1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2017 - Columbia University and Linaro Ltd.
* Author: Jintack Lim <jintack.lim@linaro.org>
*/
#include <linux/bitfield.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <asm/fixmap.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_mmu.h>
#include <asm/kvm_nested.h>
#include <asm/sysreg.h>
#include "sys_regs.h"
struct vncr_tlb {
/* The guest's VNCR_EL2 */
u64 gva;
struct s1_walk_info wi;
struct s1_walk_result wr;
u64 hpa;
/* -1 when not mapped on a CPU */
int cpu;
/*
* true if the TLB is valid. Can only be changed with the
* mmu_lock held.
*/
bool valid;
};
/*
* Ratio of live shadow S2 MMU per vcpu. This is a trade-off between
* memory usage and potential number of different sets of S2 PTs in
* the guests. Running out of S2 MMUs only affects performance (we
* will invalidate them more often).
*/
#define S2_MMU_PER_VCPU 2
void kvm_init_nested(struct kvm *kvm)
{
kvm->arch.nested_mmus = NULL;
kvm->arch.nested_mmus_size = 0;
atomic_set(&kvm->arch.vncr_map_count, 0);
}
static int init_nested_s2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu)
{
/*
* We only initialise the IPA range on the canonical MMU, which
* defines the contract between KVM and userspace on where the
* "hardware" is in the IPA space. This affects the validity of MMIO
* exits forwarded to userspace, for example.
*
* For nested S2s, we use the PARange as exposed to the guest, as it
* is allowed to use it at will to expose whatever memory map it
* wants to its own guests as it would be on real HW.
*/
return kvm_init_stage2_mmu(kvm, mmu, kvm_get_pa_bits(kvm));
}
int kvm_vcpu_init_nested(struct kvm_vcpu *vcpu)
{
struct kvm *kvm = vcpu->kvm;
struct kvm_s2_mmu *tmp;
int num_mmus, ret = 0;
if (test_bit(KVM_ARM_VCPU_HAS_EL2_E2H0, kvm->arch.vcpu_features) &&
!cpus_have_final_cap(ARM64_HAS_HCR_NV1))
return -EINVAL;
if (!vcpu->arch.ctxt.vncr_array)
vcpu->arch.ctxt.vncr_array = (u64 *)__get_free_page(GFP_KERNEL_ACCOUNT |
__GFP_ZERO);
if (!vcpu->arch.ctxt.vncr_array)
return -ENOMEM;
/*
* Let's treat memory allocation failures as benign: If we fail to
* allocate anything, return an error and keep the allocated array
* alive. Userspace may try to recover by intializing the vcpu
* again, and there is no reason to affect the whole VM for this.
*/
num_mmus = atomic_read(&kvm->online_vcpus) * S2_MMU_PER_VCPU;
tmp = kvrealloc(kvm->arch.nested_mmus,
size_mul(sizeof(*kvm->arch.nested_mmus), num_mmus),
GFP_KERNEL_ACCOUNT | __GFP_ZERO);
if (!tmp)
return -ENOMEM;
swap(kvm->arch.nested_mmus, tmp);
/*
* If we went through a realocation, adjust the MMU back-pointers in
* the previously initialised kvm_pgtable structures.
*/
if (kvm->arch.nested_mmus != tmp)
for (int i = 0; i < kvm->arch.nested_mmus_size; i++)
kvm->arch.nested_mmus[i].pgt->mmu = &kvm->arch.nested_mmus[i];
for (int i = kvm->arch.nested_mmus_size; !ret && i < num_mmus; i++)
ret = init_nested_s2_mmu(kvm, &kvm->arch.nested_mmus[i]);
if (ret) {
for (int i = kvm->arch.nested_mmus_size; i < num_mmus; i++)
kvm_free_stage2_pgd(&kvm->arch.nested_mmus[i]);
free_page((unsigned long)vcpu->arch.ctxt.vncr_array);
vcpu->arch.ctxt.vncr_array = NULL;
return ret;
}
kvm->arch.nested_mmus_size = num_mmus;
return 0;
}
struct s2_walk_info {
int (*read_desc)(phys_addr_t pa, u64 *desc, void *data);
void *data;
u64 baddr;
unsigned int max_oa_bits;
unsigned int pgshift;
unsigned int sl;
unsigned int t0sz;
bool be;
};
static u32 compute_fsc(int level, u32 fsc)
{
return fsc | (level & 0x3);
}
static int esr_s2_fault(struct kvm_vcpu *vcpu, int level, u32 fsc)
{
u32 esr;
esr = kvm_vcpu_get_esr(vcpu) & ~ESR_ELx_FSC;
esr |= compute_fsc(level, fsc);
return esr;
}
static int get_ia_size(struct s2_walk_info *wi)
{
return 64 - wi->t0sz;
}
static int check_base_s2_limits(struct s2_walk_info *wi,
int level, int input_size, int stride)
{
int start_size, ia_size;
ia_size = get_ia_size(wi);
/* Check translation limits */
switch (BIT(wi->pgshift)) {
case SZ_64K:
if (level == 0 || (level == 1 && ia_size <= 42))
return -EFAULT;
break;
case SZ_16K:
if (level == 0 || (level == 1 && ia_size <= 40))
return -EFAULT;
break;
case SZ_4K:
if (level < 0 || (level == 0 && ia_size <= 42))
return -EFAULT;
break;
}
/* Check input size limits */
if (input_size > ia_size)
return -EFAULT;
/* Check number of entries in starting level table */
start_size = input_size - ((3 - level) * stride + wi->pgshift);
if (start_size < 1 || start_size > stride + 4)
return -EFAULT;
return 0;
}
/* Check if output is within boundaries */
static int check_output_size(struct s2_walk_info *wi, phys_addr_t output)
{
unsigned int output_size = wi->max_oa_bits;
if (output_size != 48 && (output & GENMASK_ULL(47, output_size)))
return -1;
return 0;
}
/*
* This is essentially a C-version of the pseudo code from the ARM ARM
* AArch64.TranslationTableWalk function. I strongly recommend looking at
* that pseudocode in trying to understand this.
*
* Must be called with the kvm->srcu read lock held
*/
static int walk_nested_s2_pgd(phys_addr_t ipa,
struct s2_walk_info *wi, struct kvm_s2_trans *out)
{
int first_block_level, level, stride, input_size, base_lower_bound;
phys_addr_t base_addr;
unsigned int addr_top, addr_bottom;
u64 desc; /* page table entry */
int ret;
phys_addr_t paddr;
switch (BIT(wi->pgshift)) {
default:
case SZ_64K:
case SZ_16K:
level = 3 - wi->sl;
first_block_level = 2;
break;
case SZ_4K:
level = 2 - wi->sl;
first_block_level = 1;
break;
}
stride = wi->pgshift - 3;
input_size = get_ia_size(wi);
if (input_size > 48 || input_size < 25)
return -EFAULT;
ret = check_base_s2_limits(wi, level, input_size, stride);
if (WARN_ON(ret))
return ret;
base_lower_bound = 3 + input_size - ((3 - level) * stride +
wi->pgshift);
base_addr = wi->baddr & GENMASK_ULL(47, base_lower_bound);
if (check_output_size(wi, base_addr)) {
out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ);
return 1;
}
addr_top = input_size - 1;
while (1) {
phys_addr_t index;
addr_bottom = (3 - level) * stride + wi->pgshift;
index = (ipa & GENMASK_ULL(addr_top, addr_bottom))
>> (addr_bottom - 3);
paddr = base_addr | index;
ret = wi->read_desc(paddr, &desc, wi->data);
if (ret < 0)
return ret;
/*
* Handle reversedescriptors if endianness differs between the
* host and the guest hypervisor.
*/
if (wi->be)
desc = be64_to_cpu((__force __be64)desc);
else
desc = le64_to_cpu((__force __le64)desc);
/* Check for valid descriptor at this point */
if (!(desc & 1) || ((desc & 3) == 1 && level == 3)) {
out->esr = compute_fsc(level, ESR_ELx_FSC_FAULT);
out->desc = desc;
return 1;
}
/* We're at the final level or block translation level */
if ((desc & 3) == 1 || level == 3)
break;
if (check_output_size(wi, desc)) {
out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ);
out->desc = desc;
return 1;
}
base_addr = desc & GENMASK_ULL(47, wi->pgshift);
level += 1;
addr_top = addr_bottom - 1;
}
if (level < first_block_level) {
out->esr = compute_fsc(level, ESR_ELx_FSC_FAULT);
out->desc = desc;
return 1;
}
if (check_output_size(wi, desc)) {
out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ);
out->desc = desc;
return 1;
}
if (!(desc & BIT(10))) {
out->esr = compute_fsc(level, ESR_ELx_FSC_ACCESS);
out->desc = desc;
return 1;
}
addr_bottom += contiguous_bit_shift(desc, wi, level);
/* Calculate and return the result */
paddr = (desc & GENMASK_ULL(47, addr_bottom)) |
(ipa & GENMASK_ULL(addr_bottom - 1, 0));
out->output = paddr;
out->block_size = 1UL << ((3 - level) * stride + wi->pgshift);
out->readable = desc & (0b01 << 6);
out->writable = desc & (0b10 << 6);
out->level = level;
out->desc = desc;
return 0;
}
static int read_guest_s2_desc(phys_addr_t pa, u64 *desc, void *data)
{
struct kvm_vcpu *vcpu = data;
return kvm_read_guest(vcpu->kvm, pa, desc, sizeof(*desc));
}
static void vtcr_to_walk_info(u64 vtcr, struct s2_walk_info *wi)
{
wi->t0sz = vtcr & TCR_EL2_T0SZ_MASK;
switch (vtcr & VTCR_EL2_TG0_MASK) {
case VTCR_EL2_TG0_4K:
wi->pgshift = 12; break;
case VTCR_EL2_TG0_16K:
wi->pgshift = 14; break;
case VTCR_EL2_TG0_64K:
default: /* IMPDEF: treat any other value as 64k */
wi->pgshift = 16; break;
}
wi->sl = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
/* Global limit for now, should eventually be per-VM */
wi->max_oa_bits = min(get_kvm_ipa_limit(),
ps_to_output_size(FIELD_GET(VTCR_EL2_PS_MASK, vtcr)));
}
int kvm_walk_nested_s2(struct kvm_vcpu *vcpu, phys_addr_t gipa,
struct kvm_s2_trans *result)
{
u64 vtcr = vcpu_read_sys_reg(vcpu, VTCR_EL2);
struct s2_walk_info wi;
int ret;
result->esr = 0;
if (!vcpu_has_nv(vcpu))
return 0;
wi.read_desc = read_guest_s2_desc;
wi.data = vcpu;
wi.baddr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
vtcr_to_walk_info(vtcr, &wi);
wi.be = vcpu_read_sys_reg(vcpu, SCTLR_EL2) & SCTLR_ELx_EE;
ret = walk_nested_s2_pgd(gipa, &wi, result);
if (ret)
result->esr |= (kvm_vcpu_get_esr(vcpu) & ~ESR_ELx_FSC);
return ret;
}
static unsigned int ttl_to_size(u8 ttl)
{
int level = ttl & 3;
int gran = (ttl >> 2) & 3;
unsigned int max_size = 0;
switch (gran) {
case TLBI_TTL_TG_4K:
switch (level) {
case 0:
break;
case 1:
max_size = SZ_1G;
break;
case 2:
max_size = SZ_2M;
break;
case 3:
max_size = SZ_4K;
break;
}
break;
case TLBI_TTL_TG_16K:
switch (level) {
case 0:
case 1:
break;
case 2:
max_size = SZ_32M;
break;
case 3:
max_size = SZ_16K;
break;
}
break;
case TLBI_TTL_TG_64K:
switch (level) {
case 0:
case 1:
/* No 52bit IPA support */
break;
case 2:
max_size = SZ_512M;
break;
case 3:
max_size = SZ_64K;
break;
}
break;
default: /* No size information */
break;
}
return max_size;
}
static u8 pgshift_level_to_ttl(u16 shift, u8 level)
{
u8 ttl;
switch(shift) {
case 12:
ttl = TLBI_TTL_TG_4K;
break;
case 14:
ttl = TLBI_TTL_TG_16K;
break;
case 16:
ttl = TLBI_TTL_TG_64K;
break;
default:
BUG();
}
ttl <<= 2;
ttl |= level & 3;
return ttl;
}
/*
* Compute the equivalent of the TTL field by parsing the shadow PT. The
* granule size is extracted from the cached VTCR_EL2.TG0 while the level is
* retrieved from first entry carrying the level as a tag.
*/
static u8 get_guest_mapping_ttl(struct kvm_s2_mmu *mmu, u64 addr)
{
u64 tmp, sz = 0, vtcr = mmu->tlb_vtcr;
kvm_pte_t pte;
u8 ttl, level;
lockdep_assert_held_write(&kvm_s2_mmu_to_kvm(mmu)->mmu_lock);
switch (vtcr & VTCR_EL2_TG0_MASK) {
case VTCR_EL2_TG0_4K:
ttl = (TLBI_TTL_TG_4K << 2);
break;
case VTCR_EL2_TG0_16K:
ttl = (TLBI_TTL_TG_16K << 2);
break;
case VTCR_EL2_TG0_64K:
default: /* IMPDEF: treat any other value as 64k */
ttl = (TLBI_TTL_TG_64K << 2);
break;
}
tmp = addr;
again:
/* Iteratively compute the block sizes for a particular granule size */
switch (vtcr & VTCR_EL2_TG0_MASK) {
case VTCR_EL2_TG0_4K:
if (sz < SZ_4K) sz = SZ_4K;
else if (sz < SZ_2M) sz = SZ_2M;
else if (sz < SZ_1G) sz = SZ_1G;
else sz = 0;
break;
case VTCR_EL2_TG0_16K:
if (sz < SZ_16K) sz = SZ_16K;
else if (sz < SZ_32M) sz = SZ_32M;
else sz = 0;
break;
case VTCR_EL2_TG0_64K:
default: /* IMPDEF: treat any other value as 64k */
if (sz < SZ_64K) sz = SZ_64K;
else if (sz < SZ_512M) sz = SZ_512M;
else sz = 0;
break;
}
if (sz == 0)
return 0;
tmp &= ~(sz - 1);
if (kvm_pgtable_get_leaf(mmu->pgt, tmp, &pte, NULL))
goto again;
if (!(pte & PTE_VALID))
goto again;
level = FIELD_GET(KVM_NV_GUEST_MAP_SZ, pte);
if (!level)
goto again;
ttl |= level;
/*
* We now have found some level information in the shadow S2. Check
* that the resulting range is actually including the original IPA.
*/
sz = ttl_to_size(ttl);
if (addr < (tmp + sz))
return ttl;
return 0;
}
unsigned long compute_tlb_inval_range(struct kvm_s2_mmu *mmu, u64 val)
{
struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
unsigned long max_size;
u8 ttl;
ttl = FIELD_GET(TLBI_TTL_MASK, val);
if (!ttl || !kvm_has_feat(kvm, ID_AA64MMFR2_EL1, TTL, IMP)) {
/* No TTL, check the shadow S2 for a hint */
u64 addr = (val & GENMASK_ULL(35, 0)) << 12;
ttl = get_guest_mapping_ttl(mmu, addr);
}
max_size = ttl_to_size(ttl);
if (!max_size) {
/* Compute the maximum extent of the invalidation */
switch (mmu->tlb_vtcr & VTCR_EL2_TG0_MASK) {
case VTCR_EL2_TG0_4K:
max_size = SZ_1G;
break;
case VTCR_EL2_TG0_16K:
max_size = SZ_32M;
break;
case VTCR_EL2_TG0_64K:
default: /* IMPDEF: treat any other value as 64k */
/*
* No, we do not support 52bit IPA in nested yet. Once
* we do, this should be 4TB.
*/
max_size = SZ_512M;
break;
}
}
WARN_ON(!max_size);
return max_size;
}
/*
* We can have multiple *different* MMU contexts with the same VMID:
*
* - S2 being enabled or not, hence differing by the HCR_EL2.VM bit
*
* - Multiple vcpus using private S2s (huh huh...), hence differing by the
* VBBTR_EL2.BADDR address
*
* - A combination of the above...
*
* We can always identify which MMU context to pick at run-time. However,
* TLB invalidation involving a VMID must take action on all the TLBs using
* this particular VMID. This translates into applying the same invalidation
* operation to all the contexts that are using this VMID. Moar phun!
*/
void kvm_s2_mmu_iterate_by_vmid(struct kvm *kvm, u16 vmid,
const union tlbi_info *info,
void (*tlbi_callback)(struct kvm_s2_mmu *,
const union tlbi_info *))
{
write_lock(&kvm->mmu_lock);
for (int i = 0; i < kvm->arch.nested_mmus_size; i++) {
struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
if (!kvm_s2_mmu_valid(mmu))
continue;
if (vmid == get_vmid(mmu->tlb_vttbr))
tlbi_callback(mmu, info);
}
write_unlock(&kvm->mmu_lock);
}
struct kvm_s2_mmu *lookup_s2_mmu(struct kvm_vcpu *vcpu)
{
struct kvm *kvm = vcpu->kvm;
bool nested_stage2_enabled;
u64 vttbr, vtcr, hcr;
lockdep_assert_held_write(&kvm->mmu_lock);
vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
vtcr = vcpu_read_sys_reg(vcpu, VTCR_EL2);
hcr = vcpu_read_sys_reg(vcpu, HCR_EL2);
nested_stage2_enabled = hcr & HCR_VM;
/* Don't consider the CnP bit for the vttbr match */
vttbr &= ~VTTBR_CNP_BIT;
/*
* Two possibilities when looking up a S2 MMU context:
*
* - either S2 is enabled in the guest, and we need a context that is
* S2-enabled and matches the full VTTBR (VMID+BADDR) and VTCR,
* which makes it safe from a TLB conflict perspective (a broken
* guest won't be able to generate them),
*
* - or S2 is disabled, and we need a context that is S2-disabled
* and matches the VMID only, as all TLBs are tagged by VMID even
* if S2 translation is disabled.
*/
for (int i = 0; i < kvm->arch.nested_mmus_size; i++) {
struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
if (!kvm_s2_mmu_valid(mmu))
continue;
if (nested_stage2_enabled &&
mmu->nested_stage2_enabled &&
vttbr == mmu->tlb_vttbr &&
vtcr == mmu->tlb_vtcr)
return mmu;
if (!nested_stage2_enabled &&
!mmu->nested_stage2_enabled &&
get_vmid(vttbr) == get_vmid(mmu->tlb_vttbr))
return mmu;
}
return NULL;
}
static struct kvm_s2_mmu *get_s2_mmu_nested(struct kvm_vcpu *vcpu)
{
struct kvm *kvm = vcpu->kvm;
struct kvm_s2_mmu *s2_mmu;
int i;
lockdep_assert_held_write(&vcpu->kvm->mmu_lock);
s2_mmu = lookup_s2_mmu(vcpu);
if (s2_mmu)
goto out;
/*
* Make sure we don't always search from the same point, or we
* will always reuse a potentially active context, leaving
* free contexts unused.
*/
for (i = kvm->arch.nested_mmus_next;
i < (kvm->arch.nested_mmus_size + kvm->arch.nested_mmus_next);
i++) {
s2_mmu = &kvm->arch.nested_mmus[i % kvm->arch.nested_mmus_size];
if (atomic_read(&s2_mmu->refcnt) == 0)
break;
}
BUG_ON(atomic_read(&s2_mmu->refcnt)); /* We have struct MMUs to spare */
/* Set the scene for the next search */
kvm->arch.nested_mmus_next = (i + 1) % kvm->arch.nested_mmus_size;
/* Make sure we don't forget to do the laundry */
if (kvm_s2_mmu_valid(s2_mmu))
s2_mmu->pending_unmap = true;
/*
* The virtual VMID (modulo CnP) will be used as a key when matching
* an existing kvm_s2_mmu.
*
* We cache VTCR at allocation time, once and for all. It'd be great
* if the guest didn't screw that one up, as this is not very
* forgiving...
*/
s2_mmu->tlb_vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2) & ~VTTBR_CNP_BIT;
s2_mmu->tlb_vtcr = vcpu_read_sys_reg(vcpu, VTCR_EL2);
s2_mmu->nested_stage2_enabled = vcpu_read_sys_reg(vcpu, HCR_EL2) & HCR_VM;
out:
atomic_inc(&s2_mmu->refcnt);
/*
* Set the vCPU request to perform an unmap, even if the pending unmap
* originates from another vCPU. This guarantees that the MMU has been
* completely unmapped before any vCPU actually uses it, and allows
* multiple vCPUs to lend a hand with completing the unmap.
*/
if (s2_mmu->pending_unmap)
kvm_make_request(KVM_REQ_NESTED_S2_UNMAP, vcpu);
return s2_mmu;
}
void kvm_init_nested_s2_mmu(struct kvm_s2_mmu *mmu)
{
/* CnP being set denotes an invalid entry */
mmu->tlb_vttbr = VTTBR_CNP_BIT;
mmu->nested_stage2_enabled = false;
atomic_set(&mmu->refcnt, 0);
}
void kvm_vcpu_load_hw_mmu(struct kvm_vcpu *vcpu)
{
/*
* If the vCPU kept its reference on the MMU after the last put,
* keep rolling with it.
*/
if (is_hyp_ctxt(vcpu)) {
if (!vcpu->arch.hw_mmu)
vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
} else {
if (!vcpu->arch.hw_mmu) {
scoped_guard(write_lock, &vcpu->kvm->mmu_lock)
vcpu->arch.hw_mmu = get_s2_mmu_nested(vcpu);
}
if (__vcpu_sys_reg(vcpu, HCR_EL2) & HCR_NV)
kvm_make_request(KVM_REQ_MAP_L1_VNCR_EL2, vcpu);
}
}
void kvm_vcpu_put_hw_mmu(struct kvm_vcpu *vcpu)
{
/* Unconditionally drop the VNCR mapping if we have one */
if (host_data_test_flag(L1_VNCR_MAPPED)) {
BUG_ON(vcpu->arch.vncr_tlb->cpu != smp_processor_id());
BUG_ON(is_hyp_ctxt(vcpu));
clear_fixmap(vncr_fixmap(vcpu->arch.vncr_tlb->cpu));
vcpu->arch.vncr_tlb->cpu = -1;
host_data_clear_flag(L1_VNCR_MAPPED);
atomic_dec(&vcpu->kvm->arch.vncr_map_count);
}
/*
* Keep a reference on the associated stage-2 MMU if the vCPU is
* scheduling out and not in WFI emulation, suggesting it is likely to
* reuse the MMU sometime soon.
*/
if (vcpu->scheduled_out && !vcpu_get_flag(vcpu, IN_WFI))
return;
if (kvm_is_nested_s2_mmu(vcpu->kvm, vcpu->arch.hw_mmu))
atomic_dec(&vcpu->arch.hw_mmu->refcnt);
vcpu->arch.hw_mmu = NULL;
}
/*
* Returns non-zero if permission fault is handled by injecting it to the next
* level hypervisor.
*/
int kvm_s2_handle_perm_fault(struct kvm_vcpu *vcpu, struct kvm_s2_trans *trans)
{
bool forward_fault = false;
trans->esr = 0;
if (!kvm_vcpu_trap_is_permission_fault(vcpu))
return 0;
if (kvm_vcpu_trap_is_iabt(vcpu)) {
forward_fault = !kvm_s2_trans_executable(trans);
} else {
bool write_fault = kvm_is_write_fault(vcpu);
forward_fault = ((write_fault && !trans->writable) ||
(!write_fault && !trans->readable));
}
if (forward_fault)
trans->esr = esr_s2_fault(vcpu, trans->level, ESR_ELx_FSC_PERM);
return forward_fault;
}
int kvm_inject_s2_fault(struct kvm_vcpu *vcpu, u64 esr_el2)
{
vcpu_write_sys_reg(vcpu, vcpu->arch.fault.far_el2, FAR_EL2);
vcpu_write_sys_reg(vcpu, vcpu->arch.fault.hpfar_el2, HPFAR_EL2);
return kvm_inject_nested_sync(vcpu, esr_el2);
}
static void invalidate_vncr(struct vncr_tlb *vt)
{
vt->valid = false;
if (vt->cpu != -1)
clear_fixmap(vncr_fixmap(vt->cpu));
}
static void kvm_invalidate_vncr_ipa(struct kvm *kvm, u64 start, u64 end)
{
struct kvm_vcpu *vcpu;
unsigned long i;
lockdep_assert_held_write(&kvm->mmu_lock);
if (!kvm_has_feat(kvm, ID_AA64MMFR4_EL1, NV_frac, NV2_ONLY))
return;
kvm_for_each_vcpu(i, vcpu, kvm) {
struct vncr_tlb *vt = vcpu->arch.vncr_tlb;
u64 ipa_start, ipa_end, ipa_size;
/*
* Careful here: We end-up here from an MMU notifier,
* and this can race against a vcpu not being onlined
* yet, without the pseudo-TLB being allocated.
*
* Skip those, as they obviously don't participate in
* the invalidation at this stage.
*/
if (!vt)
continue;
if (!vt->valid)
continue;
ipa_size = ttl_to_size(pgshift_level_to_ttl(vt->wi.pgshift,
vt->wr.level));
ipa_start = vt->wr.pa & (ipa_size - 1);
ipa_end = ipa_start + ipa_size;
if (ipa_end <= start || ipa_start >= end)
continue;
invalidate_vncr(vt);
}
}
struct s1e2_tlbi_scope {
enum {
TLBI_ALL,
TLBI_VA,
TLBI_VAA,
TLBI_ASID,
} type;
u16 asid;
u64 va;
u64 size;
};
static void invalidate_vncr_va(struct kvm *kvm,
struct s1e2_tlbi_scope *scope)
{
struct kvm_vcpu *vcpu;
unsigned long i;
lockdep_assert_held_write(&kvm->mmu_lock);
kvm_for_each_vcpu(i, vcpu, kvm) {
struct vncr_tlb *vt = vcpu->arch.vncr_tlb;
u64 va_start, va_end, va_size;
if (!vt->valid)
continue;
va_size = ttl_to_size(pgshift_level_to_ttl(vt->wi.pgshift,
vt->wr.level));
va_start = vt->gva & (va_size - 1);
va_end = va_start + va_size;
switch (scope->type) {
case TLBI_ALL:
break;
case TLBI_VA:
if (va_end <= scope->va ||
va_start >= (scope->va + scope->size))
continue;
if (vt->wr.nG && vt->wr.asid != scope->asid)
continue;
break;
case TLBI_VAA:
if (va_end <= scope->va ||
va_start >= (scope->va + scope->size))
continue;
break;
case TLBI_ASID:
if (!vt->wr.nG || vt->wr.asid != scope->asid)
continue;
break;
}
invalidate_vncr(vt);
}
}
#define tlbi_va_s1_to_va(v) (u64)sign_extend64((v) << 12, 48)
static void compute_s1_tlbi_range(struct kvm_vcpu *vcpu, u32 inst, u64 val,
struct s1e2_tlbi_scope *scope)
{
switch (inst) {
case OP_TLBI_ALLE2:
case OP_TLBI_ALLE2IS:
case OP_TLBI_ALLE2OS:
case OP_TLBI_VMALLE1:
case OP_TLBI_VMALLE1IS:
case OP_TLBI_VMALLE1OS:
case OP_TLBI_ALLE2NXS:
case OP_TLBI_ALLE2ISNXS:
case OP_TLBI_ALLE2OSNXS:
case OP_TLBI_VMALLE1NXS:
case OP_TLBI_VMALLE1ISNXS:
case OP_TLBI_VMALLE1OSNXS:
scope->type = TLBI_ALL;
break;
case OP_TLBI_VAE2:
case OP_TLBI_VAE2IS:
case OP_TLBI_VAE2OS:
case OP_TLBI_VAE1:
case OP_TLBI_VAE1IS:
case OP_TLBI_VAE1OS:
case OP_TLBI_VAE2NXS:
case OP_TLBI_VAE2ISNXS:
case OP_TLBI_VAE2OSNXS:
case OP_TLBI_VAE1NXS:
case OP_TLBI_VAE1ISNXS:
case OP_TLBI_VAE1OSNXS:
case OP_TLBI_VALE2:
case OP_TLBI_VALE2IS:
case OP_TLBI_VALE2OS:
case OP_TLBI_VALE1:
case OP_TLBI_VALE1IS:
case OP_TLBI_VALE1OS:
case OP_TLBI_VALE2NXS:
case OP_TLBI_VALE2ISNXS:
case OP_TLBI_VALE2OSNXS:
case OP_TLBI_VALE1NXS:
case OP_TLBI_VALE1ISNXS:
case OP_TLBI_VALE1OSNXS:
scope->type = TLBI_VA;
scope->size = ttl_to_size(FIELD_GET(TLBI_TTL_MASK, val));
if (!scope->size)
scope->size = SZ_1G;
scope->va = tlbi_va_s1_to_va(val) & ~(scope->size - 1);
scope->asid = FIELD_GET(TLBIR_ASID_MASK, val);
break;
case OP_TLBI_ASIDE1:
case OP_TLBI_ASIDE1IS:
case OP_TLBI_ASIDE1OS:
case OP_TLBI_ASIDE1NXS:
case OP_TLBI_ASIDE1ISNXS:
case OP_TLBI_ASIDE1OSNXS:
scope->type = TLBI_ASID;
scope->asid = FIELD_GET(TLBIR_ASID_MASK, val);
break;
case OP_TLBI_VAAE1:
case OP_TLBI_VAAE1IS:
case OP_TLBI_VAAE1OS:
case OP_TLBI_VAAE1NXS:
case OP_TLBI_VAAE1ISNXS:
case OP_TLBI_VAAE1OSNXS:
case OP_TLBI_VAALE1:
case OP_TLBI_VAALE1IS:
case OP_TLBI_VAALE1OS:
case OP_TLBI_VAALE1NXS:
case OP_TLBI_VAALE1ISNXS:
case OP_TLBI_VAALE1OSNXS:
scope->type = TLBI_VAA;
scope->size = ttl_to_size(FIELD_GET(TLBI_TTL_MASK, val));
if (!scope->size)
scope->size = SZ_1G;
scope->va = tlbi_va_s1_to_va(val) & ~(scope->size - 1);
break;
case OP_TLBI_RVAE2:
case OP_TLBI_RVAE2IS:
case OP_TLBI_RVAE2OS:
case OP_TLBI_RVAE1:
case OP_TLBI_RVAE1IS:
case OP_TLBI_RVAE1OS:
case OP_TLBI_RVAE2NXS:
case OP_TLBI_RVAE2ISNXS:
case OP_TLBI_RVAE2OSNXS:
case OP_TLBI_RVAE1NXS:
case OP_TLBI_RVAE1ISNXS:
case OP_TLBI_RVAE1OSNXS:
case OP_TLBI_RVALE2:
case OP_TLBI_RVALE2IS:
case OP_TLBI_RVALE2OS:
case OP_TLBI_RVALE1:
case OP_TLBI_RVALE1IS:
case OP_TLBI_RVALE1OS:
case OP_TLBI_RVALE2NXS:
case OP_TLBI_RVALE2ISNXS:
case OP_TLBI_RVALE2OSNXS:
case OP_TLBI_RVALE1NXS:
case OP_TLBI_RVALE1ISNXS:
case OP_TLBI_RVALE1OSNXS:
scope->type = TLBI_VA;
scope->va = decode_range_tlbi(val, &scope->size, &scope->asid);
break;
case OP_TLBI_RVAAE1:
case OP_TLBI_RVAAE1IS:
case OP_TLBI_RVAAE1OS:
case OP_TLBI_RVAAE1NXS:
case OP_TLBI_RVAAE1ISNXS:
case OP_TLBI_RVAAE1OSNXS:
case OP_TLBI_RVAALE1:
case OP_TLBI_RVAALE1IS:
case OP_TLBI_RVAALE1OS:
case OP_TLBI_RVAALE1NXS:
case OP_TLBI_RVAALE1ISNXS:
case OP_TLBI_RVAALE1OSNXS:
scope->type = TLBI_VAA;
scope->va = decode_range_tlbi(val, &scope->size, NULL);
break;
}
}
void kvm_handle_s1e2_tlbi(struct kvm_vcpu *vcpu, u32 inst, u64 val)
{
struct s1e2_tlbi_scope scope = {};
compute_s1_tlbi_range(vcpu, inst, val, &scope);
guard(write_lock)(&vcpu->kvm->mmu_lock);
invalidate_vncr_va(vcpu->kvm, &scope);
}
void kvm_nested_s2_wp(struct kvm *kvm)
{
int i;
lockdep_assert_held_write(&kvm->mmu_lock);
for (i = 0; i < kvm->arch.nested_mmus_size; i++) {
struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
if (kvm_s2_mmu_valid(mmu))
kvm_stage2_wp_range(mmu, 0, kvm_phys_size(mmu));
}
kvm_invalidate_vncr_ipa(kvm, 0, BIT(kvm->arch.mmu.pgt->ia_bits));
}
void kvm_nested_s2_unmap(struct kvm *kvm, bool may_block)
{
int i;
lockdep_assert_held_write(&kvm->mmu_lock);
for (i = 0; i < kvm->arch.nested_mmus_size; i++) {
struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
if (kvm_s2_mmu_valid(mmu))
kvm_stage2_unmap_range(mmu, 0, kvm_phys_size(mmu), may_block);
}
kvm_invalidate_vncr_ipa(kvm, 0, BIT(kvm->arch.mmu.pgt->ia_bits));
}
void kvm_nested_s2_flush(struct kvm *kvm)
{
int i;
lockdep_assert_held_write(&kvm->mmu_lock);
for (i = 0; i < kvm->arch.nested_mmus_size; i++) {
struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
if (kvm_s2_mmu_valid(mmu))
kvm_stage2_flush_range(mmu, 0, kvm_phys_size(mmu));
}
}
void kvm_arch_flush_shadow_all(struct kvm *kvm)
{
int i;
for (i = 0; i < kvm->arch.nested_mmus_size; i++) {
struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
if (!WARN_ON(atomic_read(&mmu->refcnt)))
kvm_free_stage2_pgd(mmu);
}
kvfree(kvm->arch.nested_mmus);
kvm->arch.nested_mmus = NULL;
kvm->arch.nested_mmus_size = 0;
kvm_uninit_stage2_mmu(kvm);
}
/*
* Dealing with VNCR_EL2 exposed by the *guest* is a complicated matter:
*
* - We introduce an internal representation of a vcpu-private TLB,
* representing the mapping between the guest VA contained in VNCR_EL2,
* the IPA the guest's EL2 PTs point to, and the actual PA this lives at.
*
* - On translation fault from a nested VNCR access, we create such a TLB.
* If there is no mapping to describe, the guest inherits the fault.
* Crucially, no actual mapping is done at this stage.
*
* - On vcpu_load() in a non-HYP context with HCR_EL2.NV==1, if the above
* TLB exists, we map it in the fixmap for this CPU, and run with it. We
* have to respect the permissions dictated by the guest, but not the
* memory type (FWB is a must).
*
* - Note that we usually don't do a vcpu_load() on the back of a fault
* (unless we are preempted), so the resolution of a translation fault
* must go via a request that will map the VNCR page in the fixmap.
* vcpu_load() might as well use the same mechanism.
*
* - On vcpu_put() in a non-HYP context with HCR_EL2.NV==1, if the TLB was
* mapped, we unmap it. Yes it is that simple. The TLB still exists
* though, and may be reused at a later load.
*
* - On permission fault, we simply forward the fault to the guest's EL2.
* Get out of my way.
*
* - On any TLBI for the EL2&0 translation regime, we must find any TLB that
* intersects with the TLBI request, invalidate it, and unmap the page
* from the fixmap. Because we need to look at all the vcpu-private TLBs,
* this requires some wide-ranging locking to ensure that nothing races
* against it. This may require some refcounting to avoid the search when
* no such TLB is present.
*
* - On MMU notifiers, we must invalidate our TLB in a similar way, but
* looking at the IPA instead. The funny part is that there may not be a
* stage-2 mapping for this page if L1 hasn't accessed it using LD/ST
* instructions.
*/
int kvm_vcpu_allocate_vncr_tlb(struct kvm_vcpu *vcpu)
{
if (!kvm_has_feat(vcpu->kvm, ID_AA64MMFR4_EL1, NV_frac, NV2_ONLY))
return 0;
vcpu->arch.vncr_tlb = kzalloc(sizeof(*vcpu->arch.vncr_tlb),
GFP_KERNEL_ACCOUNT);
if (!vcpu->arch.vncr_tlb)
return -ENOMEM;
return 0;
}
static u64 read_vncr_el2(struct kvm_vcpu *vcpu)
{
return (u64)sign_extend64(__vcpu_sys_reg(vcpu, VNCR_EL2), 48);
}
static int kvm_translate_vncr(struct kvm_vcpu *vcpu)
{
bool write_fault, writable;
unsigned long mmu_seq;
struct vncr_tlb *vt;
struct page *page;
u64 va, pfn, gfn;
int ret;
vt = vcpu->arch.vncr_tlb;
/*
* If we're about to walk the EL2 S1 PTs, we must invalidate the
* current TLB, as it could be sampled from another vcpu doing a
* TLBI *IS. A real CPU wouldn't do that, but we only keep a single
* translation, so not much of a choice.
*
* We also prepare the next walk wilst we're at it.
*/
scoped_guard(write_lock, &vcpu->kvm->mmu_lock) {
invalidate_vncr(vt);
vt->wi = (struct s1_walk_info) {
.regime = TR_EL20,
.as_el0 = false,
.pan = false,
};
vt->wr = (struct s1_walk_result){};
}
guard(srcu)(&vcpu->kvm->srcu);
va = read_vncr_el2(vcpu);
ret = __kvm_translate_va(vcpu, &vt->wi, &vt->wr, va);
if (ret)
return ret;
write_fault = kvm_is_write_fault(vcpu);
mmu_seq = vcpu->kvm->mmu_invalidate_seq;
smp_rmb();
gfn = vt->wr.pa >> PAGE_SHIFT;
pfn = kvm_faultin_pfn(vcpu, gfn, write_fault, &writable, &page);
if (is_error_noslot_pfn(pfn) || (write_fault && !writable))
return -EFAULT;
scoped_guard(write_lock, &vcpu->kvm->mmu_lock) {
if (mmu_invalidate_retry(vcpu->kvm, mmu_seq))
return -EAGAIN;
vt->gva = va;
vt->hpa = pfn << PAGE_SHIFT;
vt->valid = true;
vt->cpu = -1;
kvm_make_request(KVM_REQ_MAP_L1_VNCR_EL2, vcpu);
kvm_release_faultin_page(vcpu->kvm, page, false, vt->wr.pw);
}
if (vt->wr.pw)
mark_page_dirty(vcpu->kvm, gfn);
return 0;
}
static void inject_vncr_perm(struct kvm_vcpu *vcpu)
{
struct vncr_tlb *vt = vcpu->arch.vncr_tlb;
u64 esr = kvm_vcpu_get_esr(vcpu);
/* Adjust the fault level to reflect that of the guest's */
esr &= ~ESR_ELx_FSC;
esr |= FIELD_PREP(ESR_ELx_FSC,
ESR_ELx_FSC_PERM_L(vt->wr.level));
kvm_inject_nested_sync(vcpu, esr);
}
static bool kvm_vncr_tlb_lookup(struct kvm_vcpu *vcpu)
{
struct vncr_tlb *vt = vcpu->arch.vncr_tlb;
lockdep_assert_held_read(&vcpu->kvm->mmu_lock);
if (!vt->valid)
return false;
if (read_vncr_el2(vcpu) != vt->gva)
return false;
if (vt->wr.nG) {
u64 tcr = vcpu_read_sys_reg(vcpu, TCR_EL2);
u64 ttbr = ((tcr & TCR_A1) ?
vcpu_read_sys_reg(vcpu, TTBR1_EL2) :
vcpu_read_sys_reg(vcpu, TTBR0_EL2));
u16 asid;
asid = FIELD_GET(TTBR_ASID_MASK, ttbr);
if (!kvm_has_feat_enum(vcpu->kvm, ID_AA64MMFR0_EL1, ASIDBITS, 16) ||
!(tcr & TCR_ASID16))
asid &= GENMASK(7, 0);
return asid != vt->wr.asid;
}
return true;
}
int kvm_handle_vncr_abort(struct kvm_vcpu *vcpu)
{
struct vncr_tlb *vt = vcpu->arch.vncr_tlb;
u64 esr = kvm_vcpu_get_esr(vcpu);
BUG_ON(!(esr & ESR_ELx_VNCR_SHIFT));
if (esr_fsc_is_permission_fault(esr)) {
inject_vncr_perm(vcpu);
} else if (esr_fsc_is_translation_fault(esr)) {
bool valid;
int ret;
scoped_guard(read_lock, &vcpu->kvm->mmu_lock)
valid = kvm_vncr_tlb_lookup(vcpu);
if (!valid)
ret = kvm_translate_vncr(vcpu);
else
ret = -EPERM;
switch (ret) {
case -EAGAIN:
case -ENOMEM:
/* Let's try again... */
break;
case -EFAULT:
case -EINVAL:
case -ENOENT:
case -EACCES:
/*
* Translation failed, inject the corresponding
* exception back to EL2.
*/
BUG_ON(!vt->wr.failed);
esr &= ~ESR_ELx_FSC;
esr |= FIELD_PREP(ESR_ELx_FSC, vt->wr.fst);
kvm_inject_nested_sync(vcpu, esr);
break;
case -EPERM:
/* Hack to deal with POE until we get kernel support */
inject_vncr_perm(vcpu);
break;
case 0:
break;
}
} else {
WARN_ONCE(1, "Unhandled VNCR abort, ESR=%llx\n", esr);
}
return 1;
}
static void kvm_map_l1_vncr(struct kvm_vcpu *vcpu)
{
struct vncr_tlb *vt = vcpu->arch.vncr_tlb;
pgprot_t prot;
guard(preempt)();
guard(read_lock)(&vcpu->kvm->mmu_lock);
/*
* The request to map VNCR may have raced against some other
* event, such as an interrupt, and may not be valid anymore.
*/
if (is_hyp_ctxt(vcpu))
return;
/*
* Check that the pseudo-TLB is valid and that VNCR_EL2 still
* contains the expected value. If it doesn't, we simply bail out
* without a mapping -- a transformed MSR/MRS will generate the
* fault and allows us to populate the pseudo-TLB.
*/
if (!vt->valid)
return;
if (read_vncr_el2(vcpu) != vt->gva)
return;
if (vt->wr.nG) {
u64 tcr = vcpu_read_sys_reg(vcpu, TCR_EL2);
u64 ttbr = ((tcr & TCR_A1) ?
vcpu_read_sys_reg(vcpu, TTBR1_EL2) :
vcpu_read_sys_reg(vcpu, TTBR0_EL2));
u16 asid;
asid = FIELD_GET(TTBR_ASID_MASK, ttbr);
if (!kvm_has_feat_enum(vcpu->kvm, ID_AA64MMFR0_EL1, ASIDBITS, 16) ||
!(tcr & TCR_ASID16))
asid &= GENMASK(7, 0);
if (asid != vt->wr.asid)
return;
}
vt->cpu = smp_processor_id();
if (vt->wr.pw && vt->wr.pr)
prot = PAGE_KERNEL;
else if (vt->wr.pr)
prot = PAGE_KERNEL_RO;
else
prot = PAGE_NONE;
/*
* We can't map write-only (or no permission at all) in the kernel,
* but the guest can do it if using POE, so we'll have to turn a
* translation fault into a permission fault at runtime.
* FIXME: WO doesn't work at all, need POE support in the kernel.
*/
if (pgprot_val(prot) != pgprot_val(PAGE_NONE)) {
__set_fixmap(vncr_fixmap(vt->cpu), vt->hpa, prot);
host_data_set_flag(L1_VNCR_MAPPED);
atomic_inc(&vcpu->kvm->arch.vncr_map_count);
}
}
/*
* Our emulated CPU doesn't support all the possible features. For the
* sake of simplicity (and probably mental sanity), wipe out a number
* of feature bits we don't intend to support for the time being.
* This list should get updated as new features get added to the NV
* support, and new extension to the architecture.
*/
u64 limit_nv_id_reg(struct kvm *kvm, u32 reg, u64 val)
{
switch (reg) {
case SYS_ID_AA64ISAR0_EL1:
/* Support everything but TME */
val &= ~ID_AA64ISAR0_EL1_TME;
break;
case SYS_ID_AA64ISAR1_EL1:
/* Support everything but LS64 and Spec Invalidation */
val &= ~(ID_AA64ISAR1_EL1_LS64 |
ID_AA64ISAR1_EL1_SPECRES);
break;
case SYS_ID_AA64PFR0_EL1:
/* No RME, AMU, MPAM, S-EL2, or RAS */
val &= ~(ID_AA64PFR0_EL1_RME |
ID_AA64PFR0_EL1_AMU |
ID_AA64PFR0_EL1_MPAM |
ID_AA64PFR0_EL1_SEL2 |
ID_AA64PFR0_EL1_RAS |
ID_AA64PFR0_EL1_EL3 |
ID_AA64PFR0_EL1_EL2 |
ID_AA64PFR0_EL1_EL1 |
ID_AA64PFR0_EL1_EL0);
/* 64bit only at any EL */
val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, EL0, IMP);
val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, EL1, IMP);
val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, EL2, IMP);
val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, EL3, IMP);
break;
case SYS_ID_AA64PFR1_EL1:
/* Only support BTI, SSBS, CSV2_frac */
val &= (ID_AA64PFR1_EL1_BT |
ID_AA64PFR1_EL1_SSBS |
ID_AA64PFR1_EL1_CSV2_frac);
break;
case SYS_ID_AA64MMFR0_EL1:
/* Hide ExS, Secure Memory */
val &= ~(ID_AA64MMFR0_EL1_EXS |
ID_AA64MMFR0_EL1_TGRAN4_2 |
ID_AA64MMFR0_EL1_TGRAN16_2 |
ID_AA64MMFR0_EL1_TGRAN64_2 |
ID_AA64MMFR0_EL1_SNSMEM);
/* Hide CNTPOFF if present */
val = ID_REG_LIMIT_FIELD_ENUM(val, ID_AA64MMFR0_EL1, ECV, IMP);
/* Disallow unsupported S2 page sizes */
switch (PAGE_SIZE) {
case SZ_64K:
val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR0_EL1, TGRAN16_2, NI);
fallthrough;
case SZ_16K:
val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR0_EL1, TGRAN4_2, NI);
fallthrough;
case SZ_4K:
/* Support everything */
break;
}
/*
* Since we can't support a guest S2 page size smaller
* than the host's own page size (due to KVM only
* populating its own S2 using the kernel's page
* size), advertise the limitation using FEAT_GTG.
*/
switch (PAGE_SIZE) {
case SZ_4K:
val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR0_EL1, TGRAN4_2, IMP);
fallthrough;
case SZ_16K:
val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR0_EL1, TGRAN16_2, IMP);
fallthrough;
case SZ_64K:
val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR0_EL1, TGRAN64_2, IMP);
break;
}
/* Cap PARange to 48bits */
val = ID_REG_LIMIT_FIELD_ENUM(val, ID_AA64MMFR0_EL1, PARANGE, 48);
break;
case SYS_ID_AA64MMFR1_EL1:
val &= (ID_AA64MMFR1_EL1_HCX |
ID_AA64MMFR1_EL1_PAN |
ID_AA64MMFR1_EL1_LO |
ID_AA64MMFR1_EL1_HPDS |
ID_AA64MMFR1_EL1_VH |
ID_AA64MMFR1_EL1_VMIDBits);
/* FEAT_E2H0 implies no VHE */
if (test_bit(KVM_ARM_VCPU_HAS_EL2_E2H0, kvm->arch.vcpu_features))
val &= ~ID_AA64MMFR1_EL1_VH;
break;
case SYS_ID_AA64MMFR2_EL1:
val &= ~(ID_AA64MMFR2_EL1_BBM |
ID_AA64MMFR2_EL1_TTL |
GENMASK_ULL(47, 44) |
ID_AA64MMFR2_EL1_ST |
ID_AA64MMFR2_EL1_CCIDX |
ID_AA64MMFR2_EL1_VARange);
/* Force TTL support */
val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR2_EL1, TTL, IMP);
break;
case SYS_ID_AA64MMFR4_EL1:
/*
* You get EITHER
*
* - FEAT_VHE without FEAT_E2H0
* - FEAT_NV limited to FEAT_NV2
* - HCR_EL2.NV1 being RES0
*
* OR
*
* - FEAT_E2H0 without FEAT_VHE nor FEAT_NV
*
* Life is too short for anything else.
*/
if (test_bit(KVM_ARM_VCPU_HAS_EL2_E2H0, kvm->arch.vcpu_features)) {
val = 0;
} else {
val = SYS_FIELD_PREP_ENUM(ID_AA64MMFR4_EL1, NV_frac, NV2_ONLY);
val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR4_EL1, E2H0, NI_NV1);
}
break;
case SYS_ID_AA64DFR0_EL1:
/* Only limited support for PMU, Debug, BPs, WPs, and HPMN0 */
val &= (ID_AA64DFR0_EL1_PMUVer |
ID_AA64DFR0_EL1_WRPs |
ID_AA64DFR0_EL1_BRPs |
ID_AA64DFR0_EL1_DebugVer|
ID_AA64DFR0_EL1_HPMN0);
/* Cap Debug to ARMv8.1 */
val = ID_REG_LIMIT_FIELD_ENUM(val, ID_AA64DFR0_EL1, DebugVer, VHE);
break;
}
return val;
}
u64 kvm_vcpu_apply_reg_masks(const struct kvm_vcpu *vcpu,
enum vcpu_sysreg sr, u64 v)
{
struct kvm_sysreg_masks *masks;
masks = vcpu->kvm->arch.sysreg_masks;
if (masks) {
sr -= __SANITISED_REG_START__;
v &= ~masks->mask[sr].res0;
v |= masks->mask[sr].res1;
}
return v;
}
static __always_inline void set_sysreg_masks(struct kvm *kvm, int sr, u64 res0, u64 res1)
{
int i = sr - __SANITISED_REG_START__;
BUILD_BUG_ON(!__builtin_constant_p(sr));
BUILD_BUG_ON(sr < __SANITISED_REG_START__);
BUILD_BUG_ON(sr >= NR_SYS_REGS);
kvm->arch.sysreg_masks->mask[i].res0 = res0;
kvm->arch.sysreg_masks->mask[i].res1 = res1;
}
int kvm_init_nv_sysregs(struct kvm_vcpu *vcpu)
{
struct kvm *kvm = vcpu->kvm;
u64 res0, res1;
lockdep_assert_held(&kvm->arch.config_lock);
if (kvm->arch.sysreg_masks)
goto out;
kvm->arch.sysreg_masks = kzalloc(sizeof(*(kvm->arch.sysreg_masks)),
GFP_KERNEL_ACCOUNT);
if (!kvm->arch.sysreg_masks)
return -ENOMEM;
/* VTTBR_EL2 */
res0 = res1 = 0;
if (!kvm_has_feat_enum(kvm, ID_AA64MMFR1_EL1, VMIDBits, 16))
res0 |= GENMASK(63, 56);
if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, CnP, IMP))
res0 |= VTTBR_CNP_BIT;
set_sysreg_masks(kvm, VTTBR_EL2, res0, res1);
/* VTCR_EL2 */
res0 = GENMASK(63, 32) | GENMASK(30, 20);
res1 = BIT(31);
set_sysreg_masks(kvm, VTCR_EL2, res0, res1);
/* VMPIDR_EL2 */
res0 = GENMASK(63, 40) | GENMASK(30, 24);
res1 = BIT(31);
set_sysreg_masks(kvm, VMPIDR_EL2, res0, res1);
/* HCR_EL2 */
get_reg_fixed_bits(kvm, HCR_EL2, &res0, &res1);
set_sysreg_masks(kvm, HCR_EL2, res0, res1);
/* HCRX_EL2 */
get_reg_fixed_bits(kvm, HCRX_EL2, &res0, &res1);
set_sysreg_masks(kvm, HCRX_EL2, res0, res1);
/* HFG[RW]TR_EL2 */
get_reg_fixed_bits(kvm, HFGRTR_EL2, &res0, &res1);
set_sysreg_masks(kvm, HFGRTR_EL2, res0, res1);
get_reg_fixed_bits(kvm, HFGWTR_EL2, &res0, &res1);
set_sysreg_masks(kvm, HFGWTR_EL2, res0, res1);
/* HDFG[RW]TR_EL2 */
get_reg_fixed_bits(kvm, HDFGRTR_EL2, &res0, &res1);
set_sysreg_masks(kvm, HDFGRTR_EL2, res0, res1);
get_reg_fixed_bits(kvm, HDFGWTR_EL2, &res0, &res1);
set_sysreg_masks(kvm, HDFGWTR_EL2, res0, res1);
/* HFGITR_EL2 */
get_reg_fixed_bits(kvm, HFGITR_EL2, &res0, &res1);
set_sysreg_masks(kvm, HFGITR_EL2, res0, res1);
/* HAFGRTR_EL2 - not a lot to see here */
get_reg_fixed_bits(kvm, HAFGRTR_EL2, &res0, &res1);
set_sysreg_masks(kvm, HAFGRTR_EL2, res0, res1);
/* HFG[RW]TR2_EL2 */
get_reg_fixed_bits(kvm, HFGRTR2_EL2, &res0, &res1);
set_sysreg_masks(kvm, HFGRTR2_EL2, res0, res1);
get_reg_fixed_bits(kvm, HFGWTR2_EL2, &res0, &res1);
set_sysreg_masks(kvm, HFGWTR2_EL2, res0, res1);
/* HDFG[RW]TR2_EL2 */
get_reg_fixed_bits(kvm, HDFGRTR2_EL2, &res0, &res1);
set_sysreg_masks(kvm, HDFGRTR2_EL2, res0, res1);
get_reg_fixed_bits(kvm, HDFGWTR2_EL2, &res0, &res1);
set_sysreg_masks(kvm, HDFGWTR2_EL2, res0, res1);
/* HFGITR2_EL2 */
get_reg_fixed_bits(kvm, HFGITR2_EL2, &res0, &res1);
set_sysreg_masks(kvm, HFGITR2_EL2, res0, res1);
/* TCR2_EL2 */
res0 = TCR2_EL2_RES0;
res1 = TCR2_EL2_RES1;
if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, D128, IMP))
res0 |= (TCR2_EL2_DisCH0 | TCR2_EL2_DisCH1 | TCR2_EL2_D128);
if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, MEC, IMP))
res0 |= TCR2_EL2_AMEC1 | TCR2_EL2_AMEC0;
if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, HAFDBS, HAFT))
res0 |= TCR2_EL2_HAFT;
if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, THE, IMP))
res0 |= TCR2_EL2_PTTWI | TCR2_EL2_PnCH;
if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, AIE, IMP))
res0 |= TCR2_EL2_AIE;
if (!kvm_has_s1poe(kvm))
res0 |= TCR2_EL2_POE | TCR2_EL2_E0POE;
if (!kvm_has_s1pie(kvm))
res0 |= TCR2_EL2_PIE;
if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, VH, IMP))
res0 |= (TCR2_EL2_E0POE | TCR2_EL2_D128 |
TCR2_EL2_AMEC1 | TCR2_EL2_DisCH0 | TCR2_EL2_DisCH1);
set_sysreg_masks(kvm, TCR2_EL2, res0, res1);
/* SCTLR_EL1 */
res0 = SCTLR_EL1_RES0;
res1 = SCTLR_EL1_RES1;
if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, PAN, PAN3))
res0 |= SCTLR_EL1_EPAN;
set_sysreg_masks(kvm, SCTLR_EL1, res0, res1);
/* MDCR_EL2 */
res0 = MDCR_EL2_RES0;
res1 = MDCR_EL2_RES1;
if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMUVer, IMP))
res0 |= (MDCR_EL2_HPMN | MDCR_EL2_TPMCR |
MDCR_EL2_TPM | MDCR_EL2_HPME);
if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMSVer, IMP))
res0 |= MDCR_EL2_E2PB | MDCR_EL2_TPMS;
if (!kvm_has_feat(kvm, ID_AA64DFR1_EL1, SPMU, IMP))
res0 |= MDCR_EL2_EnSPM;
if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMUVer, V3P1))
res0 |= MDCR_EL2_HPMD;
if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, TraceFilt, IMP))
res0 |= MDCR_EL2_TTRF;
if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMUVer, V3P5))
res0 |= MDCR_EL2_HCCD | MDCR_EL2_HLP;
if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, TraceBuffer, IMP))
res0 |= MDCR_EL2_E2TB;
if (!kvm_has_feat(kvm, ID_AA64MMFR0_EL1, FGT, IMP))
res0 |= MDCR_EL2_TDCC;
if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, MTPMU, IMP) ||
kvm_has_feat(kvm, ID_AA64PFR0_EL1, EL3, IMP))
res0 |= MDCR_EL2_MTPME;
if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMUVer, V3P7))
res0 |= MDCR_EL2_HPMFZO;
if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMSS, IMP))
res0 |= MDCR_EL2_PMSSE;
if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMSVer, V1P2))
res0 |= MDCR_EL2_HPMFZS;
if (!kvm_has_feat(kvm, ID_AA64DFR1_EL1, EBEP, IMP))
res0 |= MDCR_EL2_PMEE;
if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, DebugVer, V8P9))
res0 |= MDCR_EL2_EBWE;
if (!kvm_has_feat(kvm, ID_AA64DFR2_EL1, STEP, IMP))
res0 |= MDCR_EL2_EnSTEPOP;
set_sysreg_masks(kvm, MDCR_EL2, res0, res1);
/* CNTHCTL_EL2 */
res0 = GENMASK(63, 20);
res1 = 0;
if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, RME, IMP))
res0 |= CNTHCTL_CNTPMASK | CNTHCTL_CNTVMASK;
if (!kvm_has_feat(kvm, ID_AA64MMFR0_EL1, ECV, CNTPOFF)) {
res0 |= CNTHCTL_ECV;
if (!kvm_has_feat(kvm, ID_AA64MMFR0_EL1, ECV, IMP))
res0 |= (CNTHCTL_EL1TVT | CNTHCTL_EL1TVCT |
CNTHCTL_EL1NVPCT | CNTHCTL_EL1NVVCT);
}
if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, VH, IMP))
res0 |= GENMASK(11, 8);
set_sysreg_masks(kvm, CNTHCTL_EL2, res0, res1);
/* ICH_HCR_EL2 */
res0 = ICH_HCR_EL2_RES0;
res1 = ICH_HCR_EL2_RES1;
if (!(kvm_vgic_global_state.ich_vtr_el2 & ICH_VTR_EL2_TDS))
res0 |= ICH_HCR_EL2_TDIR;
/* No GICv4 is presented to the guest */
res0 |= ICH_HCR_EL2_DVIM | ICH_HCR_EL2_vSGIEOICount;
set_sysreg_masks(kvm, ICH_HCR_EL2, res0, res1);
/* VNCR_EL2 */
set_sysreg_masks(kvm, VNCR_EL2, VNCR_EL2_RES0, VNCR_EL2_RES1);
out:
for (enum vcpu_sysreg sr = __SANITISED_REG_START__; sr < NR_SYS_REGS; sr++)
__vcpu_rmw_sys_reg(vcpu, sr, |=, 0);
return 0;
}
void check_nested_vcpu_requests(struct kvm_vcpu *vcpu)
{
if (kvm_check_request(KVM_REQ_NESTED_S2_UNMAP, vcpu)) {
struct kvm_s2_mmu *mmu = vcpu->arch.hw_mmu;
write_lock(&vcpu->kvm->mmu_lock);
if (mmu->pending_unmap) {
kvm_stage2_unmap_range(mmu, 0, kvm_phys_size(mmu), true);
mmu->pending_unmap = false;
}
write_unlock(&vcpu->kvm->mmu_lock);
}
if (kvm_check_request(KVM_REQ_MAP_L1_VNCR_EL2, vcpu))
kvm_map_l1_vncr(vcpu);
/* Must be last, as may switch context! */
if (kvm_check_request(KVM_REQ_GUEST_HYP_IRQ_PENDING, vcpu))
kvm_inject_nested_irq(vcpu);
}
|