summaryrefslogtreecommitdiff
path: root/arch/um/os-Linux/skas/process.c
blob: e42ffac23e3ca06e182bbd45e169f52bbb562ec1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (C) 2021 Benjamin Berg <benjamin@sipsolutions.net>
 * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
 * Copyright (C) 2002- 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
 */

#include <stdlib.h>
#include <stdbool.h>
#include <unistd.h>
#include <sched.h>
#include <errno.h>
#include <string.h>
#include <fcntl.h>
#include <mem_user.h>
#include <sys/mman.h>
#include <sys/wait.h>
#include <sys/stat.h>
#include <sys/socket.h>
#include <asm/unistd.h>
#include <as-layout.h>
#include <init.h>
#include <kern_util.h>
#include <mem.h>
#include <os.h>
#include <ptrace_user.h>
#include <registers.h>
#include <skas.h>
#include <sysdep/stub.h>
#include <sysdep/mcontext.h>
#include <linux/futex.h>
#include <linux/threads.h>
#include <timetravel.h>
#include <asm-generic/rwonce.h>
#include "../internal.h"

int is_skas_winch(int pid, int fd, void *data)
{
	return pid == getpgrp();
}

static const char *ptrace_reg_name(int idx)
{
#define R(n) case HOST_##n: return #n

	switch (idx) {
#ifdef __x86_64__
	R(BX);
	R(CX);
	R(DI);
	R(SI);
	R(DX);
	R(BP);
	R(AX);
	R(R8);
	R(R9);
	R(R10);
	R(R11);
	R(R12);
	R(R13);
	R(R14);
	R(R15);
	R(ORIG_AX);
	R(CS);
	R(SS);
	R(EFLAGS);
#elif defined(__i386__)
	R(IP);
	R(SP);
	R(EFLAGS);
	R(AX);
	R(BX);
	R(CX);
	R(DX);
	R(SI);
	R(DI);
	R(BP);
	R(CS);
	R(SS);
	R(DS);
	R(FS);
	R(ES);
	R(GS);
	R(ORIG_AX);
#endif
	}
	return "";
}

static int ptrace_dump_regs(int pid)
{
	unsigned long regs[MAX_REG_NR];
	int i;

	if (ptrace(PTRACE_GETREGS, pid, 0, regs) < 0)
		return -errno;

	printk(UM_KERN_ERR "Stub registers -\n");
	for (i = 0; i < ARRAY_SIZE(regs); i++) {
		const char *regname = ptrace_reg_name(i);

		printk(UM_KERN_ERR "\t%s\t(%2d): %lx\n", regname, i, regs[i]);
	}

	return 0;
}

/*
 * Signals that are OK to receive in the stub - we'll just continue it.
 * SIGWINCH will happen when UML is inside a detached screen.
 */
#define STUB_SIG_MASK ((1 << SIGALRM) | (1 << SIGWINCH))

/* Signals that the stub will finish with - anything else is an error */
#define STUB_DONE_MASK (1 << SIGTRAP)

void wait_stub_done(int pid)
{
	int n, status, err;

	while (1) {
		CATCH_EINTR(n = waitpid(pid, &status, WUNTRACED | __WALL));
		if ((n < 0) || !WIFSTOPPED(status))
			goto bad_wait;

		if (((1 << WSTOPSIG(status)) & STUB_SIG_MASK) == 0)
			break;

		err = ptrace(PTRACE_CONT, pid, 0, 0);
		if (err) {
			printk(UM_KERN_ERR "%s : continue failed, errno = %d\n",
			       __func__, errno);
			fatal_sigsegv();
		}
	}

	if (((1 << WSTOPSIG(status)) & STUB_DONE_MASK) != 0)
		return;

bad_wait:
	err = ptrace_dump_regs(pid);
	if (err)
		printk(UM_KERN_ERR "Failed to get registers from stub, errno = %d\n",
		       -err);
	printk(UM_KERN_ERR "%s : failed to wait for SIGTRAP, pid = %d, n = %d, errno = %d, status = 0x%x\n",
	       __func__, pid, n, errno, status);
	fatal_sigsegv();
}

void wait_stub_done_seccomp(struct mm_id *mm_idp, int running, int wait_sigsys)
{
	struct stub_data *data = (void *)mm_idp->stack;
	int ret;

	do {
		const char byte = 0;
		struct iovec iov = {
			.iov_base = (void *)&byte,
			.iov_len = sizeof(byte),
		};
		union {
			char data[CMSG_SPACE(sizeof(mm_idp->syscall_fd_map))];
			struct cmsghdr align;
		} ctrl;
		struct msghdr msgh = {
			.msg_iov = &iov,
			.msg_iovlen = 1,
		};

		if (!running) {
			if (mm_idp->syscall_fd_num) {
				unsigned int fds_size =
					sizeof(int) * mm_idp->syscall_fd_num;
				struct cmsghdr *cmsg;

				msgh.msg_control = ctrl.data;
				msgh.msg_controllen = CMSG_SPACE(fds_size);
				cmsg = CMSG_FIRSTHDR(&msgh);
				cmsg->cmsg_level = SOL_SOCKET;
				cmsg->cmsg_type = SCM_RIGHTS;
				cmsg->cmsg_len = CMSG_LEN(fds_size);
				memcpy(CMSG_DATA(cmsg), mm_idp->syscall_fd_map,
				       fds_size);

				CATCH_EINTR(syscall(__NR_sendmsg, mm_idp->sock,
						&msgh, 0));
			}

			data->signal = 0;
			data->futex = FUTEX_IN_CHILD;
			CATCH_EINTR(syscall(__NR_futex, &data->futex,
					    FUTEX_WAKE, 1, NULL, NULL, 0));
		}

		do {
			/*
			 * We need to check whether the child is still alive
			 * before and after the FUTEX_WAIT call. Before, in
			 * case it just died but we still updated data->futex
			 * to FUTEX_IN_CHILD. And after, in case it died while
			 * we were waiting (and SIGCHLD woke us up, see the
			 * IRQ handler in mmu.c).
			 *
			 * Either way, if PID is negative, then we have no
			 * choice but to kill the task.
			 */
			if (__READ_ONCE(mm_idp->pid) < 0)
				goto out_kill;

			ret = syscall(__NR_futex, &data->futex,
				      FUTEX_WAIT, FUTEX_IN_CHILD,
				      NULL, NULL, 0);
			if (ret < 0 && errno != EINTR && errno != EAGAIN) {
				printk(UM_KERN_ERR "%s : FUTEX_WAIT failed, errno = %d\n",
				       __func__, errno);
				goto out_kill;
			}
		} while (data->futex == FUTEX_IN_CHILD);

		if (__READ_ONCE(mm_idp->pid) < 0)
			goto out_kill;

		running = 0;

		/* We may receive a SIGALRM before SIGSYS, iterate again. */
	} while (wait_sigsys && data->signal == SIGALRM);

	if (data->mctx_offset > sizeof(data->sigstack) - sizeof(mcontext_t)) {
		printk(UM_KERN_ERR "%s : invalid mcontext offset", __func__);
		goto out_kill;
	}

	if (wait_sigsys && data->signal != SIGSYS) {
		printk(UM_KERN_ERR "%s : expected SIGSYS but got %d",
		       __func__, data->signal);
		goto out_kill;
	}

	return;

out_kill:
	printk(UM_KERN_ERR "%s : failed to wait for stub, pid = %d, errno = %d\n",
	       __func__, mm_idp->pid, errno);
	/* This is not true inside start_userspace */
	if (current_mm_id() == mm_idp)
		fatal_sigsegv();
}

extern unsigned long current_stub_stack(void);

static void get_skas_faultinfo(int pid, struct faultinfo *fi)
{
	int err;

	err = ptrace(PTRACE_CONT, pid, 0, SIGSEGV);
	if (err) {
		printk(UM_KERN_ERR "Failed to continue stub, pid = %d, "
		       "errno = %d\n", pid, errno);
		fatal_sigsegv();
	}
	wait_stub_done(pid);

	/*
	 * faultinfo is prepared by the stub_segv_handler at start of
	 * the stub stack page. We just have to copy it.
	 */
	memcpy(fi, (void *)current_stub_stack(), sizeof(*fi));
}

static void handle_trap(int pid, struct uml_pt_regs *regs)
{
	if ((UPT_IP(regs) >= STUB_START) && (UPT_IP(regs) < STUB_END))
		fatal_sigsegv();

	handle_syscall(regs);
}

extern char __syscall_stub_start[];

static int stub_exe_fd;

struct tramp_data {
	struct stub_data *stub_data;
	/* 0 is inherited, 1 is the kernel side */
	int sockpair[2];
};

#ifndef CLOSE_RANGE_CLOEXEC
#define CLOSE_RANGE_CLOEXEC	(1U << 2)
#endif

static int userspace_tramp(void *data)
{
	struct tramp_data *tramp_data = data;
	char *const argv[] = { "uml-userspace", NULL };
	unsigned long long offset;
	struct stub_init_data init_data = {
		.seccomp = using_seccomp,
		.stub_start = STUB_START,
	};
	struct iomem_region *iomem;
	int ret;

	if (using_seccomp) {
		init_data.signal_handler = STUB_CODE +
					   (unsigned long) stub_signal_interrupt -
					   (unsigned long) __syscall_stub_start;
		init_data.signal_restorer = STUB_CODE +
					   (unsigned long) stub_signal_restorer -
					   (unsigned long) __syscall_stub_start;
	} else {
		init_data.signal_handler = STUB_CODE +
					   (unsigned long) stub_segv_handler -
					   (unsigned long) __syscall_stub_start;
		init_data.signal_restorer = 0;
	}

	init_data.stub_code_fd = phys_mapping(uml_to_phys(__syscall_stub_start),
					      &offset);
	init_data.stub_code_offset = MMAP_OFFSET(offset);

	init_data.stub_data_fd = phys_mapping(uml_to_phys(tramp_data->stub_data),
					      &offset);
	init_data.stub_data_offset = MMAP_OFFSET(offset);

	/*
	 * Avoid leaking unneeded FDs to the stub by setting CLOEXEC on all FDs
	 * and then unsetting it on all memory related FDs.
	 * This is not strictly necessary from a safety perspective.
	 */
	syscall(__NR_close_range, 0, ~0U, CLOSE_RANGE_CLOEXEC);

	fcntl(init_data.stub_data_fd, F_SETFD, 0);

	/* In SECCOMP mode, these FDs are passed when needed */
	if (!using_seccomp) {
		for (iomem = iomem_regions; iomem; iomem = iomem->next)
			fcntl(iomem->fd, F_SETFD, 0);
	}

	/* dup2 signaling FD/socket to STDIN */
	if (dup2(tramp_data->sockpair[0], 0) < 0)
		exit(3);
	close(tramp_data->sockpair[0]);

	/* Write init_data and close write side */
	ret = write(tramp_data->sockpair[1], &init_data, sizeof(init_data));
	close(tramp_data->sockpair[1]);

	if (ret != sizeof(init_data))
		exit(4);

	/* Raw execveat for compatibility with older libc versions */
	syscall(__NR_execveat, stub_exe_fd, (unsigned long)"",
		(unsigned long)argv, NULL, AT_EMPTY_PATH);

	exit(5);
}

extern char stub_exe_start[];
extern char stub_exe_end[];

extern char *tempdir;

#define STUB_EXE_NAME_TEMPLATE "/uml-userspace-XXXXXX"

#ifndef MFD_EXEC
#define MFD_EXEC 0x0010U
#endif

static int __init init_stub_exe_fd(void)
{
	size_t written = 0;
	char *tmpfile = NULL;

	stub_exe_fd = memfd_create("uml-userspace",
				   MFD_EXEC | MFD_CLOEXEC | MFD_ALLOW_SEALING);

	if (stub_exe_fd < 0) {
		printk(UM_KERN_INFO "Could not create executable memfd, using temporary file!");

		tmpfile = malloc(strlen(tempdir) +
				  strlen(STUB_EXE_NAME_TEMPLATE) + 1);
		if (tmpfile == NULL)
			panic("Failed to allocate memory for stub binary name");

		strcpy(tmpfile, tempdir);
		strcat(tmpfile, STUB_EXE_NAME_TEMPLATE);

		stub_exe_fd = mkstemp(tmpfile);
		if (stub_exe_fd < 0)
			panic("Could not create temporary file for stub binary: %d",
			      -errno);
	}

	while (written < stub_exe_end - stub_exe_start) {
		ssize_t res = write(stub_exe_fd, stub_exe_start + written,
				    stub_exe_end - stub_exe_start - written);
		if (res < 0) {
			if (errno == EINTR)
				continue;

			if (tmpfile)
				unlink(tmpfile);
			panic("Failed write stub binary: %d", -errno);
		}

		written += res;
	}

	if (!tmpfile) {
		fcntl(stub_exe_fd, F_ADD_SEALS,
		      F_SEAL_WRITE | F_SEAL_SHRINK | F_SEAL_GROW | F_SEAL_SEAL);
	} else {
		if (fchmod(stub_exe_fd, 00500) < 0) {
			unlink(tmpfile);
			panic("Could not make stub binary executable: %d",
			      -errno);
		}

		close(stub_exe_fd);
		stub_exe_fd = open(tmpfile, O_RDONLY | O_CLOEXEC | O_NOFOLLOW);
		if (stub_exe_fd < 0) {
			unlink(tmpfile);
			panic("Could not reopen stub binary: %d", -errno);
		}

		unlink(tmpfile);
		free(tmpfile);
	}

	return 0;
}
__initcall(init_stub_exe_fd);

int using_seccomp;
int userspace_pid[NR_CPUS];

/**
 * start_userspace() - prepare a new userspace process
 * @mm_id: The corresponding struct mm_id
 *
 * Setups a new temporary stack page that is used while userspace_tramp() runs
 * Clones the kernel process into a new userspace process, with FDs only.
 *
 * Return: When positive: the process id of the new userspace process,
 *         when negative: an error number.
 * FIXME: can PIDs become negative?!
 */
int start_userspace(struct mm_id *mm_id)
{
	struct stub_data *proc_data = (void *)mm_id->stack;
	struct tramp_data tramp_data = {
		.stub_data = proc_data,
	};
	void *stack;
	unsigned long sp;
	int status, n, err;

	/* setup a temporary stack page */
	stack = mmap(NULL, UM_KERN_PAGE_SIZE,
		     PROT_READ | PROT_WRITE | PROT_EXEC,
		     MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
	if (stack == MAP_FAILED) {
		err = -errno;
		printk(UM_KERN_ERR "%s : mmap failed, errno = %d\n",
		       __func__, errno);
		return err;
	}

	/* set stack pointer to the end of the stack page, so it can grow downwards */
	sp = (unsigned long)stack + UM_KERN_PAGE_SIZE;

	/* socket pair for init data and SECCOMP FD passing (no CLOEXEC here) */
	if (socketpair(AF_UNIX, SOCK_STREAM, 0, tramp_data.sockpair)) {
		err = -errno;
		printk(UM_KERN_ERR "%s : socketpair failed, errno = %d\n",
		       __func__, errno);
		return err;
	}

	if (using_seccomp)
		proc_data->futex = FUTEX_IN_CHILD;

	mm_id->pid = clone(userspace_tramp, (void *) sp,
		    CLONE_VFORK | CLONE_VM | SIGCHLD,
		    (void *)&tramp_data);
	if (mm_id->pid < 0) {
		err = -errno;
		printk(UM_KERN_ERR "%s : clone failed, errno = %d\n",
		       __func__, errno);
		goto out_close;
	}

	if (using_seccomp) {
		wait_stub_done_seccomp(mm_id, 1, 1);
	} else {
		do {
			CATCH_EINTR(n = waitpid(mm_id->pid, &status,
						WUNTRACED | __WALL));
			if (n < 0) {
				err = -errno;
				printk(UM_KERN_ERR "%s : wait failed, errno = %d\n",
				       __func__, errno);
				goto out_kill;
			}
		} while (WIFSTOPPED(status) && (WSTOPSIG(status) == SIGALRM));

		if (!WIFSTOPPED(status) || (WSTOPSIG(status) != SIGSTOP)) {
			err = -EINVAL;
			printk(UM_KERN_ERR "%s : expected SIGSTOP, got status = %d\n",
			       __func__, status);
			goto out_kill;
		}

		if (ptrace(PTRACE_SETOPTIONS, mm_id->pid, NULL,
			   (void *) PTRACE_O_TRACESYSGOOD) < 0) {
			err = -errno;
			printk(UM_KERN_ERR "%s : PTRACE_SETOPTIONS failed, errno = %d\n",
			       __func__, errno);
			goto out_kill;
		}
	}

	if (munmap(stack, UM_KERN_PAGE_SIZE) < 0) {
		err = -errno;
		printk(UM_KERN_ERR "%s : munmap failed, errno = %d\n",
		       __func__, errno);
		goto out_kill;
	}

	close(tramp_data.sockpair[0]);
	if (using_seccomp)
		mm_id->sock = tramp_data.sockpair[1];
	else
		close(tramp_data.sockpair[1]);

	return 0;

out_kill:
	os_kill_ptraced_process(mm_id->pid, 1);
out_close:
	close(tramp_data.sockpair[0]);
	close(tramp_data.sockpair[1]);

	mm_id->pid = -1;

	return err;
}

int unscheduled_userspace_iterations;
extern unsigned long tt_extra_sched_jiffies;

void userspace(struct uml_pt_regs *regs)
{
	int err, status, op, pid = userspace_pid[0];
	siginfo_t si_ptrace;
	siginfo_t *si;
	int sig;

	/* Handle any immediate reschedules or signals */
	interrupt_end();

	while (1) {
		/*
		 * When we are in time-travel mode, userspace can theoretically
		 * do a *lot* of work without being scheduled. The problem with
		 * this is that it will prevent kernel bookkeeping (primarily
		 * the RCU) from running and this can for example cause OOM
		 * situations.
		 *
		 * This code accounts a jiffie against the scheduling clock
		 * after the defined userspace iterations in the same thread.
		 * By doing so the situation is effectively prevented.
		 */
		if (time_travel_mode == TT_MODE_INFCPU ||
		    time_travel_mode == TT_MODE_EXTERNAL) {
#ifdef CONFIG_UML_MAX_USERSPACE_ITERATIONS
			if (CONFIG_UML_MAX_USERSPACE_ITERATIONS &&
			    unscheduled_userspace_iterations++ >
			    CONFIG_UML_MAX_USERSPACE_ITERATIONS) {
				tt_extra_sched_jiffies += 1;
				unscheduled_userspace_iterations = 0;
			}
#endif
		}

		time_travel_print_bc_msg();

		current_mm_sync();

		if (using_seccomp) {
			struct mm_id *mm_id = current_mm_id();
			struct stub_data *proc_data = (void *) mm_id->stack;
			int ret;

			ret = set_stub_state(regs, proc_data, singlestepping());
			if (ret) {
				printk(UM_KERN_ERR "%s - failed to set regs: %d",
				       __func__, ret);
				fatal_sigsegv();
			}

			/* Must have been reset by the syscall caller */
			if (proc_data->restart_wait != 0)
				panic("Programming error: Flag to only run syscalls in child was not cleared!");

			/* Mark pending syscalls for flushing */
			proc_data->syscall_data_len = mm_id->syscall_data_len;

			wait_stub_done_seccomp(mm_id, 0, 0);

			sig = proc_data->signal;

			if (sig == SIGTRAP && proc_data->err != 0) {
				printk(UM_KERN_ERR "%s - Error flushing stub syscalls",
				       __func__);
				syscall_stub_dump_error(mm_id);
				mm_id->syscall_data_len = proc_data->err;
				fatal_sigsegv();
			}

			mm_id->syscall_data_len = 0;
			mm_id->syscall_fd_num = 0;

			ret = get_stub_state(regs, proc_data, NULL);
			if (ret) {
				printk(UM_KERN_ERR "%s - failed to get regs: %d",
				       __func__, ret);
				fatal_sigsegv();
			}

			if (proc_data->si_offset > sizeof(proc_data->sigstack) - sizeof(*si))
				panic("%s - Invalid siginfo offset from child",
				      __func__);
			si = (void *)&proc_data->sigstack[proc_data->si_offset];

			regs->is_user = 1;

			/* Fill in ORIG_RAX and extract fault information */
			PT_SYSCALL_NR(regs->gp) = si->si_syscall;
			if (sig == SIGSEGV) {
				mcontext_t *mcontext = (void *)&proc_data->sigstack[proc_data->mctx_offset];

				GET_FAULTINFO_FROM_MC(regs->faultinfo, mcontext);
			}
		} else {
			/* Flush out any pending syscalls */
			err = syscall_stub_flush(current_mm_id());
			if (err) {
				if (err == -ENOMEM)
					report_enomem();

				printk(UM_KERN_ERR "%s - Error flushing stub syscalls: %d",
					__func__, -err);
				fatal_sigsegv();
			}

			/*
			 * This can legitimately fail if the process loads a
			 * bogus value into a segment register.  It will
			 * segfault and PTRACE_GETREGS will read that value
			 * out of the process.  However, PTRACE_SETREGS will
			 * fail.  In this case, there is nothing to do but
			 * just kill the process.
			 */
			if (ptrace(PTRACE_SETREGS, pid, 0, regs->gp)) {
				printk(UM_KERN_ERR "%s - ptrace set regs failed, errno = %d\n",
				       __func__, errno);
				fatal_sigsegv();
			}

			if (put_fp_registers(pid, regs->fp)) {
				printk(UM_KERN_ERR "%s - ptrace set fp regs failed, errno = %d\n",
				       __func__, errno);
				fatal_sigsegv();
			}

			if (singlestepping())
				op = PTRACE_SYSEMU_SINGLESTEP;
			else
				op = PTRACE_SYSEMU;

			if (ptrace(op, pid, 0, 0)) {
				printk(UM_KERN_ERR "%s - ptrace continue failed, op = %d, errno = %d\n",
				       __func__, op, errno);
				fatal_sigsegv();
			}

			CATCH_EINTR(err = waitpid(pid, &status, WUNTRACED | __WALL));
			if (err < 0) {
				printk(UM_KERN_ERR "%s - wait failed, errno = %d\n",
				       __func__, errno);
				fatal_sigsegv();
			}

			regs->is_user = 1;
			if (ptrace(PTRACE_GETREGS, pid, 0, regs->gp)) {
				printk(UM_KERN_ERR "%s - PTRACE_GETREGS failed, errno = %d\n",
				       __func__, errno);
				fatal_sigsegv();
			}

			if (get_fp_registers(pid, regs->fp)) {
				printk(UM_KERN_ERR "%s -  get_fp_registers failed, errno = %d\n",
				       __func__, errno);
				fatal_sigsegv();
			}

			if (WIFSTOPPED(status)) {
				sig = WSTOPSIG(status);

				/*
				 * These signal handlers need the si argument
				 * and SIGSEGV needs the faultinfo.
				 * The SIGIO and SIGALARM handlers which constitute
				 * the majority of invocations, do not use it.
				 */
				switch (sig) {
				case SIGSEGV:
					get_skas_faultinfo(pid,
							   &regs->faultinfo);
					fallthrough;
				case SIGTRAP:
				case SIGILL:
				case SIGBUS:
				case SIGFPE:
				case SIGWINCH:
					ptrace(PTRACE_GETSIGINFO, pid, 0,
					       (struct siginfo *)&si_ptrace);
					si = &si_ptrace;
					break;
				default:
					si = NULL;
					break;
				}
			} else {
				sig = 0;
			}
		}

		UPT_SYSCALL_NR(regs) = -1; /* Assume: It's not a syscall */

		if (sig) {
			switch (sig) {
			case SIGSEGV:
				if (using_seccomp || PTRACE_FULL_FAULTINFO)
					(*sig_info[SIGSEGV])(SIGSEGV,
							     (struct siginfo *)si,
							     regs, NULL);
				else
					segv(regs->faultinfo, 0, 1, NULL, NULL);

				break;
			case SIGSYS:
				handle_syscall(regs);
				break;
			case SIGTRAP + 0x80:
				handle_trap(pid, regs);
				break;
			case SIGTRAP:
				relay_signal(SIGTRAP, (struct siginfo *)si, regs, NULL);
				break;
			case SIGALRM:
				break;
			case SIGIO:
			case SIGILL:
			case SIGBUS:
			case SIGFPE:
			case SIGWINCH:
				block_signals_trace();
				(*sig_info[sig])(sig, (struct siginfo *)si, regs, NULL);
				unblock_signals_trace();
				break;
			default:
				printk(UM_KERN_ERR "%s - child stopped with signal %d\n",
				       __func__, sig);
				fatal_sigsegv();
			}
			pid = userspace_pid[0];
			interrupt_end();

			/* Avoid -ERESTARTSYS handling in host */
			if (PT_SYSCALL_NR_OFFSET != PT_SYSCALL_RET_OFFSET)
				PT_SYSCALL_NR(regs->gp) = -1;
		}
	}
}

void new_thread(void *stack, jmp_buf *buf, void (*handler)(void))
{
	(*buf)[0].JB_IP = (unsigned long) handler;
	(*buf)[0].JB_SP = (unsigned long) stack + UM_THREAD_SIZE -
		sizeof(void *);
}

#define INIT_JMP_NEW_THREAD 0
#define INIT_JMP_CALLBACK 1
#define INIT_JMP_HALT 2
#define INIT_JMP_REBOOT 3

void switch_threads(jmp_buf *me, jmp_buf *you)
{
	unscheduled_userspace_iterations = 0;

	if (UML_SETJMP(me) == 0)
		UML_LONGJMP(you, 1);
}

static jmp_buf initial_jmpbuf;

/* XXX Make these percpu */
static void (*cb_proc)(void *arg);
static void *cb_arg;
static jmp_buf *cb_back;

int start_idle_thread(void *stack, jmp_buf *switch_buf)
{
	int n;

	set_handler(SIGWINCH);

	/*
	 * Can't use UML_SETJMP or UML_LONGJMP here because they save
	 * and restore signals, with the possible side-effect of
	 * trying to handle any signals which came when they were
	 * blocked, which can't be done on this stack.
	 * Signals must be blocked when jumping back here and restored
	 * after returning to the jumper.
	 */
	n = setjmp(initial_jmpbuf);
	switch (n) {
	case INIT_JMP_NEW_THREAD:
		(*switch_buf)[0].JB_IP = (unsigned long) uml_finishsetup;
		(*switch_buf)[0].JB_SP = (unsigned long) stack +
			UM_THREAD_SIZE - sizeof(void *);
		break;
	case INIT_JMP_CALLBACK:
		(*cb_proc)(cb_arg);
		longjmp(*cb_back, 1);
		break;
	case INIT_JMP_HALT:
		kmalloc_ok = 0;
		return 0;
	case INIT_JMP_REBOOT:
		kmalloc_ok = 0;
		return 1;
	default:
		printk(UM_KERN_ERR "Bad sigsetjmp return in %s - %d\n",
		       __func__, n);
		fatal_sigsegv();
	}
	longjmp(*switch_buf, 1);

	/* unreachable */
	printk(UM_KERN_ERR "impossible long jump!");
	fatal_sigsegv();
	return 0;
}

void initial_thread_cb_skas(void (*proc)(void *), void *arg)
{
	jmp_buf here;

	cb_proc = proc;
	cb_arg = arg;
	cb_back = &here;

	block_signals_trace();
	if (UML_SETJMP(&here) == 0)
		UML_LONGJMP(&initial_jmpbuf, INIT_JMP_CALLBACK);
	unblock_signals_trace();

	cb_proc = NULL;
	cb_arg = NULL;
	cb_back = NULL;
}

void halt_skas(void)
{
	block_signals_trace();
	UML_LONGJMP(&initial_jmpbuf, INIT_JMP_HALT);
}

static bool noreboot;

static int __init noreboot_cmd_param(char *str, int *add)
{
	*add = 0;
	noreboot = true;
	return 0;
}

__uml_setup("noreboot", noreboot_cmd_param,
"noreboot\n"
"    Rather than rebooting, exit always, akin to QEMU's -no-reboot option.\n"
"    This is useful if you're using CONFIG_PANIC_TIMEOUT in order to catch\n"
"    crashes in CI\n");

void reboot_skas(void)
{
	block_signals_trace();
	UML_LONGJMP(&initial_jmpbuf, noreboot ? INIT_JMP_HALT : INIT_JMP_REBOOT);
}

void __switch_mm(struct mm_id *mm_idp)
{
	userspace_pid[0] = mm_idp->pid;
}