summaryrefslogtreecommitdiff
path: root/tools/sched_ext/include/scx/compat.h
AgeCommit message (Collapse)Author
2025-02-25tools/sched_ext: Provide consistent access to scx flagsAndrea Righi
Make all the SCX_OPS_* and SCX_PICK_IDLE_* flags available to the user-space part of the schedulers via the compat interface. This allows schedulers / selftests to set all the ops flags in user-space, rather than having them split between BPF and user-space. Signed-off-by: Andrea Righi <arighi@nvidia.com> Acked-by: Changwoo Min <changwoo@igalia.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2025-02-16sched_ext: idle: Per-node idle cpumasksAndrea Righi
Using a single global idle mask can lead to inefficiencies and a lot of stress on the cache coherency protocol on large systems with multiple NUMA nodes, since all the CPUs can create a really intense read/write activity on the single global cpumask. Therefore, split the global cpumask into multiple per-NUMA node cpumasks to improve scalability and performance on large systems. The concept is that each cpumask will track only the idle CPUs within its corresponding NUMA node, treating CPUs in other NUMA nodes as busy. In this way concurrent access to the idle cpumask will be restricted within each NUMA node. The split of multiple per-node idle cpumasks can be controlled using the SCX_OPS_BUILTIN_IDLE_PER_NODE flag. By default SCX_OPS_BUILTIN_IDLE_PER_NODE is not enabled and a global host-wide idle cpumask is used, maintaining the previous behavior. NOTE: if a scheduler explicitly enables the per-node idle cpumasks (via SCX_OPS_BUILTIN_IDLE_PER_NODE), scx_bpf_get_idle_cpu/smtmask() will trigger an scx error, since there are no system-wide cpumasks. = Test = Hardware: - System: DGX B200 - CPUs: 224 SMT threads (112 physical cores) - Processor: INTEL(R) XEON(R) PLATINUM 8570 - 2 NUMA nodes Scheduler: - scx_simple [1] (so that we can focus at the built-in idle selection policy and not at the scheduling policy itself) Test: - Run a parallel kernel build `make -j $(nproc)` and measure the average elapsed time over 10 runs: avg time | stdev ---------+------ before: 52.431s | 2.895 after: 50.342s | 2.895 = Conclusion = Splitting the global cpumask into multiple per-NUMA cpumasks helped to achieve a speedup of approximately +4% with this particular architecture and test case. The same test on a DGX-1 (40 physical cores, Intel Xeon E5-2698 v4 @ 2.20GHz, 2 NUMA nodes) shows a speedup of around 1.5-3%. On smaller systems, I haven't noticed any measurable regressions or improvements with the same test (parallel kernel build) and scheduler (scx_simple). Moreover, with a modified scx_bpfland that uses the new NUMA-aware APIs I observed an additional +2-2.5% performance improvement with the same test. [1] https://github.com/sched-ext/scx/blob/main/scheds/c/scx_simple.bpf.c Cc: Yury Norov [NVIDIA] <yury.norov@gmail.com> Signed-off-by: Andrea Righi <arighi@nvidia.com> Reviewed-by: Yury Norov [NVIDIA] <yury.norov@gmail.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2025-02-16sched_ext: idle: Introduce SCX_OPS_BUILTIN_IDLE_PER_NODEAndrea Righi
Add the new scheduler flag SCX_OPS_BUILTIN_IDLE_PER_NODE, which allows BPF schedulers to select between using a global flat idle cpumask or multiple per-node cpumasks. This only introduces the flag and the mechanism to enable/disable this feature without affecting any scheduling behavior. Cc: Yury Norov [NVIDIA] <yury.norov@gmail.com> Signed-off-by: Andrea Righi <arighi@nvidia.com> Reviewed-by: Yury Norov [NVIDIA] <yury.norov@gmail.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2024-12-12tools/sched_ext: Receive updates from SCX repoTejun Heo
Receive tools/sched_ext updates form https://github.com/sched-ext/scx to sync userspace bits: - scx_bpf_dump_header() added which can be used to print out basic scheduler info on dump. - BPF possible/online CPU iterators added. - CO-RE enums added. The enums are autogenerated from vmlinux.h. Include the generated artifacts in tools/sched_ext to keep the Makefile simpler. - Other misc changes. Signed-off-by: Tejun Heo <tj@kernel.org>
2024-06-18sched_ext: Implement sched_ext_ops.cpu_online/offline()Tejun Heo
Add ops.cpu_online/offline() which are invoked when CPUs come online and offline respectively. As the enqueue path already automatically bypasses tasks to the local dsq on a deactivated CPU, BPF schedulers are guaranteed to see tasks only on CPUs which are between online() and offline(). If the BPF scheduler doesn't implement ops.cpu_online/offline(), the scheduler is automatically exited with SCX_ECODE_RESTART | SCX_ECODE_RSN_HOTPLUG. Userspace can implement CPU hotpplug support trivially by simply reinitializing and reloading the scheduler. scx_qmap is updated to print out online CPUs on hotplug events. Other schedulers are updated to restart based on ecode. v3: - The previous implementation added @reason to sched_class.rq_on/offline() to distinguish between CPU hotplug events and topology updates. This was buggy and fragile as the methods are skipped if the current state equals the target state. Instead, add scx_rq_[de]activate() which are directly called from sched_cpu_de/activate(). This also allows ops.cpu_on/offline() to sleep which can be useful. - ops.dispatch() could be called on a CPU that the BPF scheduler was told to be offline. The dispatch patch is updated to bypass in such cases. v2: - To accommodate lock ordering change between scx_cgroup_rwsem and cpus_read_lock(), CPU hotplug operations are put into its own SCX_OPI block and enabled eariler during scx_ope_enable() so that cpus_read_lock() can be dropped before acquiring scx_cgroup_rwsem. - Auto exit with ECODE added. Signed-off-by: Tejun Heo <tj@kernel.org> Reviewed-by: David Vernet <dvernet@meta.com> Acked-by: Josh Don <joshdon@google.com> Acked-by: Hao Luo <haoluo@google.com> Acked-by: Barret Rhoden <brho@google.com>
2024-06-18sched_ext: Print debug dump after an error exitTejun Heo
If a BPF scheduler triggers an error, the scheduler is aborted and the system is reverted to the built-in scheduler. In the process, a lot of information which may be useful for figuring out what happened can be lost. This patch adds debug dump which captures information which may be useful for debugging including runqueue and runnable thread states at the time of failure. The following shows a debug dump after triggering the watchdog: root@test ~# os/work/tools/sched_ext/build/bin/scx_qmap -t 100 stats : enq=1 dsp=0 delta=1 deq=0 stats : enq=90 dsp=90 delta=0 deq=0 stats : enq=156 dsp=156 delta=0 deq=0 stats : enq=218 dsp=218 delta=0 deq=0 stats : enq=255 dsp=255 delta=0 deq=0 stats : enq=271 dsp=271 delta=0 deq=0 stats : enq=284 dsp=284 delta=0 deq=0 stats : enq=293 dsp=293 delta=0 deq=0 DEBUG DUMP ================================================================================ kworker/u32:12[320] triggered exit kind 1026: runnable task stall (stress[1530] failed to run for 6.841s) Backtrace: scx_watchdog_workfn+0x136/0x1c0 process_scheduled_works+0x2b5/0x600 worker_thread+0x269/0x360 kthread+0xeb/0x110 ret_from_fork+0x36/0x40 ret_from_fork_asm+0x1a/0x30 QMAP FIFO[0]: QMAP FIFO[1]: QMAP FIFO[2]: 1436 QMAP FIFO[3]: QMAP FIFO[4]: CPU states ---------- CPU 0 : nr_run=1 ops_qseq=244 curr=swapper/0[0] class=idle_sched_class QMAP: dsp_idx=1 dsp_cnt=0 R stress[1530] -6841ms scx_state/flags=3/0x1 ops_state/qseq=2/20 sticky/holding_cpu=-1/-1 dsq_id=(n/a) cpus=ff QMAP: force_local=0 asm_sysvec_apic_timer_interrupt+0x16/0x20 CPU 2 : nr_run=2 ops_qseq=142 curr=swapper/2[0] class=idle_sched_class QMAP: dsp_idx=1 dsp_cnt=0 R sshd[1703] -5905ms scx_state/flags=3/0x9 ops_state/qseq=2/88 sticky/holding_cpu=-1/-1 dsq_id=(n/a) cpus=ff QMAP: force_local=1 __x64_sys_ppoll+0xf6/0x120 do_syscall_64+0x7b/0x150 entry_SYSCALL_64_after_hwframe+0x76/0x7e R fish[1539] -4141ms scx_state/flags=3/0x9 ops_state/qseq=2/124 sticky/holding_cpu=-1/-1 dsq_id=(n/a) cpus=ff QMAP: force_local=1 futex_wait+0x60/0xe0 do_futex+0x109/0x180 __x64_sys_futex+0x117/0x190 do_syscall_64+0x7b/0x150 entry_SYSCALL_64_after_hwframe+0x76/0x7e CPU 3 : nr_run=2 ops_qseq=162 curr=kworker/u32:12[320] class=ext_sched_class QMAP: dsp_idx=1 dsp_cnt=0 *R kworker/u32:12[320] +0ms scx_state/flags=3/0xd ops_state/qseq=0/0 sticky/holding_cpu=-1/-1 dsq_id=(n/a) cpus=ff QMAP: force_local=0 scx_dump_state+0x613/0x6f0 scx_ops_error_irq_workfn+0x1f/0x40 irq_work_run_list+0x82/0xd0 irq_work_run+0x14/0x30 __sysvec_irq_work+0x40/0x140 sysvec_irq_work+0x60/0x70 asm_sysvec_irq_work+0x16/0x20 scx_watchdog_workfn+0x15f/0x1c0 process_scheduled_works+0x2b5/0x600 worker_thread+0x269/0x360 kthread+0xeb/0x110 ret_from_fork+0x36/0x40 ret_from_fork_asm+0x1a/0x30 R kworker/3:2[1436] +0ms scx_state/flags=3/0x9 ops_state/qseq=2/160 sticky/holding_cpu=-1/-1 dsq_id=(n/a) cpus=08 QMAP: force_local=0 kthread+0xeb/0x110 ret_from_fork+0x36/0x40 ret_from_fork_asm+0x1a/0x30 CPU 7 : nr_run=0 ops_qseq=76 curr=swapper/7[0] class=idle_sched_class ================================================================================ EXIT: runnable task stall (stress[1530] failed to run for 6.841s) It shows that CPU 3 was running the watchdog when it triggered the error condition and the scx_qmap thread has been queued on CPU 0 for over 5 seconds but failed to run. It also prints out scx_qmap specific information - e.g. which tasks are queued on each FIFO and so on using the dump_*() ops. This dump has proved pretty useful for developing and debugging BPF schedulers. Debug dump is generated automatically when the BPF scheduler exits due to an error. The debug buffer used in such cases is determined by sched_ext_ops.exit_dump_len and defaults to 32k. If the debug dump overruns the available buffer, the output is truncated and marked accordingly. Debug dump output can also be read through the sched_ext_dump tracepoint. When read through the tracepoint, there is no length limit. SysRq-D can be used to trigger debug dump at any time while a BPF scheduler is loaded. This is non-destructive - the scheduler keeps running afterwards. The output can be read through the sched_ext_dump tracepoint. v2: - The size of exit debug dump buffer can now be customized using sched_ext_ops.exit_dump_len. - sched_ext_ops.dump*() added to enable dumping of BPF scheduler specific information. - Tracpoint output and SysRq-D triggering added. Signed-off-by: Tejun Heo <tj@kernel.org> Reviewed-by: David Vernet <dvernet@meta.com>
2024-06-18sched_ext: Add scx_simple and scx_example_qmap example schedulersTejun Heo
Add two simple example BPF schedulers - simple and qmap. * simple: In terms of scheduling, it behaves identical to not having any operation implemented at all. The two operations it implements are only to improve visibility and exit handling. On certain homogeneous configurations, this actually can perform pretty well. * qmap: A fixed five level priority scheduler to demonstrate queueing PIDs on BPF maps for scheduling. While not very practical, this is useful as a simple example and will be used to demonstrate different features. v7: - Compat helpers stripped out in prepartion of upstreaming as the upstreamed patchset will be the baselinfe. Utility macros that can be used to implement compat features are kept. - Explicitly disable map autoattach on struct_ops to avoid trying to attach twice while maintaining compatbility with older libbpf. v6: - Common header files reorganized and cleaned up. Compat helpers are added to demonstrate how schedulers can maintain backward compatibility with older kernels while making use of newly added features. - simple_select_cpu() added to keep track of the number of local dispatches. This is needed because the default ops.select_cpu() implementation is updated to dispatch directly and won't call ops.enqueue(). - Updated to reflect the sched_ext API changes. Switching all tasks is the default behavior now and scx_qmap supports partial switching when `-p` is specified. - tools/sched_ext/Kconfig dropped. This will be included in the doc instead. v5: - Improve Makefile. Build artifects are now collected into a separate dir which change be changed. Install and help targets are added and clean actually cleans everything. - MEMBER_VPTR() improved to improve access to structs. ARRAY_ELEM_PTR() and RESIZEABLE_ARRAY() are added to support resizable arrays in .bss. - Add scx_common.h which provides common utilities to user code such as SCX_BUG[_ON]() and RESIZE_ARRAY(). - Use SCX_BUG[_ON]() to simplify error handling. v4: - Dropped _example prefix from scheduler names. v3: - Rename scx_example_dummy to scx_example_simple and restructure a bit to ease later additions. Comment updates. - Added declarations for BPF inline iterators. In the future, hopefully, these will be consolidated into a generic BPF header so that they don't need to be replicated here. v2: - Updated with the generic BPF cpumask helpers. Signed-off-by: Tejun Heo <tj@kernel.org> Reviewed-by: David Vernet <dvernet@meta.com> Acked-by: Josh Don <joshdon@google.com> Acked-by: Hao Luo <haoluo@google.com> Acked-by: Barret Rhoden <brho@google.com>