Age | Commit message (Collapse) | Author |
|
Remove the "crct10dif" shash algorithm from the crypto API. It has no
known user now that the lib is no longer built on top of it. It has no
remaining references in kernel code. The only other potential users
would be the usual components that allow specifying arbitrary hash
algorithms by name, namely AF_ALG and dm-integrity. However there are
no indications that "crct10dif" is being used with these components.
Debian Code Search and web searches don't find anything relevant, and
explicitly grepping the source code of the usual suspects (cryptsetup,
libell, iwd) finds no matches either. "crc32" and "crc32c" are used in
a few more places, but that doesn't seem to be the case for "crct10dif".
crc_t10dif_update() is also tested by crc_kunit now, so the test
coverage provided via the crypto self-tests is no longer needed.
Also note that the "crct10dif" shash algorithm was inconsistent with the
rest of the shash API in that it wrote the digest in CPU endianness,
making the resulting byte array differ on little endian vs. big endian
platforms. This means it was effectively just built for use by the lib
functions, and it was not actually correct to treat it as "just another
hash function" that could be dropped in via the shash API.
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: "Martin K. Petersen" <martin.petersen@oracle.com>
Link: https://lore.kernel.org/r/20250206173857.39794-1-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
|
|
Move the arm64 CRC-T10DIF assembly code into the lib directory and wire
it up to the library interface. This allows it to be used without going
through the crypto API. It remains usable via the crypto API too via
the shash algorithms that use the library interface. Thus all the
arch-specific "shash" code becomes unnecessary and is removed.
Note: to see the diff from arch/arm64/crypto/crct10dif-ce-glue.c to
arch/arm64/lib/crc-t10dif-glue.c, view this commit with 'git show -M10'.
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com>
Link: https://lore.kernel.org/r/20241202012056.209768-7-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
|
|
The other stress test programs provide a SIGUSR1 handler which modifies the
live register state in order to validate that signal context is being
restored during signal return. While we can't usefully do this when testing
kernel mode FP usage provide a handler for SIGUSR1 which just counts the
number of signals like we do for SIGUSR2, allowing fp-stress to treat all
the test programs uniformly.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20241107-arm64-fp-stress-irritator-v2-5-c4b9622e36ee@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
There are two spelling mistakes in some error messages. Fix them.
Signed-off-by: Colin Ian King <colin.i.king@gmail.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20240613073429.1797451-1-colin.i.king@gmail.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Currently fp-stress only covers userspace use of floating point, it does
not cover any kernel mode uses. Since currently kernel mode floating
point usage can't be preempted and there are explicit preemption points in
the existing implementations this isn't so important for fp-stress but
when we readd preemption it will be good to try to exercise it.
When the arm64 accelerated crypto operations are implemented we can
relatively straightforwardly trigger kernel mode floating point usage by
using the crypto userspace API to hash data, using the splice() support
in an effort to minimise copying. We use /proc/crypto to check which
accelerated implementations are available, picking the first symmetric
hash we find. We run the kernel mode test unconditionally, replacing the
second copy of the FPSIMD testcase for systems with FPSIMD only. If we
don't think there are any suitable kernel mode implementations we fall back
to running another copy of fpsimd-stress.
There are a number issues with this approach, we don't actually verify
that we are using an accelerated (or even CPU) implementation of the
algorithm being tested and even with attempting to use splice() to
minimise copying there are sizing limits on how much data gets spliced
at once.
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20240521-arm64-fp-stress-kernel-v1-1-e38f107baad4@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|