/r/20250306175908.66300-14-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17mm/damon: remove damon_callback->before_damos_applySeongJae Park
The hook was introduced to let DAMON kernel API users access DAMOS schemes-eligible regions in a safe way. Now it is no more used by anyone, and the functionality is provided in a better way by damos_walk(). Remove it. Link: https://lkml.kernel.org/r/20250306175908.66300-13-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17mm/damon: remove damon_callback->after_samplingSeongJae Park
The callback was used by DAMON sysfs interface for reading DAMON internal data. But it is no more being used, and damon_call() can do similar works in a better way. Remove it. Link: https://lkml.kernel.org/r/20250306175908.66300-12-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17mm/damon: remove ->before_start of damon_callbackSeongJae Park
The function pointer field was added to be used as a place to do some initialization works just before DAMON starts working. However, nobody is using it now. Remove it. Link: https://lkml.kernel.org/r/20250306175908.66300-11-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17mm/damon: remove damon_callback->privateSeongJae Park
The field was added to let users keep their personal data to use inside of the callbacks. However, no one is actively using that now. Remove it. Link: https://lkml.kernel.org/r/20250306175908.66300-10-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17mm/damon/core: expose damos_filter_for_ops() to DAMON kernel API callersSeongJae Park
damos_filter_for_ops() can be useful to avoid putting wrong type of filters in wrong place. Make it be exposed to DAMON kernel API callers. Link: https://lkml.kernel.org/r/20250305222733.59089-5-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17mm/damon: add default allow/reject behavior fields to struct damosSeongJae Park
Current default allow/reject behavior of filters handling stage has made before introduction of the allow behavior. For allow-filters usage, it is confusing and inefficient. It is more intuitive to decide the default filtering stage allow/reject behavior as opposite to the last filter's behavior. The decision should be made separately for core and operations layers' filtering stages, since last core layer-handled filter is not really a last filter if there are operations layer handling filters. Keeping separate decisions for the two categories can make the logic simpler. Add fields for storing the two decisions. Link: https://lkml.kernel.org/r/20250304211913.53574-7-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17mm/damon/core: introduce damos->ops_filtersSeongJae Park
Patch series "mm/damon: make allow filters after reject filters useful and intuitive". DAMOS filters do allow or reject elements of memory for given DAMOS scheme only if those match the filter criterias. For elements that don't match any DAMOS filter, 'allowing' is the default behavior. This makes allow-filters that don't have any reject-filter after them meaningless sources of overhead. The decision was made to keep the behavior consistent with that before the introduction of allow-filters. This, however, makes usage of DAMOS filters confusing and inefficient. It is more intuitive and still consistent behavior to reject by default unless there is no filter at all or the last filter is a reject filter. Update the filtering logic in the way and update documents to clarify the behavior. Note that this is changing the old behavior. But the old behavior for the problematic filter combination was definitely confusing, inefficient and anyway useless. Also, the behavior has relatively recently introduced. It is difficult to anticipate any user that depends on the behavior. Hence this is not a user-breaking behavior change but an obvious improvement. This patch (of 9): DAMOS filters can be categorized into two groups depending on which layer they are handled, namely core layer and ops layer. The groups are important because the filtering behavior depends on evaluation sequence of filters, and core layer-handled filters are evaluated before operations layer-handled ones. The behavior is clearly documented, but the implementation is bit inefficient and complicated. All filters are maintained in a single list (damos->filters) in mix. Filters evaluation logics in core layer and operations layer iterates all the filters on the list, while skipping filters that should be not handled by the layer of the logic. It is inefficient. Making future extensions having differentiations for filters of different handling layers will also be complicated. Add a new list that will be used for having all operations layer-handled DAMOS filters to DAMOS scheme data structure. Also add the support of its initialization and basic traversal functions. Link: https://lkml.kernel.org/r/20250304211913.53574-1-sj@kernel.org Link: https://lkml.kernel.org/r/20250304211913.53574-2-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17mm/damon/core: implement intervals auto-tuningSeongJae Park
Implement the DAMON sampling and aggregation intervals auto-tuning mechanism as briefly described on 'struct damon_intervals_goal'. The core part for deciding the direction and amount of the changes is implemented reusing the feedback loop function which is being used for DAMOS quotas auto-tuning. Unlike the DAMOS quotas auto-tuning use case, limit the maximum decreasing amount after the adjustment to 50% of the current value, though. This is because the intervals have no good merits at rapid reductions since it could unnecessarily increase the monitoring overhead. Link: https://lkml.kernel.org/r/20250303221726.484227-3-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17mm/damon: add data structure for monitoring intervals auto-tuningSeongJae Park
Patch series "mm/damon: auto-tune aggregation interval". DAMON requires time-consuming and repetitive aggregation interval tuning. Introduce a feature for automating it using a feedback loop that aims an amount of observed access events, like auto-exposing cameras. Background: Access Frequency Monitoring and Aggregation Interval ================================================================ DAMON checks if each memory element (damon_region) is accessed or not for every user-specified time interval called 'sampling interval'. It aggregates the check intervals on per-element counter called 'nr_accesses'. DAMON users can read the counters to get the access temperature of a given element. The counters are reset for every another user-specified time interval called 'aggregation interval'. This can be illustrated as DAMON continuously capturing a snapshot of access events that happen and captured within the last aggregation interval. This implies the aggregation interval plays a key role for the quality of the snapshots, like the camera exposure time. If it is too short, the amount of access events that happened and captured for each snapshot is small, so each snapshot will show no many interesting things but just a cold and dark world with hopefuly one pale blue dot or two. If it is too long, too many events are aggregated in a single shot, so each snapshot will look like world of flames, or Muspellheim. It will be difficult to find practical insights in both cases. Problem: Time Consuming and Repetitive Tuning ============================================= The appropriate length of the aggregation interval depends on how frequently the system and workloads are making access events that DAMON can observe. Hence, users have to tune the interval with excessive amount of tests with the target system and workloads. If the system and workloads are changed, the tuning should be done again. If the characteristic of the workloads is dynamic, it becomes more challenging. It is therefore time-consuming and repetitive. The tuning challenge mainly stems from the wrong question. It is not asking users what quality of monitoring results they want, but how DAMON should operate for their hidden goal. To make the right answer, users need to fully understand DAMON's mechanisms and the characteristics of their workloads. Users shouldn't be asked to understand the underlying mechanism. Understanding the characteristics of the workloads shouldn't be the role of users but DAMON. Aim-oriented Feedback-driven Auto-Tuning ========================================= Fortunately, the appropriate length of the aggregation interval can be inferred using a feedback loop. If the current snapshots are showing no much intresting information, in other words, if it shows only rare access events, increasing the aggregation interval helps, and vice versa. We tested this theory on a few real-world workloads, and documented one of the experience with an official DAMON monitoring intervals tuning guideline. Since it is a simple theory that requires repeatable tries, it can be a good job for machines. Based on the guideline's theory, we design an automation of aggregation interval tuning, in a way similar to that of camera auto-exposure feature. It defines the amount of interesting information as the ratio of DAMON-observed access events that DAMON actually observed to theoretical maximum amount of it within each snapshot. Events are accounted in byte and sampling attempts granularity. For example, let's say there is a region of 'X' bytes size. DAMON tried access check smapling for the region 'Y' times in total for a given aggregation. Among the 'Y' attempts, 'Z' times it shown positive results. Then, the theoritical maximum number of access events for the region is 'X * Y'. And the number of access events that DAMON has observed for the region is 'X * Z'. The abount of the interesting information is '(X * Z / X * Y)'. Note that each snapshot would have multiple regions. Users can set an arbitrary value of the ratio as their target. Once the target is set, the automation periodically measures the current value of the ratio and increase or decrease the aggregation interval if the ratio value is lower or higher than the target. The amount of the change is proportion to the distance between the current adn the target values. To avoid auto-tuning goes too long way, let users set the minimum and the maximum aggregation interval times. Changing only aggregation interval while sampling interval is kept makes the maximum level of access frequency in each snapshot, or discernment of regions inconsistent. Also, unnecessarily short sampling interval causes meaningless monitoring overhed. The automation therefore adjusts the sampling interval together with aggregation interval, while keeping the ratio between the two intervals. Users can set the ratio, or the discernment. Discussion ========== The modified question (aimed amount of access events, or lights, in each snapshot) is easy to answer by both the users and the kernel. If users are interested in finding more cold regions, the value should be lower, and vice versa. If users have no idea, kernel can suggest a fair default value based on some theories and experiments. For example, based on the Pareto principle (80/20 rule), we could expect 20% target ratio will capture 80% of real access events. Since 80% might be too high, applying the rule once again, 4% (20% * 20%) may capture about 56% (80% * 80%) of real access events. Sampling to aggregation intervals ratio and min/max aggregation intervals are also arguably easy to answer. What users want is discernment of regions for efficient system operation, for examples, X amount of colder regions or Y amount of warmer regions, not exactly how many times each cache line is accessed in nanoseconds degree. The appropriate min/max aggregation interval can relatively naively set, and may better to set for aimed monitoring overhead. Since sampling interval is directly deciding the overhead, setting it based on the sampling interval can be easy. With my experiences, I'd argue the intervals ratio 0.05, and 5 milliseconds to 20 seconds sampling interval range (100 milliseconds to 400 seconds aggregation interval) can be a good default suggestion. Evaluation ========== On a machine running a real world server workload, I ran DAMON to monitor its physical address space for about 23 hours, with this feature turned on. We set it to tune sampling interval in a range from 5 milliseconds to 10 seconds, aiming 4 % DAMON-observed access ratio per three aggregation intervals. The exact command I used is as below. damo start --monitoring_intervals_goal 4% 3 5ms 10s --damos_action stat During the test run, DAMON continuously updated sampling and aggregation intervals as designed, within the given range. For all the time, DAMON was able to find the intervals that meets the target access events ratio in the given intervals range (sampling interval between 5 milliseconds and 10 seconds). For most of the time, tuned sampling interval was converged in 300-400 milliseconds. It made only small amount of changes within the range. The average of the tuned sampling interval during the test was about 380 milliseconds. The workload periodically gets less load and decreases its CPU usage. Presumably this also caused it making less memory access events. Reactively to such event,s DAMON also increased the intervals as expected. It was still able to find the optimum interval that satisfying the target access ratio within the given intervals range. Usually it was converged to about 5 seconds. Once the workload gets normal amount of load again, DAMON reactively reduced the intervals to the normal range. I collected and visualized DAMON's monitoring results on the server a few times. Every time the visualized access pattern looked not biased to only cold or hot pages but diverse and balanced. Let me show some of the snapshots that I collected at the nearly end of the test (after about 23 hours have passed since starting DAMON on the server). The recency histogram looks as below. Please note that this visualization shows only a very coarse grained information. For more details about the visualization format, please refer to DAMON user-space tool documentation[1]. # ./damo report access --style recency-sz-hist --tried_regions_of 0 0 0 --access_rate 0 0 <last accessed time (us)> <total size> [-19 h 7 m 45.514 s, -17 h 12 m 58.963 s) 6.198 GiB |**** | [-17 h 12 m 58.963 s, -15 h 18 m 12.412 s) 0 B | | [-15 h 18 m 12.412 s, -13 h 23 m 25.860 s) 0 B | | [-13 h 23 m 25.860 s, -11 h 28 m 39.309 s) 0 B | | [-11 h 28 m 39.309 s, -9 h 33 m 52.757 s) 0 B | | [-9 h 33 m 52.757 s, -7 h 39 m 6.206 s) 0 B | | [-7 h 39 m 6.206 s, -5 h 44 m 19.654 s) 0 B | | [-5 h 44 m 19.654 s, -3 h 49 m 33.103 s) 0 B | | [-3 h 49 m 33.103 s, -1 h 54 m 46.551 s) 0 B | | [-1 h 54 m 46.551 s, -0 ns) 16.967 GiB |********* | [-0 ns, --6886551440000 ns) 38.835 GiB |********************| memory bw estimate: 9.425 GiB per second total size: 62.000 GiB It shows about 38 GiB of memory was accessed at least once within last aggregation interval (given ~300 milliseconds tuned sampling interval, this is about six seconds). This is about 61 % of the total memory. In other words, DAMON found warmest 61 % memory of the system. The number is particularly interesting given our Pareto principle based theory for the tuning goal value. We set it as 20 % of 20 % (4 %), thinking it would capture 80 % of 80 % (64 %) real access events. And it foudn 61 % hot memory, or working set. Nevertheless, to make the theory clearer, much more discussion and tests would be needed. At the moment, nonetheless, we can say making the target value higher helps finding more hot memory regions. The histogram also shows an amount of cold memory. About 17 GiB memory of the system has not accessed at least for last aggregation interval (about six seconds), and at most for about last two hours. The real longest unaccessed time of the 17 GiB memory was about 19 minutes, though. This is a limitation of this visualization format. It further found very cold 6 GiB memory. It has not accessed at least for last 17 hours and at most 19 hours. What about hot memory distribution? To see this, I capture and visualize the snapshot in access temperature histogram. Again, please refer to the DAMON user-space tool documentation[1] for the format and what access temperature mean. Both the visualization and metric shows only very coarse grained and limited information. The resulting histogram look like below. # ./damo report access --style temperature-sz-hist --tried_regions_of 0 0 0 <temperature> <total size> [-6,840,763,776,000, -5,501,580,939,800) 6.198 GiB |*** | [-5,501,580,939,800, -4,162,398,103,600) 0 B | | [-4,162,398,103,600, -2,823,215,267,400) 0 B | | [-2,823,215,267,400, -1,484,032,431,200) 0 B | | [-1,484,032,431,200, -144,849,595,000) 0 B | | [-144,849,595,000, 1,194,333,241,200) 55.802 GiB |********************| [1,194,333,241,200, 2,533,516,077,400) 4.000 KiB |* | [2,533,516,077,400, 3,872,698,913,600) 4.000 KiB |* | [3,872,698,913,600, 5,211,881,749,800) 8.000 KiB |* | [5,211,881,749,800, 6,551,064,586,000) 12.000 KiB |* | [6,551,064,586,000, 7,890,247,422,200) 4.000 KiB |* | memory bw estimate: 5.178 GiB per second total size: 62.000 GiB We can see most of the memory is in similar access temperature range, and definitely some pages are extremely hot. To see the picture in more detail, let's capture and visualize the snapshot per DAMON-region, sorted by their access temperature. The total number of the regions was about 300. Due to the limited space, I'm showing only a few parts of the output here. # ./damo report access --style hot --tried_regions_of 0 0 0 heatmap: 00000000888888889999999888888888888888888888888888888888888888888888888888888888 # min/max temperatures: -6,827,258,184,000, 17,589,052,500, column size: 793.600 MiB |999999999999999999999999999999999999999| 4.000 KiB access 100 % 18 h 9 m 43.918 s |999999999999999999999999999999999999999| 8.000 KiB access 100 % 17 h 56 m 5.351 s |999999999999999999999999999999999999999| 4.000 KiB access 100 % 15 h 24 m 19.634 s |999999999999999999999999999999999999999| 4.000 KiB access 100 % 14 h 10 m 55.606 s |999999999999999999999999999999999999999| 4.000 KiB access 100 % 11 h 34 m 18.993 s [...] |99999999999999999999999999999| 8.000 KiB access 100 % 1 m 27.945 s |11111111111111111111111111111| 80.000 KiB access 15 % 1 m 21.180 s |00000000000000000000000000000| 24.000 KiB access 5 % 1 m 21.180 s |00000000000000000000000000000| 5.919 GiB access 10 % 1 m 14.415 s |99999999999999999999999999999| 12.000 KiB access 100 % 1 m 7.650 s [...] |0| 4.000 KiB access 5 % 0 ns |0| 12.000 KiB access 5 % 0 ns |0| 188.000 KiB access 0 % 0 ns |0| 24.000 KiB access 0 % 0 ns |0| 48.000 KiB access 0 % 0 ns [...] |0000000000000000000000000000000| 8.000 KiB access 0 % 6 m 45.901 s |00000000000000000000000000000000| 36.000 KiB access 0 % 7 m 26.491 s |00000000000000000000000000000000| 4.000 KiB access 0 % 12 m 37.682 s |000000000000000000000000000000000| 8.000 KiB access 0 % 18 m 9.168 s |000000000000000000000000000000000| 16.000 KiB access 0 % 19 m 3.288 s |0000000000000000000000000000000000000000| 6.198 GiB access 0 % 18 h 57 m 52.582 s memory bw estimate: 8.798 GiB per second total size: 62.000 GiB We can see DAMON found small and extremely hot regions that accessed for all access check sampling (once per about 300 milliseconds) for more than 10 hours. The access temperature rapidly decreases. DAMON was also able to find small and big regions that not accessed for up to about 19 minutes. It even found an outlier cold region of 6 GiB that not accessed for about 19 hours. It is unclear what the outlier region is, as of this writing. For the testing, DAMON was consuming about 0.1% of single CPU time. This is again expected results, since DAMON was using about 370 milliseconds sampling interval in most case. # ps -p $kdamond_pid -o %cpu %CPU 0.1 I also ran similar tests against kernel build workload and an in-memory cache workload benchmark[2]. Detialed results including tuned intervals and captured access pattern were of course different sicne those depend on the workloads. But the auto-tuning feature was always working as expected like the above results for the real world workload. To wrap up, with intervals auto-tuning feature, DAMON was able to capture access pattern snapshots of a quality on a real world server workload. The auto-tuning feature was able to adaptively react to the dynamic access patterns of the workload and reliably provide consistent monitoring results without manual human interventions. Also, the auto-tuning made DAMON consumes only necessary amount of resource for the required quality. References ========== [1] https://github.com/damonitor/damo/blob/next/USAGE.md#access-report-styles [2] https://github.com/facebookresearch/DCPerf/blob/main/packages/tao_bench/README.md This patch (of 8): Add data structures for DAMON sampling and aggregation intervals automatic tuning that aims specific amount of DAMON-observed access events per snapshot. In more detail, define the data structure for the tuning goal, link it to the monitoring attributes data structure so that DAMON kernel API callers can make the request, and update parameters setup DAMON function to respect the new parameter. Link: https://lkml.kernel.org/r/20250303221726.484227-1-sj@kernel.org Link: https://lkml.kernel.org/r/20250303221726.484227-2-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16mm/damon: implement a new DAMOS filter type for unmapped pagesSeongJae Park
Patch series "mm/damon: introduce DAMOS filter type for unmapped pages". User decides whether their memory will be mapped or unmapped. It implies that the two types of memory can have different characteristics and management requirements. Provide the DAMON-observaibility DAMOS-operation capability for the different types by introducing a new DAMOS filter type for unmapped pages. This patch (of 2): Implement yet another DAMOS filter type for unmapped pages on DAMON kernel API, and add support of it from the physical address space DAMON operations set (paddr). Since it is for only unmapped pages, support from the virtual address spaces DAMON operations set (vaddr) is not required. Link: https://lkml.kernel.org/r/20250219220146.133650-1-sj@kernel.org Link: https://lkml.kernel.org/r/20250219220146.133650-2-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16mm/damon: introduce DAMOS filter type hugepage_sizeUsama Arif
Patch series "mm/damon: add support for hugepage_size DAMOS filter", v5. hugepage_size DAMOS filter can be used to gather statistics to check if memory regions of specific access tempratures are backed by hugepages of a size in a specific range. This filter can help to observe and prove the effectivenes of different schemes for shrinking/collapsing hugepages. This patch (of 4): This is to gather statistics to check if memory regions of specific access tempratures are backed by pages of a size in a specific range. This filter can help to observe and prove the effectivenes of different schemes for shrinking/collapsing hugepages. [sj@kernel.org: add kernel-doc comment for damos_filter->sz_range] Link: https://lkml.kernel.org/r/20250218223058.52459-1-sj@kernel.org Link: https://lkml.kernel.org/r/20250211124437.278873-1-usamaarif642@gmail.com Link: https://lkml.kernel.org/r/20250211124437.278873-2-usamaarif642@gmail.com Signed-off-by: Usama Arif <usamaarif642@gmail.com> Reviewed-by: SeongJae Park <sj@kernel.org> Cc: David Hildenbrand <david@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Usama Arif <usamaarif642@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16mm/damon: avoid applying DAMOS action to same entity multiple timesSeongJae Park
'paddr' DAMON operations set can apply a DAMOS scheme's action to a large folio multiple times in single DAMOS-regions-walk if the folio is laid on multiple DAMON regions. Add a field for DAMOS scheme object that can be used by the underlying ops to know what was the last entity that the scheme's action has applied. The core layer unsets the field when each DAMOS-regions-walk is done for the given scheme. And update 'paddr' ops to use the infrastructure to avoid the problem. Link: https://lkml.kernel.org/r/20250207212033.45269-3-sj@kernel.org Fixes: 57223ac29584 ("mm/damon/paddr: support the pageout scheme") Signed-off-by: SeongJae Park <sj@kernel.org> Reported-by: Usama Arif <usamaarif642@gmail.com> Closes: https://lore.kernel.org/20250203225604.44742-3-usamaarif642@gmail.com Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16mm/damon: respect core layer filters' allowance decision on ops layerSeongJae Park
Filtering decisions are made in filters evaluation order. Once a decision is made by a filter, filters that scheduled to be evaluated after the decision-made filter should just respect it. This is the intended and documented behavior. Since core layer-handled filters are evaluated before operations layer-handled filters, decisions made on core layer should respected by ops layer. In case of reject filters, the decision is respected, since core layer-rejected regions are not passed to ops layer. But in case of allow filters, ops layer filters don't know if the region has passed to them because it was allowed by core filters or just because it didn't match to any core layer. The current wrong implementation assumes it was due to not matched by any core filters. As a reuslt, the decision is not respected. Pass the missing information to ops layer using a new filed in 'struct damos', and make the ops layer filters respect it. Link: https://lkml.kernel.org/r/20250228175336.42781-1-sj@kernel.org Fixes: 491fee286e56 ("mm/damon/core: support damos_filter->allow") Signed-off-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-01-25mm/damon: explain "effective quota" on kernel-doc commentSeongJae Park
The kernel-doc comment for 'struct damos_quota' describes how "effective quota" is calculated, but does not explain what it is. Actually there was an input[1] about it. Add the explanation on the comment. Also, fix a trivial typo on the comment block: s/empt/empty/ [1] https://github.com/damonitor/damo/issues/17#issuecomment-2497525043 Link: https://lkml.kernel.org/r/20250110185232.54907-6-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Suggested-by: Honggyu Kim <honggyu.kim@sk.com> Cc: Yunjeong Mun <yunjeong.mun@sk.com> Cc: Honggyu Kim <honggyu.kim@sk.com> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-01-25mm/damon: add 'allow' argument to damos_new_filter()SeongJae Park
DAMON API users should set damos_filter->allow manually to use a DAMOS allow-filter, since damos_new_filter() unsets the field always. It is cumbersome and easy to mistake. Add an arugment for setting the field to damos_new_filter(). Link: https://lkml.kernel.org/r/20250109175126.57878-6-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-01-25mm/damon/core: add damos_filter->allow fieldSeongJae Park
DAMOS filters work as only exclusive (reject) filters. This makes it easy to be confused, and restrictive at combining multiple filters for covering various types of memory. Add a field named 'allow' to damos_filter. The field will be used to indicate whether the filter should work for inclusion or exclusion. To keep the old behavior, set it as 'false' (work as exclusive filter) by default, from damos_new_filter(). Following two commits will make the core and operations set layers, which handles damos_filter objects, respect the field, respectively. Link: https://lkml.kernel.org/r/20250109175126.57878-3-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-01-25mm/damon: fixup damos_filter kernel-docSeongJae Park
Patch series "mm/damon: extend DAMOS filters for inclusion", v2. DAMOS fitlers are exclusive filters. It only excludes memory of given criterias from the DAMOS action targets. This has below limitations. First, the name is not explicitly explaining the behavior. This actually resulted in users' confusions[1]. Secondly, combined uses of multiple filters provide only restriced coverages. For example, building a DAMOS scheme that applies the action to memory that belongs to cgroup A "or" cgroup B is impossible. A workaround would be using two schemes that fitlers out memory that not belong to cgroup A and cgroup B, respectively. It is cumbersome, and difficult to control quota-like per-scheme features in an orchestration. Monitoring of filters-passed memory statistic will also be complicated. Extend DAMOS filters to support not only exclusion (rejecting), but also inclusion (allowing) behavior. For this, add a new damos_filter struct field called 'allow' for DAMON kernel API users. The filter works as an inclusion or exclusion filter when it is set or unset, respectively. For DAMON user-space ABI users, add a DAMON sysfs file of same name under DAMOS filter sysfs directory. To prevent exposing a behavioral change to old users, set rejecting as the default behavior. Note that allow-filters work for only inclusion, not exclusion of memory that not satisfying the criteria. And the default behavior of DAMOS for memory that no filter has involved is that the action can be applied to those memory. Also, filters-passed memory statistics are for any memory that passed through the DAMOS filters check stage. These implies installing allow-filters at the endof the filter list is useless. Refer to the design doc change of this series for more details. [1] https://lore.kernel.org/20240320165619.71478-1-sj@kernel.org This patch (of 10): The comment is slightly wrong. DAMOS filters are not only for pages, but general bytes of memory. Also the description of 'matching' is bit confusing, since DAMOS filters do only filtering out. Update the comments to be less confusing. Link: https://lkml.kernel.org/r/20250109175126.57878-1-sj@kernel.org Link: https://lkml.kernel.org/r/20250109175126.57878-2-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-01-25mm/damon/core: pass per-region filter-passed bytes to ↵SeongJae Park
damos_walk_control->walk_fn() Total size of memory that passed DAMON operations set layer-handled DAMOS filters per scheme is provided to DAMON core API and ABI (sysfs interface) users. Having it per-region in non-accumulated way can provide it in finer granularity. Provide it to damos_walk() core API users, by passing the data to damos_walk_control->walk_fn(). Link: https://lkml.kernel.org/r/20250106193401.109161-13-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-01-25mm/damon/core: implement per-scheme ops-handled filter-passed bytes statSeongJae Park
Implement a new per-DAMOS scheme statistic field, namely sz_ops_filter_passed, using the changed damon_operations->apply_scheme() interface. It counts total bytes of memory that given DAMOS action tried to be applied, and passed the operations layer handled region-internal filters of the scheme. DAMON API users can access it using DAMON-internal safe access features such as damon_call() and/or damos_walk(). Link: https://lkml.kernel.org/r/20250106193401.109161-8-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-01-25mm/damon: ask apply_scheme() to report filter-passed region-internal bytesSeongJae Park
Some DAMOS filter types including those for young page, anon page, and belonging memcg are handled by underlying DAMON operations set implementation, via damon_operations->apply_scheme() interface. How many bytes of the region have passed the filter can be useful for DAMOS scheme tuning and access pattern monitoring. Modify the interface to let the callback implementation reports back the number if possible. Link: https://lkml.kernel.org/r/20250106193401.109161-5-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-01-25mm/damon: clarify trying vs applying on damos_stat kernel-doc commentSeongJae Park
Patch series "mm/damon: enable page level properties based monitoring". TL; DR ====== This patch series enables access monitoring based on page level properties including their anonymousness, belonging cgroups and young-ness, by extending DAMOS stats and regions walk features with region-internal DAMOS filters. Background ========== DAMOS has initially developed for only access-aware system operations. But, efficient acces monitoring results querying is yet another major usage of today's DAMOS. DAMOS stats and regions walk, which exposes accumulated counts and per-region monitoring results that filtered by DAMOS parameters including target access pattern, quotas and DAMOS filters, are the key features for that usage. For tunings and investigations, it can be more useful if only the information can be exposed without making real system operational change. Special DAMOS action, DAMOS_STAT, was introduced for the purpose. DAMOS fundametally works with only access pattern information in region granularity. For some use cases, fixed and fine granularity information based on non access pattern properties can be useful, though. For example, on systems having swap devices that much faster than storage devices for files, DAMOS-based proactive reclaim need to be applied differently for anonymous pages and file-backed pages. DAMOS filters is a feature that makes it possible. It supports non access pattern information including page level properties such as anonymousness, belonging cgroups, and young-ness (whether the page has accessed since the last access check of it). The information can be useful for tuning and investigations. DAMOS stat exposes some of it via {nr,sz}_applied, but it is mixed with operation failures. Also, exposing the information without making system operation change is impossible, since DAMOS_STAT simply ignores the page level properties based DAMOS filters. Design ====== Expose the exact information for every DAMOS action including DAMOS_STAT by implementing below changes. Extend the interface for DAMON operations set layer, which contains the implementation of the page level filters, to report back the amount of memory that passed the region-internal DAMOS filters to the core layer. On the core layer, account the operations set layer reported stat with DAMOS stat for per-scheme monitoring. Also, pass the information to regions walk for per-region monitoring. In this way, DAMON API users can efficiently get the fine-grained information. For the user-space, make DAMON sysfs interface collects the information using the updated DAMON core API, and expose those to new per-scheme stats file and per-DAMOS-tried region properties file. Practical Usages ================ With this patch series, DAMON users can query how many bytes of regions of specific access temperature is backed by pages of specific type. The type can be any of DAMOS filter-supporting one, including anonymousness, belonging cgroups, and young-ness. For example, users can visualize access hotness-based page granulairty histogram for different cgroups, backing content type, or youngness. In future, it could be extended to more types such as whether it is THP, position on LRU lists, etc. This can be useful for estimating benefits of a new or an existing access-aware system optimizations without really committing the changes. Patches Sequence ================ The patches are constructed in four sub-sequences. First three patches (patches 1-3) update documents to have missing background knowledges and better structures for easily introducing followup changes. Following three patches (patches 4-6) change the operations set layer interface to report back the region-internal filter passed memory size, and make the operations set implementations support the changed symantic. Following five patches (patches 7-11) implement per-scheme accumulated stat for region-internal filter-passed memory size on core API (damos_stat) and DAMON sysfs interface. First two patches of those are for code change, and following three patches are for documentation. Finally, five patches (patches 12-16) implementing per-region region-internal filter-passed memory size follows. Similar to that for per-scheme stat, first two patches implement core-API and sysfs interface change. Then three patches for documentation update follow. This patch (of 16): DAMOS stat kernel-doc documentation is using terms that bit ambiguous. Without reading the code, understanding it correctly is not that easy. Add the clarification on the kernel-doc comment. Link: https://lkml.kernel.org/r/20250106193401.109161-1-sj@kernel.org Link: https://lkml.kernel.org/r/20250106193401.109161-2-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-01-25mm/damon/core: implement damos_walk()SeongJae Park
Introduce a new core layer interface, damos_walk(). It aims to replace some damon_callback usages that access DAMOS schemes applied regions of ongoing kdamond with additional synchronizations. It receives a function pointer and asks kdamond to invoke it for any region that it tried to apply any DAMOS action within one scheme apply interval for every scheme of it. The function further waits until the kdamond finishes the invocations for every scheme, or cancels the request, and returns. The kdamond invokes the function as requested within the main loop. If it is deactivated by DAMOS watermarks or going out of the main loop, it marks the request as canceled, so that damos_walk() can wakeup and return. Link: https://lkml.kernel.org/r/20250103174400.54890-8-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-01-25mm/damon/core: introduce damon_call()SeongJae Park
Introduce a new DAMON core API function, damon_call(). It aims to replace some damon_callback usages that access damon_ctx of ongoing kdamond with additional synchronizations. It receives a function pointer, let the parallel kdamond invokes the function, and returns after the invocation is finished, or canceled due to some races. kdamond invokes the function inside the main loop after sampling is done. If it is deactivated by DAMOS watermarks or already out of the main loop, mark the request as canceled so that damon_call() can wakeup and return. Link: https://lkml.kernel.org/r/20250103174400.54890-4-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-09mm/damon/core: remove per-scheme region priority histogram bufferSeongJae Park
Nobody is reading from or writing to the per-scheme region priorities histogram buffer. It is only wasting memory. Remove it. Link: https://lkml.kernel.org/r/20240826042323.87025-4-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-09mm/damon/core: introduce per-context region priorities histogram bufferSeongJae Park
Patch series "replace per-quota region priorities histogram buffer with per-context one". Each DAMOS quota (struct damos_quota) maintains a histogram for total regions size per its prioritization score. DAMOS calcultes minimum prioritization score of regions that are ok to apply the DAMOS action to while respecting the quota. The histogram is constructed only for the calculation of the minimum score in damos_adjust_quota() for each quota which called by kdamond_fn(). Hence, there is no real reason to have per-quota histogram. Only per-kdamond histogram is needed, since parallel kdamonds could have races otherwise. The current implementation is only wasting the memory, and can easily cause unintended stack usage[1]. So, introducing a per-kdamond histogram and replacing the per-quota one with it would be the right solution for the issue. However, supporting multiple DAMON contexts per kdamond is still an ongoing work[2] without a clear estimated time of arrival. Meanwhile, per-context histogram could be an effective and straightforward solution having no blocker. Let's fix the problem first in the way. This patch (of 4): Introduce per-context buffer for region priority scores-total size histogram. Same to the per-quota one (->histogram of struct damos_quota), the new buffer is hidden from DAMON API users by being defined as a private field of DAMON context structure. It is dynamically allocated and de-allocated at the beginning and ending of the execution of the kdamond by kdamond_fn() itself. [1] commit 0742cadf5e4c ("mm/damon/lru_sort: adjust local variable to dynamic allocation") [2] https://lore.kernel.org/20240531122320.909060-1-yorha.op@gmail.com Link: https://lkml.kernel.org/r/20240826042323.87025-1-sj@kernel.org Link: https://lkml.kernel.org/r/20240826042323.87025-2-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-03mm/damon/core: implement DAMON context commit functionSeongJae Park
Implement functions for supporting online DAMON context level parameters update. The function receives two DAMON context structs. One is the struct that currently being used by a kdamond and therefore to be updated. The other one contains the parameters to be applied to the first one. The function applies the new parameters to the destination struct while keeping/updating the internal status and operation results. The function should be called from DAMON context-update-safe place, like DAMON callbacks. Link: https://lkml.kernel.org/r/20240618181809.82078-3-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-03mm/damon/core: implement DAMOS quota goals online commit functionSeongJae Park
Patch series "mm/damon: introduce DAMON parameters online commit function". DAMON context struct (damon_ctx) contains user requests (parameters), internal status, and operation results. For flexible usages, DAMON API users are encouraged to manually manipulate the struct. That works well for simple use cases. However, it has turned out that it is not that simple at least for online parameters udpate. It is easy to forget properly maintaining internal status and operation results. Also, such manual manipulation for online tuning is implemented multiple times on DAMON API users including DAMON sysfs interface, DAMON_RECLAIM and DAMON_LRU_SORT. As a result, we have multiple sources of bugs for same problem. Actually we found and fixed a few bugs from online parameter updating of DAMON API users. Implement a function for online DAMON parameters update in core layer, and replace DAMON API users' manual manipulation code for the use case. The core layer function could still have bugs, but this change reduces the source of bugs for the problem to one place. This patch (of 12): Implement functions for supporting online DAMOS quota goals parameters update. The function receives two DAMOS quota structs. One is the struct that currently being used by a kdamond and therefore to be updated. The other one contains the parameters to be applied to the first one. The function applies the new parameters to the destination struct while keeping/updating the internal status. The function should be called from parameters-update safe place, like DAMON callbacks. Link: https://lkml.kernel.org/r/20240618181809.82078-1-sj@kernel.org Link: https://lkml.kernel.org/r/20240618181809.82078-2-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-03mm/damon/paddr: introduce DAMOS_MIGRATE_HOT action for promotionHyeongtak Ji
This patch introduces DAMOS_MIGRATE_HOT action, which is similar to DAMOS_MIGRATE_COLD, but proritizes hot pages. It migrates pages inside the given region to the 'target_nid' NUMA node in the sysfs. Here is one of the example usage of this 'migrate_hot' action. $ cd /sys/kernel/mm/damon/admin/kdamonds/<N> $ cat contexts/<N>/schemes/<N>/action migrate_hot $ echo 0 > contexts/<N>/schemes/<N>/target_nid $ echo commit > state $ numactl -p 2 ./hot_cold 500M 600M & $ numastat -c -p hot_cold Per-node process memory usage (in MBs) PID Node 0 Node 1 Node 2 Total -------------- ------ ------ ------ ----- 701 (hot_cold) 501 0 601 1101 Link: https://lkml.kernel.org/r/20240614030010.751-7-honggyu.kim@sk.com Signed-off-by: Hyeongtak Ji <hyeongtak.ji@sk.com> Signed-off-by: Honggyu Kim <honggyu.kim@sk.com> Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Gregory Price <gregory.price@memverge.com> Cc: Hyeonggon Yoo <42.hyeyoo@gmail.com> Cc: Masami Hiramatsu (Google) <mhiramat@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Rakie Kim <rakie.kim@sk.com> Cc: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-03mm/damon/paddr: introduce DAMOS_MIGRATE_COLD action for demotionHonggyu Kim
This patch introduces DAMOS_MIGRATE_COLD action, which is similar to DAMOS_PAGEOUT, but migrate folios to the given 'target_nid' in the sysfs instead of swapping them out. The 'target_nid' sysfs knob informs the migration target node ID. Here is one of the example usage of this 'migrate_cold' action. $ cd /sys/kernel/mm/damon/admin/kdamonds/<N> $ cat contexts/<N>/schemes/<N>/action migrate_cold $ echo 2 > contexts/<N>/schemes/<N>/target_nid $ echo commit > state $ numactl -p 0 ./hot_cold 500M 600M & $ numastat -c -p hot_cold Per-node process memory usage (in MBs) PID Node 0 Node 1 Node 2 Total -------------- ------ ------ ------ ----- 701 (hot_cold) 501 0 601 1101 Since there are some common routines with pageout, many functions have similar logics between pageout and migrate cold. damon_pa_migrate_folio_list() is a minimized version of shrink_folio_list(). Link: https://lkml.kernel.org/r/20240614030010.751-6-honggyu.kim@sk.com Signed-off-by: Honggyu Kim <honggyu.kim@sk.com> Signed-off-by: Hyeongtak Ji <hyeongtak.ji@sk.com> Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Gregory Price <gregory.price@memverge.com> Cc: Hyeonggon Yoo <42.hyeyoo@gmail.com> Cc: Masami Hiramatsu (Google) <mhiramat@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Rakie Kim <rakie.kim@sk.com> Cc: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-03mm/damon/sysfs-schemes: add target_nid on sysfs-schemesHyeongtak Ji
This patch adds target_nid under /sys/kernel/mm/damon/admin/kdamonds/<N>/contexts/<N>/schemes/<N>/ The 'target_nid' can be used as the destination node for DAMOS actions such as DAMOS_MIGRATE_{HOT,COLD} in the follow up patches. [sj@kernel.org: document target_nid file] Link: https://lkml.kernel.org/r/20240618213630.84846-3-sj@kernel.org Link: https://lkml.kernel.org/r/20240614030010.751-4-honggyu.kim@sk.com Signed-off-by: Hyeongtak Ji <hyeongtak.ji@sk.com> Signed-off-by: Honggyu Kim <honggyu.kim@sk.com> Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Gregory Price <gregory.price@memverge.com> Cc: Hyeonggon Yoo <42.hyeyoo@gmail.com> Cc: Masami Hiramatsu (Google) <mhiramat@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Rakie Kim <rakie.kim@sk.com> Cc: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-05-05mm/damon: add DAMOS filter type YOUNGSeongJae Park
Define yet another DAMOS filter type, YOUNG. Like anon and memcg, the type of filter will be applied to each page in the memory region, and see if the page is accessed since the last check. Based on the 'matching' parameter, the page is filtered out or in. Note that this commit is adding only the type definition. The implementation should be made by DAMON operations sets. A commit for the implementation on 'paddr' DAMON operations set will follow. Link: https://lkml.kernel.org/r/20240426195247.100306-4-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Tested-by: Honggyu Kim <honggyu.kim@sk.com> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-23mm/damon/core: implement PSI metric DAMOS quota goalSeongJae Park
Extend DAMOS quota goal metric with system wide memory pressure stall time. Specifically, the system level 'some' PSI for memory is used. The target value can be set in microseconds. DAMOS measures the increased amount of the PSI metric in last quota_reset_interval and use the ratio of it versus the user-specified target PSI value as the score for the auto-tuning feedback loop. Link: https://lkml.kernel.org/r/20240219194431.159606-14-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-23mm/damon/core: support multiple metrics for quota goalSeongJae Park
DAMOS quota auto-tuning asks users to assess the current tuned quota and provide the feedback in a manual and repeated way. It allows users generate the feedback from a source that the kernel cannot access, and writing a script or a function for doing the manual and repeated feeding is not a big deal. However, additional works are additional works, and it could be more efficient if DAMOS could do the fetch itself, especially in case of DAMON sysfs interface use case, since it can avoid the context switches between the user-space and the kernel-space, though the overhead would be only trivial in most cases. Also in many cases, feedbacks could be made from kernel-accessible sources, such as PSI, CPU usage, etc. Make the quota goal to support multiple types of metrics including such ones. Link: https://lkml.kernel.org/r/20240219194431.159606-13-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-23mm/damon/core: let goal specified with only target and current valuesSeongJae Park
DAMOS quota auto-tuning feature let users to set the goal by providing a function for getting the current score of the tuned quota. It allows flexible goal setup, but only simple user-set quota is currently being used. As a result, the only user of the DAMOS quota auto-tuning is using a silly void pointer casting based score value passing function. Simplify the interface and the user code by letting user directly set the target and the current value. Link: https://lkml.kernel.org/r/20240219194431.159606-12-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-23mm/damon/core: remove ->goal field of damos_quotaSeongJae Park
DAMOS quota auto-tuning feature supports static signle goal and dynamic multiple goals via DAMON kernel API, specifically via ->goal and ->goals fields of damos_quota struct, respectively. All in-tree DAMOS kernel API users are using only the dynamic multiple goals now. Remove the unsued static single goal interface. Link: https://lkml.kernel.org/r/20240219194431.159606-11-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-23mm/damon/core: add multiple goals per damos_quota and helpers for thoseSeongJae Park
The feedback-driven DAMOS quota auto-tuning feature allows only single goal to the DAMON kernel API users. The API users could implement multiple goals for the end-users on their level, and that's what DAMON sysfs interface is doing. More DAMON kernel API users such as DAMON_RECLAIM would need to do similar work. To reduce unnecessary future duplciated efforts, support multiple goals from DAMOS core layer. To make the support in minimum non-destructive change, keep the old single goal setup interface, and add multiple goals setup. The single goal will treated as one of the multiple goals, so old API users are not required to make any change. Link: https://lkml.kernel.org/r/20240219194431.159606-9-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-23mm/damon/core: split out quota goal related fields to a structSeongJae Park
'struct damos_quota' is not small now. Split out fields for quota goal to a separate struct for easier reading. Link: https://lkml.kernel.org/r/20240219194431.159606-8-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-23mm/damon: move comments and fields for damos-quota-prioritization to the endSeongJae Park
The comments and definition of 'struct damos_quota' lists a few fields for effective quota generation first, fields for regions prioritization under the quota, and then remaining fields for effective quota generation. Readers' should unnecesssarily switch their context in the middle. List all the fields for the effective quota first, and then fields for the prioritization for making it easier to read. Link: https://lkml.kernel.org/r/20240219194431.159606-7-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-23mm/damon/core: set damos_quota->esz as public field and documentSeongJae Park
Patch series "mm/damon: let DAMOS feeds and tame/auto-tune itself". The Aim-oriented Feedback-driven DAMOS Aggressiveness Auto-tuning patchset[1] which has merged since commit 9294a037c015 ("mm/damon/core: implement goal-oriented feedback-driven quota auto-tuning") made the mechanism and the policy separated. That is, users can set a part of DAMOS control policies without a deep understanding of the mechanism but just their demands such as SLA. However, users are still required to do some additional work of manually collecting their target metric and feeding it to DAMOS. In the case of end-users who use DAMON sysfs interface, the context switches between user-space and kernel-space could also make it inefficient. The overhead is supposed to be only trivial in common cases, though. Meanwhile, in simple use cases, the target metric could be common system metrics that the kernel can efficiently self-retrieve, such as memory pressure stall time (PSI). Extend DAMOS quota auto-tuning to support multiple types of metrics including the DAMOS self-retrievable ones, and add support for memory pressure stall time metric. Different types of metrics can be supported in future. The auto-tuning capability is currently supported for only users of DAMOS kernel API and DAMON sysfs interface. Extend the support to DAMON_RECLAIM. Patches Sequence ================ First five patches are for helping debugging and fine-tuning existing quota control features. The first one (patch 1) exposes the effective quota that is made with given user inputs to DAMOS kernel API users and kernel-doc documents. Following four patches implement (patches 1, 2 and 3) and document (patches 4 and 5) a new DAMON sysfs file that exposes the value. Following six patches cleanup and simplify the existing DAMOS quota auto-tuning code by improving layout of comments and data structures (patches 6 and 7), supporting common use cases, namely multiple goals (patches 8, 9 and 10), and simplifying the interface (patch 11). Then six patches for the main purpose of this patchset follow. The first three changes extend the core logic for various target metrics (patch 12), implement memory pressure stall time-based target metric support (patch 13), and update DAMON sysfs interface to support the new target metric (patch 14). Then, documentation updates for the features on design (patch 15), ABI (patch 16), and usage (patch 17) follow. Last three patches add auto-tuning support on DAMON_RECLAIM. The patches implement DAMON_RECLAIM parameters for user-feedback driven quota auto-tuning (patch 18), memory pressure stall time-driven quota self-tuning (patch 19), and finally update the DAMON_RECLAIM usage document for the new parameters (patch 20). [1] https://lore.kernel.org/all/20231130023652.50284-1-sj@kernel.org/ This patch (of 20): DAMOS allow users to specify the quota as they want in multiple ways including time quota, size quota, and feedback-based auto-tuning. DAMOS makes one effective quota out of the inputs and use it at the end. Knowing the current effective quota helps understanding DAMOS' internal mechanism and fine-tuning quotas. DAMON kernel API users can get the information from ->esz field of damos_quota struct, but the field is marked as private purpose, and not kernel-doc documented. Make it public and document. Link: https://lkml.kernel.org/r/20240219194431.159606-1-sj@kernel.org Link: https://lkml.kernel.org/r/20240219194431.159606-2-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>