1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* dma-fence-util: misc functions for dma_fence objects
*
* Copyright (C) 2022 Advanced Micro Devices, Inc.
* Authors:
* Christian König <christian.koenig@amd.com>
*/
#include <linux/dma-fence.h>
#include <linux/dma-fence-array.h>
#include <linux/dma-fence-chain.h>
#include <linux/dma-fence-unwrap.h>
#include <linux/slab.h>
#include <linux/sort.h>
/* Internal helper to start new array iteration, don't use directly */
static struct dma_fence *
__dma_fence_unwrap_array(struct dma_fence_unwrap *cursor)
{
cursor->array = dma_fence_chain_contained(cursor->chain);
cursor->index = 0;
return dma_fence_array_first(cursor->array);
}
/**
* dma_fence_unwrap_first - return the first fence from fence containers
* @head: the entrypoint into the containers
* @cursor: current position inside the containers
*
* Unwraps potential dma_fence_chain/dma_fence_array containers and return the
* first fence.
*/
struct dma_fence *dma_fence_unwrap_first(struct dma_fence *head,
struct dma_fence_unwrap *cursor)
{
cursor->chain = dma_fence_get(head);
return __dma_fence_unwrap_array(cursor);
}
EXPORT_SYMBOL_GPL(dma_fence_unwrap_first);
/**
* dma_fence_unwrap_next - return the next fence from a fence containers
* @cursor: current position inside the containers
*
* Continue unwrapping the dma_fence_chain/dma_fence_array containers and return
* the next fence from them.
*/
struct dma_fence *dma_fence_unwrap_next(struct dma_fence_unwrap *cursor)
{
struct dma_fence *tmp;
++cursor->index;
tmp = dma_fence_array_next(cursor->array, cursor->index);
if (tmp)
return tmp;
cursor->chain = dma_fence_chain_walk(cursor->chain);
return __dma_fence_unwrap_array(cursor);
}
EXPORT_SYMBOL_GPL(dma_fence_unwrap_next);
static int fence_cmp(const void *_a, const void *_b)
{
struct dma_fence *a = *(struct dma_fence **)_a;
struct dma_fence *b = *(struct dma_fence **)_b;
if (a->context < b->context)
return -1;
else if (a->context > b->context)
return 1;
if (dma_fence_is_later(b, a))
return 1;
else if (dma_fence_is_later(a, b))
return -1;
return 0;
}
/**
* dma_fence_dedup_array - Sort and deduplicate an array of dma_fence pointers
* @fences: Array of dma_fence pointers to be deduplicated
* @num_fences: Number of entries in the @fences array
*
* Sorts the input array by context, then removes duplicate
* fences with the same context, keeping only the most recent one.
*
* The array is modified in-place and unreferenced duplicate fences are released
* via dma_fence_put(). The function returns the new number of fences after
* deduplication.
*
* Return: Number of unique fences remaining in the array.
*/
int dma_fence_dedup_array(struct dma_fence **fences, int num_fences)
{
int i, j;
sort(fences, num_fences, sizeof(*fences), fence_cmp, NULL);
/*
* Only keep the most recent fence for each context.
*/
j = 0;
for (i = 1; i < num_fences; i++) {
if (fences[i]->context == fences[j]->context)
dma_fence_put(fences[i]);
else
fences[++j] = fences[i];
}
return ++j;
}
EXPORT_SYMBOL_GPL(dma_fence_dedup_array);
/* Implementation for the dma_fence_merge() marco, don't use directly */
struct dma_fence *__dma_fence_unwrap_merge(unsigned int num_fences,
struct dma_fence **fences,
struct dma_fence_unwrap *iter)
{
struct dma_fence *tmp, *unsignaled = NULL, **array;
struct dma_fence_array *result;
ktime_t timestamp;
int i, count;
count = 0;
timestamp = ns_to_ktime(0);
for (i = 0; i < num_fences; ++i) {
dma_fence_unwrap_for_each(tmp, &iter[i], fences[i]) {
if (!dma_fence_is_signaled(tmp)) {
dma_fence_put(unsignaled);
unsignaled = dma_fence_get(tmp);
++count;
} else {
ktime_t t = dma_fence_timestamp(tmp);
if (ktime_after(t, timestamp))
timestamp = t;
}
}
}
/*
* If we couldn't find a pending fence just return a private signaled
* fence with the timestamp of the last signaled one.
*
* Or if there was a single unsignaled fence left we can return it
* directly and early since that is a major path on many workloads.
*/
if (count == 0)
return dma_fence_allocate_private_stub(timestamp);
else if (count == 1)
return unsignaled;
dma_fence_put(unsignaled);
array = kmalloc_array(count, sizeof(*array), GFP_KERNEL);
if (!array)
return NULL;
count = 0;
for (i = 0; i < num_fences; ++i) {
dma_fence_unwrap_for_each(tmp, &iter[i], fences[i]) {
if (!dma_fence_is_signaled(tmp)) {
array[count++] = dma_fence_get(tmp);
} else {
ktime_t t = dma_fence_timestamp(tmp);
if (ktime_after(t, timestamp))
timestamp = t;
}
}
}
if (count == 0 || count == 1)
goto return_fastpath;
count = dma_fence_dedup_array(array, count);
if (count > 1) {
result = dma_fence_array_create(count, array,
dma_fence_context_alloc(1),
1, false);
if (!result) {
for (i = 0; i < count; i++)
dma_fence_put(array[i]);
tmp = NULL;
goto return_tmp;
}
return &result->base;
}
return_fastpath:
if (count == 0)
tmp = dma_fence_allocate_private_stub(timestamp);
else
tmp = array[0];
return_tmp:
kfree(array);
return tmp;
}
EXPORT_SYMBOL_GPL(__dma_fence_unwrap_merge);
|