1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
|
// SPDX-License-Identifier: GPL-2.0+
/*
* AD4000 SPI ADC driver
*
* Copyright 2024 Analog Devices Inc.
*/
#include <linux/bits.h>
#include <linux/bitfield.h>
#include <linux/byteorder/generic.h>
#include <linux/cleanup.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/math.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/gpio/consumer.h>
#include <linux/regulator/consumer.h>
#include <linux/spi/offload/consumer.h>
#include <linux/spi/spi.h>
#include <linux/units.h>
#include <linux/util_macros.h>
#include <linux/iio/iio.h>
#include <linux/iio/buffer.h>
#include <linux/iio/buffer-dmaengine.h>
#include <linux/iio/triggered_buffer.h>
#include <linux/iio/trigger_consumer.h>
#define AD4000_READ_COMMAND 0x54
#define AD4000_WRITE_COMMAND 0x14
#define AD4000_CONFIG_REG_DEFAULT 0xE1
/* AD4000 Configuration Register programmable bits */
#define AD4000_CFG_SPAN_COMP BIT(3) /* Input span compression */
#define AD4000_CFG_HIGHZ BIT(2) /* High impedance mode */
#define AD4000_CFG_TURBO BIT(1) /* Turbo mode */
#define AD4000_SCALE_OPTIONS 2
#define __AD4000_DIFF_CHANNEL(_sign, _real_bits, _storage_bits, _reg_access, _offl)\
{ \
.type = IIO_VOLTAGE, \
.indexed = 1, \
.differential = 1, \
.channel = 0, \
.channel2 = 1, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
BIT(IIO_CHAN_INFO_SCALE) | \
(_offl ? BIT(IIO_CHAN_INFO_SAMP_FREQ) : 0), \
.info_mask_separate_available = _reg_access ? BIT(IIO_CHAN_INFO_SCALE) : 0,\
.scan_index = 0, \
.scan_type = { \
.sign = _sign, \
.realbits = _real_bits, \
.storagebits = _storage_bits, \
.shift = (_offl ? 0 : _storage_bits - _real_bits), \
.endianness = _offl ? IIO_CPU : IIO_BE \
}, \
}
#define AD4000_DIFF_CHANNEL(_sign, _real_bits, _reg_access, _offl) \
__AD4000_DIFF_CHANNEL((_sign), (_real_bits), \
(((_offl) || ((_real_bits) > 16)) ? 32 : 16), \
(_reg_access), (_offl))
/*
* When SPI offload is configured, transfers are executed without CPU
* intervention so no soft timestamp can be recorded when transfers run.
* Because of that, the macros that set timestamp channel are only used when
* transfers are not offloaded.
*/
#define AD4000_DIFF_CHANNELS(_sign, _real_bits, _reg_access) \
{ \
AD4000_DIFF_CHANNEL(_sign, _real_bits, _reg_access, 0), \
IIO_CHAN_SOFT_TIMESTAMP(1), \
}
#define __AD4000_PSEUDO_DIFF_CHANNEL(_sign, _real_bits, _storage_bits, \
_reg_access, _offl) \
{ \
.type = IIO_VOLTAGE, \
.indexed = 1, \
.channel = 0, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_OFFSET) | \
(_offl ? BIT(IIO_CHAN_INFO_SAMP_FREQ) : 0), \
.info_mask_separate_available = _reg_access ? BIT(IIO_CHAN_INFO_SCALE) : 0,\
.scan_index = 0, \
.scan_type = { \
.sign = _sign, \
.realbits = _real_bits, \
.storagebits = _storage_bits, \
.shift = (_offl ? 0 : _storage_bits - _real_bits), \
.endianness = _offl ? IIO_CPU : IIO_BE \
}, \
}
#define AD4000_PSEUDO_DIFF_CHANNEL(_sign, _real_bits, _reg_access, _offl) \
__AD4000_PSEUDO_DIFF_CHANNEL((_sign), (_real_bits), \
(((_offl) || ((_real_bits) > 16)) ? 32 : 16),\
(_reg_access), (_offl))
#define AD4000_PSEUDO_DIFF_CHANNELS(_sign, _real_bits, _reg_access) \
{ \
AD4000_PSEUDO_DIFF_CHANNEL(_sign, _real_bits, _reg_access, 0), \
IIO_CHAN_SOFT_TIMESTAMP(1), \
}
static const char * const ad4000_power_supplies[] = {
"vdd", "vio"
};
enum ad4000_sdi {
AD4000_SDI_MOSI,
AD4000_SDI_VIO,
AD4000_SDI_CS,
AD4000_SDI_GND,
};
/* maps adi,sdi-pin property value to enum */
static const char * const ad4000_sdi_pin[] = {
[AD4000_SDI_MOSI] = "sdi",
[AD4000_SDI_VIO] = "high",
[AD4000_SDI_CS] = "cs",
[AD4000_SDI_GND] = "low",
};
/* Gains stored as fractions of 1000 so they can be expressed by integers. */
static const int ad4000_gains[] = {
454, 909, 1000, 1900,
};
struct ad4000_time_spec {
int t_conv_ns;
int t_quiet2_ns;
};
/*
* Same timing specifications for all of AD4000, AD4001, ..., AD4008, AD4010,
* ADAQ4001, and ADAQ4003.
*/
static const struct ad4000_time_spec ad4000_t_spec = {
.t_conv_ns = 320,
.t_quiet2_ns = 60,
};
/* AD4020, AD4021, AD4022 */
static const struct ad4000_time_spec ad4020_t_spec = {
.t_conv_ns = 350,
.t_quiet2_ns = 60,
};
/* AD7983, AD7984 */
static const struct ad4000_time_spec ad7983_t_spec = {
.t_conv_ns = 500,
.t_quiet2_ns = 0,
};
/* AD7980, AD7982 */
static const struct ad4000_time_spec ad7980_t_spec = {
.t_conv_ns = 800,
.t_quiet2_ns = 0,
};
/* AD7946, AD7686, AD7688, AD7988-5, AD7693 */
static const struct ad4000_time_spec ad7686_t_spec = {
.t_conv_ns = 1600,
.t_quiet2_ns = 0,
};
/* AD7690 */
static const struct ad4000_time_spec ad7690_t_spec = {
.t_conv_ns = 2100,
.t_quiet2_ns = 0,
};
/* AD7942, AD7685, AD7687 */
static const struct ad4000_time_spec ad7687_t_spec = {
.t_conv_ns = 3200,
.t_quiet2_ns = 0,
};
/* AD7691 */
static const struct ad4000_time_spec ad7691_t_spec = {
.t_conv_ns = 3700,
.t_quiet2_ns = 0,
};
/* AD7988-1 */
static const struct ad4000_time_spec ad7988_1_t_spec = {
.t_conv_ns = 9500,
.t_quiet2_ns = 0,
};
struct ad4000_chip_info {
const char *dev_name;
struct iio_chan_spec chan_spec[2];
struct iio_chan_spec reg_access_chan_spec[2];
struct iio_chan_spec offload_chan_spec;
struct iio_chan_spec reg_access_offload_chan_spec;
const struct ad4000_time_spec *time_spec;
bool has_hardware_gain;
int max_rate_hz;
};
static const struct ad4000_chip_info ad4000_chip_info = {
.dev_name = "ad4000",
.chan_spec = AD4000_PSEUDO_DIFF_CHANNELS('u', 16, 0),
.reg_access_chan_spec = AD4000_PSEUDO_DIFF_CHANNELS('u', 16, 1),
.offload_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 0, 1),
.reg_access_offload_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 1, 1),
.time_spec = &ad4000_t_spec,
.max_rate_hz = 2 * MEGA,
};
static const struct ad4000_chip_info ad4001_chip_info = {
.dev_name = "ad4001",
.chan_spec = AD4000_DIFF_CHANNELS('s', 16, 0),
.reg_access_chan_spec = AD4000_DIFF_CHANNELS('s', 16, 1),
.offload_chan_spec = AD4000_DIFF_CHANNEL('s', 16, 0, 1),
.reg_access_offload_chan_spec = AD4000_DIFF_CHANNEL('s', 16, 1, 1),
.time_spec = &ad4000_t_spec,
.max_rate_hz = 2 * MEGA,
};
static const struct ad4000_chip_info ad4002_chip_info = {
.dev_name = "ad4002",
.chan_spec = AD4000_PSEUDO_DIFF_CHANNELS('u', 18, 0),
.reg_access_chan_spec = AD4000_PSEUDO_DIFF_CHANNELS('u', 18, 1),
.offload_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 18, 0, 1),
.reg_access_offload_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 18, 1, 1),
.time_spec = &ad4000_t_spec,
.max_rate_hz = 2 * MEGA,
};
static const struct ad4000_chip_info ad4003_chip_info = {
.dev_name = "ad4003",
.chan_spec = AD4000_DIFF_CHANNELS('s', 18, 0),
.reg_access_chan_spec = AD4000_DIFF_CHANNELS('s', 18, 1),
.offload_chan_spec = AD4000_DIFF_CHANNEL('s', 18, 0, 1),
.reg_access_offload_chan_spec = AD4000_DIFF_CHANNEL('s', 18, 1, 1),
.time_spec = &ad4000_t_spec,
.max_rate_hz = 2 * MEGA,
};
static const struct ad4000_chip_info ad4004_chip_info = {
.dev_name = "ad4004",
.chan_spec = AD4000_PSEUDO_DIFF_CHANNELS('u', 16, 0),
.reg_access_chan_spec = AD4000_PSEUDO_DIFF_CHANNELS('u', 16, 1),
.offload_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 0, 1),
.reg_access_offload_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 1, 1),
.time_spec = &ad4000_t_spec,
.max_rate_hz = 1 * MEGA,
};
static const struct ad4000_chip_info ad4005_chip_info = {
.dev_name = "ad4005",
.chan_spec = AD4000_DIFF_CHANNELS('s', 16, 0),
.reg_access_chan_spec = AD4000_DIFF_CHANNELS('s', 16, 1),
.offload_chan_spec = AD4000_DIFF_CHANNEL('s', 16, 0, 1),
.reg_access_offload_chan_spec = AD4000_DIFF_CHANNEL('s', 16, 1, 1),
.time_spec = &ad4000_t_spec,
.max_rate_hz = 1 * MEGA,
};
static const struct ad4000_chip_info ad4006_chip_info = {
.dev_name = "ad4006",
.chan_spec = AD4000_PSEUDO_DIFF_CHANNELS('u', 18, 0),
.reg_access_chan_spec = AD4000_PSEUDO_DIFF_CHANNELS('u', 18, 1),
.offload_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 18, 0, 1),
.reg_access_offload_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 18, 1, 1),
.time_spec = &ad4000_t_spec,
.max_rate_hz = 1 * MEGA,
};
static const struct ad4000_chip_info ad4007_chip_info = {
.dev_name = "ad4007",
.chan_spec = AD4000_DIFF_CHANNELS('s', 18, 0),
.reg_access_chan_spec = AD4000_DIFF_CHANNELS('s', 18, 1),
.offload_chan_spec = AD4000_DIFF_CHANNEL('s', 18, 0, 1),
.reg_access_offload_chan_spec = AD4000_DIFF_CHANNEL('s', 18, 1, 1),
.time_spec = &ad4000_t_spec,
.max_rate_hz = 1 * MEGA,
};
static const struct ad4000_chip_info ad4008_chip_info = {
.dev_name = "ad4008",
.chan_spec = AD4000_PSEUDO_DIFF_CHANNELS('u', 16, 0),
.reg_access_chan_spec = AD4000_PSEUDO_DIFF_CHANNELS('u', 16, 1),
.offload_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 0, 1),
.reg_access_offload_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 1, 1),
.time_spec = &ad4000_t_spec,
.max_rate_hz = 500 * KILO,
};
static const struct ad4000_chip_info ad4010_chip_info = {
.dev_name = "ad4010",
.chan_spec = AD4000_PSEUDO_DIFF_CHANNELS('u', 18, 0),
.reg_access_chan_spec = AD4000_PSEUDO_DIFF_CHANNELS('u', 18, 1),
.offload_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 18, 0, 1),
.reg_access_offload_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 18, 1, 1),
.time_spec = &ad4000_t_spec,
.max_rate_hz = 500 * KILO,
};
static const struct ad4000_chip_info ad4011_chip_info = {
.dev_name = "ad4011",
.chan_spec = AD4000_DIFF_CHANNELS('s', 18, 0),
.reg_access_chan_spec = AD4000_DIFF_CHANNELS('s', 18, 1),
.offload_chan_spec = AD4000_DIFF_CHANNEL('s', 18, 0, 1),
.reg_access_offload_chan_spec = AD4000_DIFF_CHANNEL('s', 18, 1, 1),
.time_spec = &ad4000_t_spec,
.max_rate_hz = 500 * KILO,
};
static const struct ad4000_chip_info ad4020_chip_info = {
.dev_name = "ad4020",
.chan_spec = AD4000_DIFF_CHANNELS('s', 20, 0),
.reg_access_chan_spec = AD4000_DIFF_CHANNELS('s', 20, 1),
.offload_chan_spec = AD4000_DIFF_CHANNEL('s', 20, 0, 1),
.reg_access_offload_chan_spec = AD4000_DIFF_CHANNEL('s', 20, 1, 1),
.time_spec = &ad4020_t_spec,
.max_rate_hz = 1800 * KILO,
};
static const struct ad4000_chip_info ad4021_chip_info = {
.dev_name = "ad4021",
.chan_spec = AD4000_DIFF_CHANNELS('s', 20, 0),
.reg_access_chan_spec = AD4000_DIFF_CHANNELS('s', 20, 1),
.offload_chan_spec = AD4000_DIFF_CHANNEL('s', 20, 0, 1),
.reg_access_offload_chan_spec = AD4000_DIFF_CHANNEL('s', 20, 1, 1),
.time_spec = &ad4020_t_spec,
.max_rate_hz = 1 * MEGA,
};
static const struct ad4000_chip_info ad4022_chip_info = {
.dev_name = "ad4022",
.chan_spec = AD4000_DIFF_CHANNELS('s', 20, 0),
.reg_access_chan_spec = AD4000_DIFF_CHANNELS('s', 20, 1),
.offload_chan_spec = AD4000_DIFF_CHANNEL('s', 20, 0, 1),
.reg_access_offload_chan_spec = AD4000_DIFF_CHANNEL('s', 20, 1, 1),
.time_spec = &ad4020_t_spec,
.max_rate_hz = 500 * KILO,
};
static const struct ad4000_chip_info adaq4001_chip_info = {
.dev_name = "adaq4001",
.chan_spec = AD4000_DIFF_CHANNELS('s', 16, 0),
.reg_access_chan_spec = AD4000_DIFF_CHANNELS('s', 16, 1),
.offload_chan_spec = AD4000_DIFF_CHANNEL('s', 16, 0, 1),
.reg_access_offload_chan_spec = AD4000_DIFF_CHANNEL('s', 16, 1, 1),
.time_spec = &ad4000_t_spec,
.has_hardware_gain = true,
.max_rate_hz = 2 * MEGA,
};
static const struct ad4000_chip_info adaq4003_chip_info = {
.dev_name = "adaq4003",
.chan_spec = AD4000_DIFF_CHANNELS('s', 18, 0),
.reg_access_chan_spec = AD4000_DIFF_CHANNELS('s', 18, 1),
.offload_chan_spec = AD4000_DIFF_CHANNEL('s', 18, 0, 1),
.reg_access_offload_chan_spec = AD4000_DIFF_CHANNEL('s', 18, 1, 1),
.time_spec = &ad4000_t_spec,
.has_hardware_gain = true,
.max_rate_hz = 2 * MEGA,
};
static const struct ad4000_chip_info ad7685_chip_info = {
.dev_name = "ad7685",
.chan_spec = AD4000_PSEUDO_DIFF_CHANNELS('u', 16, 0),
.offload_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 0, 1),
.time_spec = &ad7687_t_spec,
.max_rate_hz = 250 * KILO,
};
static const struct ad4000_chip_info ad7686_chip_info = {
.dev_name = "ad7686",
.chan_spec = AD4000_PSEUDO_DIFF_CHANNELS('u', 16, 0),
.offload_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 0, 1),
.time_spec = &ad7686_t_spec,
.max_rate_hz = 500 * KILO,
};
static const struct ad4000_chip_info ad7687_chip_info = {
.dev_name = "ad7687",
.chan_spec = AD4000_DIFF_CHANNELS('s', 16, 0),
.offload_chan_spec = AD4000_DIFF_CHANNEL('s', 16, 0, 1),
.time_spec = &ad7687_t_spec,
.max_rate_hz = 250 * KILO,
};
static const struct ad4000_chip_info ad7688_chip_info = {
.dev_name = "ad7688",
.chan_spec = AD4000_DIFF_CHANNELS('s', 16, 0),
.offload_chan_spec = AD4000_DIFF_CHANNEL('s', 16, 0, 1),
.time_spec = &ad7686_t_spec,
.max_rate_hz = 500 * KILO,
};
static const struct ad4000_chip_info ad7690_chip_info = {
.dev_name = "ad7690",
.chan_spec = AD4000_DIFF_CHANNELS('s', 18, 0),
.offload_chan_spec = AD4000_DIFF_CHANNEL('s', 18, 0, 1),
.time_spec = &ad7690_t_spec,
.max_rate_hz = 400 * KILO,
};
static const struct ad4000_chip_info ad7691_chip_info = {
.dev_name = "ad7691",
.chan_spec = AD4000_DIFF_CHANNELS('s', 18, 0),
.offload_chan_spec = AD4000_DIFF_CHANNEL('s', 18, 0, 1),
.time_spec = &ad7691_t_spec,
.max_rate_hz = 250 * KILO,
};
static const struct ad4000_chip_info ad7693_chip_info = {
.dev_name = "ad7693",
.chan_spec = AD4000_DIFF_CHANNELS('s', 16, 0),
.offload_chan_spec = AD4000_DIFF_CHANNEL('s', 16, 0, 1),
.time_spec = &ad7686_t_spec,
.max_rate_hz = 500 * KILO,
};
static const struct ad4000_chip_info ad7942_chip_info = {
.dev_name = "ad7942",
.chan_spec = AD4000_PSEUDO_DIFF_CHANNELS('u', 14, 0),
.offload_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 14, 0, 1),
.time_spec = &ad7687_t_spec,
.max_rate_hz = 250 * KILO,
};
static const struct ad4000_chip_info ad7946_chip_info = {
.dev_name = "ad7946",
.chan_spec = AD4000_PSEUDO_DIFF_CHANNELS('u', 14, 0),
.offload_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 14, 0, 1),
.time_spec = &ad7686_t_spec,
.max_rate_hz = 500 * KILO,
};
static const struct ad4000_chip_info ad7980_chip_info = {
.dev_name = "ad7980",
.chan_spec = AD4000_PSEUDO_DIFF_CHANNELS('u', 16, 0),
.offload_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 0, 1),
.time_spec = &ad7980_t_spec,
.max_rate_hz = 1 * MEGA,
};
static const struct ad4000_chip_info ad7982_chip_info = {
.dev_name = "ad7982",
.chan_spec = AD4000_DIFF_CHANNELS('s', 18, 0),
.offload_chan_spec = AD4000_DIFF_CHANNEL('s', 18, 0, 1),
.time_spec = &ad7980_t_spec,
.max_rate_hz = 1 * MEGA,
};
static const struct ad4000_chip_info ad7983_chip_info = {
.dev_name = "ad7983",
.chan_spec = AD4000_PSEUDO_DIFF_CHANNELS('u', 16, 0),
.offload_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 0, 1),
.time_spec = &ad7983_t_spec,
.max_rate_hz = 1 * MEGA + 333 * KILO + 333,
};
static const struct ad4000_chip_info ad7984_chip_info = {
.dev_name = "ad7984",
.chan_spec = AD4000_DIFF_CHANNELS('s', 18, 0),
.offload_chan_spec = AD4000_DIFF_CHANNEL('s', 18, 0, 1),
.time_spec = &ad7983_t_spec,
.max_rate_hz = 1 * MEGA + 333 * KILO + 333,
};
static const struct ad4000_chip_info ad7988_1_chip_info = {
.dev_name = "ad7988-1",
.chan_spec = AD4000_PSEUDO_DIFF_CHANNELS('u', 16, 0),
.offload_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 0, 1),
.time_spec = &ad7988_1_t_spec,
.max_rate_hz = 100 * KILO,
};
static const struct ad4000_chip_info ad7988_5_chip_info = {
.dev_name = "ad7988-5",
.chan_spec = AD4000_PSEUDO_DIFF_CHANNELS('u', 16, 0),
.offload_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 0, 1),
.time_spec = &ad7686_t_spec,
.max_rate_hz = 500 * KILO,
};
static const struct spi_offload_config ad4000_offload_config = {
.capability_flags = SPI_OFFLOAD_CAP_TRIGGER |
SPI_OFFLOAD_CAP_RX_STREAM_DMA,
};
struct ad4000_state {
struct spi_device *spi;
struct gpio_desc *cnv_gpio;
struct spi_transfer xfers[2];
struct spi_message msg;
struct spi_transfer offload_xfer;
struct spi_message offload_msg;
struct spi_offload *offload;
struct spi_offload_trigger *offload_trigger;
bool using_offload;
unsigned long offload_trigger_hz;
int max_rate_hz;
struct mutex lock; /* Protect read modify write cycle */
int vref_mv;
enum ad4000_sdi sdi_pin;
bool span_comp;
u16 gain_milli;
int scale_tbl[AD4000_SCALE_OPTIONS][2];
const struct ad4000_time_spec *time_spec;
/*
* DMA (thus cache coherency maintenance) requires the transfer buffers
* to live in their own cache lines.
*/
struct {
union {
__be16 sample_buf16_be;
__be32 sample_buf32_be;
u16 sample_buf16;
u32 sample_buf32;
} data;
aligned_s64 timestamp;
} scan __aligned(IIO_DMA_MINALIGN);
u8 tx_buf[2];
u8 rx_buf[2];
};
static void ad4000_fill_scale_tbl(struct ad4000_state *st,
struct iio_chan_spec const *chan)
{
int val, tmp0, tmp1;
int scale_bits;
u64 tmp2;
/*
* ADCs that output two's complement code have one less bit to express
* voltage magnitude.
*/
if (chan->scan_type.sign == 's')
scale_bits = chan->scan_type.realbits - 1;
else
scale_bits = chan->scan_type.realbits;
/*
* The gain is stored as a fraction of 1000 and, as we need to
* divide vref_mv by the gain, we invert the gain/1000 fraction.
* Also multiply by an extra MILLI to preserve precision.
* Thus, we have MILLI * MILLI equals MICRO as fraction numerator.
*/
val = mult_frac(st->vref_mv, MICRO, st->gain_milli);
/* Would multiply by NANO here but we multiplied by extra MILLI */
tmp2 = shift_right((u64)val * MICRO, scale_bits);
tmp0 = div_s64_rem(tmp2, NANO, &tmp1);
/* Store scale for when span compression is disabled */
st->scale_tbl[0][0] = tmp0; /* Integer part */
st->scale_tbl[0][1] = abs(tmp1); /* Fractional part */
/* Store scale for when span compression is enabled */
st->scale_tbl[1][0] = tmp0;
/* The integer part is always zero so don't bother to divide it. */
if (chan->differential)
st->scale_tbl[1][1] = DIV_ROUND_CLOSEST(abs(tmp1) * 4, 5);
else
st->scale_tbl[1][1] = DIV_ROUND_CLOSEST(abs(tmp1) * 9, 10);
}
static int ad4000_write_reg(struct ad4000_state *st, uint8_t val)
{
st->tx_buf[0] = AD4000_WRITE_COMMAND;
st->tx_buf[1] = val;
return spi_write(st->spi, st->tx_buf, ARRAY_SIZE(st->tx_buf));
}
static int ad4000_read_reg(struct ad4000_state *st, unsigned int *val)
{
struct spi_transfer t = {
.tx_buf = st->tx_buf,
.rx_buf = st->rx_buf,
.len = 2,
};
int ret;
st->tx_buf[0] = AD4000_READ_COMMAND;
ret = spi_sync_transfer(st->spi, &t, 1);
if (ret < 0)
return ret;
*val = st->rx_buf[1];
return ret;
}
static int ad4000_set_sampling_freq(struct ad4000_state *st, int freq)
{
struct spi_offload_trigger_config config = {
.type = SPI_OFFLOAD_TRIGGER_PERIODIC,
.periodic = {
.frequency_hz = freq,
},
};
int ret;
ret = spi_offload_trigger_validate(st->offload_trigger, &config);
if (ret)
return ret;
st->offload_trigger_hz = config.periodic.frequency_hz;
return 0;
}
static int ad4000_convert_and_acquire(struct ad4000_state *st)
{
int ret;
/*
* In 4-wire mode, the CNV line is held high for the entire conversion
* and acquisition process. In other modes, the CNV GPIO is optional
* and, if provided, replaces controller CS. If CNV GPIO is not defined
* gpiod_set_value_cansleep() has no effect.
*/
gpiod_set_value_cansleep(st->cnv_gpio, 1);
ret = spi_sync(st->spi, &st->msg);
gpiod_set_value_cansleep(st->cnv_gpio, 0);
return ret;
}
static int ad4000_single_conversion(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan, int *val)
{
struct ad4000_state *st = iio_priv(indio_dev);
u32 sample;
int ret;
ret = ad4000_convert_and_acquire(st);
if (ret < 0)
return ret;
if (chan->scan_type.endianness == IIO_BE) {
if (chan->scan_type.realbits > 16)
sample = be32_to_cpu(st->scan.data.sample_buf32_be);
else
sample = be16_to_cpu(st->scan.data.sample_buf16_be);
} else {
if (chan->scan_type.realbits > 16)
sample = st->scan.data.sample_buf32;
else
sample = st->scan.data.sample_buf16;
}
sample >>= chan->scan_type.shift;
if (chan->scan_type.sign == 's')
*val = sign_extend32(sample, chan->scan_type.realbits - 1);
else
*val = sample;
return IIO_VAL_INT;
}
static int ad4000_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int *val,
int *val2, long info)
{
struct ad4000_state *st = iio_priv(indio_dev);
int ret;
switch (info) {
case IIO_CHAN_INFO_RAW:
if (!iio_device_claim_direct(indio_dev))
return -EBUSY;
ret = ad4000_single_conversion(indio_dev, chan, val);
iio_device_release_direct(indio_dev);
return ret;
case IIO_CHAN_INFO_SCALE:
*val = st->scale_tbl[st->span_comp][0];
*val2 = st->scale_tbl[st->span_comp][1];
return IIO_VAL_INT_PLUS_NANO;
case IIO_CHAN_INFO_OFFSET:
*val = 0;
if (st->span_comp)
*val = mult_frac(st->vref_mv, 1, 10);
return IIO_VAL_INT;
case IIO_CHAN_INFO_SAMP_FREQ:
*val = st->offload_trigger_hz;
return IIO_VAL_INT;
default:
return -EINVAL;
}
}
static int ad4000_read_avail(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
const int **vals, int *type, int *length,
long info)
{
struct ad4000_state *st = iio_priv(indio_dev);
switch (info) {
case IIO_CHAN_INFO_SCALE:
*vals = (int *)st->scale_tbl;
*length = AD4000_SCALE_OPTIONS * 2;
*type = IIO_VAL_INT_PLUS_NANO;
return IIO_AVAIL_LIST;
default:
return -EINVAL;
}
}
static int ad4000_write_raw_get_fmt(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, long mask)
{
switch (mask) {
case IIO_CHAN_INFO_SCALE:
return IIO_VAL_INT_PLUS_NANO;
default:
return IIO_VAL_INT_PLUS_MICRO;
}
}
static int __ad4000_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val2)
{
struct ad4000_state *st = iio_priv(indio_dev);
unsigned int reg_val;
bool span_comp_en;
int ret;
guard(mutex)(&st->lock);
ret = ad4000_read_reg(st, ®_val);
if (ret < 0)
return ret;
span_comp_en = val2 == st->scale_tbl[1][1];
reg_val &= ~AD4000_CFG_SPAN_COMP;
reg_val |= FIELD_PREP(AD4000_CFG_SPAN_COMP, span_comp_en);
ret = ad4000_write_reg(st, reg_val);
if (ret < 0)
return ret;
st->span_comp = span_comp_en;
return 0;
}
static int ad4000_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
struct ad4000_state *st = iio_priv(indio_dev);
int ret;
switch (mask) {
case IIO_CHAN_INFO_SCALE:
if (!iio_device_claim_direct(indio_dev))
return -EBUSY;
ret = __ad4000_write_raw(indio_dev, chan, val2);
iio_device_release_direct(indio_dev);
return ret;
case IIO_CHAN_INFO_SAMP_FREQ:
if (val < 1 || val > st->max_rate_hz)
return -EINVAL;
if (!iio_device_claim_direct(indio_dev))
return -EBUSY;
ret = ad4000_set_sampling_freq(st, val);
iio_device_release_direct(indio_dev);
return ret;
default:
return -EINVAL;
}
}
static irqreturn_t ad4000_trigger_handler(int irq, void *p)
{
struct iio_poll_func *pf = p;
struct iio_dev *indio_dev = pf->indio_dev;
struct ad4000_state *st = iio_priv(indio_dev);
int ret;
ret = ad4000_convert_and_acquire(st);
if (ret < 0)
goto err_out;
iio_push_to_buffers_with_ts(indio_dev, &st->scan, sizeof(st->scan),
pf->timestamp);
err_out:
iio_trigger_notify_done(indio_dev->trig);
return IRQ_HANDLED;
}
static const struct iio_info ad4000_reg_access_info = {
.read_raw = &ad4000_read_raw,
.read_avail = &ad4000_read_avail,
.write_raw = &ad4000_write_raw,
.write_raw_get_fmt = &ad4000_write_raw_get_fmt,
};
static const struct iio_info ad4000_offload_info = {
.read_raw = &ad4000_read_raw,
.write_raw = &ad4000_write_raw,
.write_raw_get_fmt = &ad4000_write_raw_get_fmt,
};
static const struct iio_info ad4000_info = {
.read_raw = &ad4000_read_raw,
};
static int ad4000_offload_buffer_postenable(struct iio_dev *indio_dev)
{
struct ad4000_state *st = iio_priv(indio_dev);
struct spi_offload_trigger_config config = {
.type = SPI_OFFLOAD_TRIGGER_PERIODIC,
.periodic = {
.frequency_hz = st->offload_trigger_hz,
},
};
return spi_offload_trigger_enable(st->offload, st->offload_trigger,
&config);
}
static int ad4000_offload_buffer_predisable(struct iio_dev *indio_dev)
{
struct ad4000_state *st = iio_priv(indio_dev);
spi_offload_trigger_disable(st->offload, st->offload_trigger);
return 0;
}
static const struct iio_buffer_setup_ops ad4000_offload_buffer_setup_ops = {
.postenable = &ad4000_offload_buffer_postenable,
.predisable = &ad4000_offload_buffer_predisable,
};
static int ad4000_spi_offload_setup(struct iio_dev *indio_dev,
struct ad4000_state *st)
{
struct spi_device *spi = st->spi;
struct device *dev = &spi->dev;
struct dma_chan *rx_dma;
int ret;
st->offload_trigger = devm_spi_offload_trigger_get(dev, st->offload,
SPI_OFFLOAD_TRIGGER_PERIODIC);
if (IS_ERR(st->offload_trigger))
return dev_err_probe(dev, PTR_ERR(st->offload_trigger),
"Failed to get offload trigger\n");
ret = ad4000_set_sampling_freq(st, st->max_rate_hz);
if (ret)
return dev_err_probe(dev, ret,
"Failed to set sampling frequency\n");
rx_dma = devm_spi_offload_rx_stream_request_dma_chan(dev, st->offload);
if (IS_ERR(rx_dma))
return dev_err_probe(dev, PTR_ERR(rx_dma),
"Failed to get offload RX DMA\n");
ret = devm_iio_dmaengine_buffer_setup_with_handle(dev, indio_dev, rx_dma,
IIO_BUFFER_DIRECTION_IN);
if (ret)
return dev_err_probe(dev, ret, "Failed to setup DMA buffer\n");
return 0;
}
/*
* This executes a data sample transfer when using SPI offloading. The device
* connections should be in "3-wire" mode, selected either when the adi,sdi-pin
* device tree property is absent or set to "high". Also, the ADC CNV pin must
* be connected to a SPI controller CS (it can't be connected to a GPIO).
*
* In order to achieve the maximum sample rate, we only do one transfer per
* SPI offload trigger. Because the ADC output has a one sample latency (delay)
* when the device is wired in "3-wire" mode and only one transfer per sample is
* being made in turbo mode, the first data sample is not valid because it
* contains the output of an earlier conversion result. We also set transfer
* `bits_per_word` to achieve higher throughput by using the minimum number of
* SCLK cycles. Also, a delay is added to make sure we meet the minimum quiet
* time before releasing the CS line.
*
* Note that, with `bits_per_word` set to the number of ADC precision bits,
* transfers use larger word sizes that get stored in 'in-memory wordsizes' that
* are always in native CPU byte order. Because of that, IIO buffer elements
* ought to be read in CPU endianness which requires setting IIO scan_type
* endianness accordingly (i.e. IIO_CPU).
*/
static int ad4000_prepare_offload_message(struct ad4000_state *st,
const struct iio_chan_spec *chan)
{
struct spi_transfer *xfer = &st->offload_xfer;
xfer->bits_per_word = chan->scan_type.realbits;
xfer->len = chan->scan_type.realbits > 16 ? 4 : 2;
xfer->delay.value = st->time_spec->t_quiet2_ns;
xfer->delay.unit = SPI_DELAY_UNIT_NSECS;
xfer->offload_flags = SPI_OFFLOAD_XFER_RX_STREAM;
spi_message_init_with_transfers(&st->offload_msg, xfer, 1);
st->offload_msg.offload = st->offload;
return devm_spi_optimize_message(&st->spi->dev, st->spi, &st->offload_msg);
}
/*
* This executes a data sample transfer for when the device connections are
* in "3-wire" mode, selected when the adi,sdi-pin device tree property is
* absent or set to "high". In this connection mode, the ADC SDI pin is
* connected to MOSI or to VIO and ADC CNV pin is connected either to a SPI
* controller CS or to a GPIO.
* AD4000 series of devices initiate conversions on the rising edge of CNV pin.
*
* If the CNV pin is connected to an SPI controller CS line (which is by default
* active low), the ADC readings would have a latency (delay) of one read.
* Moreover, since we also do ADC sampling for filling the buffer on triggered
* buffer mode, the timestamps of buffer readings would be disarranged.
* To prevent the read latency and reduce the time discrepancy between the
* sample read request and the time of actual sampling by the ADC, do a
* preparatory transfer to pulse the CS/CNV line.
*/
static int ad4000_prepare_3wire_mode_message(struct ad4000_state *st,
const struct iio_chan_spec *chan)
{
struct spi_transfer *xfers = st->xfers;
xfers[0].cs_change = 1;
xfers[0].cs_change_delay.value = st->time_spec->t_conv_ns;
xfers[0].cs_change_delay.unit = SPI_DELAY_UNIT_NSECS;
xfers[1].rx_buf = &st->scan.data;
xfers[1].len = chan->scan_type.realbits > 16 ? 4 : 2;
/*
* If the device is set up for SPI offloading, IIO channel scan_type is
* set to IIO_CPU. When that is the case, use larger SPI word sizes for
* single-shot reads too. Thus, sample data can be correctly handled in
* ad4000_single_conversion() according to scan_type endianness.
*/
if (chan->scan_type.endianness != IIO_BE)
xfers[1].bits_per_word = chan->scan_type.realbits;
xfers[1].delay.value = st->time_spec->t_quiet2_ns;
xfers[1].delay.unit = SPI_DELAY_UNIT_NSECS;
spi_message_init_with_transfers(&st->msg, st->xfers, 2);
return devm_spi_optimize_message(&st->spi->dev, st->spi, &st->msg);
}
/*
* This executes a data sample transfer for when the device connections are
* in "4-wire" mode, selected when the adi,sdi-pin device tree property is
* set to "cs". In this connection mode, the controller CS pin is connected to
* ADC SDI pin and a GPIO is connected to ADC CNV pin.
* The GPIO connected to ADC CNV pin is set outside of the SPI transfer.
*/
static int ad4000_prepare_4wire_mode_message(struct ad4000_state *st,
const struct iio_chan_spec *chan)
{
struct spi_transfer *xfers = st->xfers;
/*
* Dummy transfer to cause enough delay between CNV going high and SDI
* going low.
*/
xfers[0].cs_off = 1;
xfers[0].delay.value = st->time_spec->t_conv_ns;
xfers[0].delay.unit = SPI_DELAY_UNIT_NSECS;
xfers[1].rx_buf = &st->scan.data;
xfers[1].len = BITS_TO_BYTES(chan->scan_type.storagebits);
spi_message_init_with_transfers(&st->msg, st->xfers, 2);
return devm_spi_optimize_message(&st->spi->dev, st->spi, &st->msg);
}
static int ad4000_config(struct ad4000_state *st)
{
unsigned int reg_val = AD4000_CONFIG_REG_DEFAULT;
if (device_property_present(&st->spi->dev, "adi,high-z-input"))
reg_val |= FIELD_PREP(AD4000_CFG_HIGHZ, 1);
if (st->using_offload)
reg_val |= FIELD_PREP(AD4000_CFG_TURBO, 1);
return ad4000_write_reg(st, reg_val);
}
static int ad4000_probe(struct spi_device *spi)
{
const struct ad4000_chip_info *chip;
struct device *dev = &spi->dev;
struct iio_dev *indio_dev;
struct ad4000_state *st;
int gain_idx, ret;
indio_dev = devm_iio_device_alloc(dev, sizeof(*st));
if (!indio_dev)
return -ENOMEM;
chip = spi_get_device_match_data(spi);
if (!chip)
return -EINVAL;
st = iio_priv(indio_dev);
st->spi = spi;
st->time_spec = chip->time_spec;
st->max_rate_hz = chip->max_rate_hz;
ret = devm_regulator_bulk_get_enable(dev, ARRAY_SIZE(ad4000_power_supplies),
ad4000_power_supplies);
if (ret)
return dev_err_probe(dev, ret, "Failed to enable power supplies\n");
ret = devm_regulator_get_enable_read_voltage(dev, "ref");
if (ret < 0)
return dev_err_probe(dev, ret,
"Failed to get ref regulator reference\n");
st->vref_mv = ret / 1000;
st->cnv_gpio = devm_gpiod_get_optional(dev, "cnv", GPIOD_OUT_HIGH);
if (IS_ERR(st->cnv_gpio))
return dev_err_probe(dev, PTR_ERR(st->cnv_gpio),
"Failed to get CNV GPIO");
st->offload = devm_spi_offload_get(dev, spi, &ad4000_offload_config);
ret = PTR_ERR_OR_ZERO(st->offload);
if (ret && ret != -ENODEV)
return dev_err_probe(dev, ret, "Failed to get offload\n");
st->using_offload = !IS_ERR(st->offload);
if (st->using_offload) {
indio_dev->setup_ops = &ad4000_offload_buffer_setup_ops;
ret = ad4000_spi_offload_setup(indio_dev, st);
if (ret)
return ret;
} else {
ret = devm_iio_triggered_buffer_setup(dev, indio_dev,
&iio_pollfunc_store_time,
&ad4000_trigger_handler,
NULL);
if (ret)
return ret;
}
ret = device_property_match_property_string(dev, "adi,sdi-pin",
ad4000_sdi_pin,
ARRAY_SIZE(ad4000_sdi_pin));
if (ret < 0 && ret != -EINVAL)
return dev_err_probe(dev, ret,
"getting adi,sdi-pin property failed\n");
/* Default to usual SPI connections if pin properties are not present */
st->sdi_pin = ret == -EINVAL ? AD4000_SDI_MOSI : ret;
switch (st->sdi_pin) {
case AD4000_SDI_MOSI:
indio_dev->info = &ad4000_reg_access_info;
/*
* In "3-wire mode", the ADC SDI line must be kept high when
* data is not being clocked out of the controller.
* Request the SPI controller to make MOSI idle high.
*/
spi->mode |= SPI_MOSI_IDLE_HIGH;
ret = spi_setup(spi);
if (ret < 0)
return ret;
if (st->using_offload) {
indio_dev->channels = &chip->reg_access_offload_chan_spec;
indio_dev->num_channels = 1;
ret = ad4000_prepare_offload_message(st, indio_dev->channels);
if (ret)
return dev_err_probe(dev, ret,
"Failed to optimize SPI msg\n");
} else {
indio_dev->channels = chip->reg_access_chan_spec;
indio_dev->num_channels = ARRAY_SIZE(chip->reg_access_chan_spec);
}
/*
* Call ad4000_prepare_3wire_mode_message() so single-shot read
* SPI messages are always initialized.
*/
ret = ad4000_prepare_3wire_mode_message(st, &indio_dev->channels[0]);
if (ret)
return dev_err_probe(dev, ret,
"Failed to optimize SPI msg\n");
ret = ad4000_config(st);
if (ret < 0)
return dev_err_probe(dev, ret, "Failed to config device\n");
break;
case AD4000_SDI_VIO:
if (st->using_offload) {
indio_dev->info = &ad4000_offload_info;
indio_dev->channels = &chip->offload_chan_spec;
indio_dev->num_channels = 1;
ret = ad4000_prepare_offload_message(st, indio_dev->channels);
if (ret)
return dev_err_probe(dev, ret,
"Failed to optimize SPI msg\n");
} else {
indio_dev->info = &ad4000_info;
indio_dev->channels = chip->chan_spec;
indio_dev->num_channels = ARRAY_SIZE(chip->chan_spec);
}
ret = ad4000_prepare_3wire_mode_message(st, &indio_dev->channels[0]);
if (ret)
return dev_err_probe(dev, ret,
"Failed to optimize SPI msg\n");
break;
case AD4000_SDI_CS:
if (st->using_offload)
return dev_err_probe(dev, -EPROTONOSUPPORT,
"Unsupported sdi-pin + offload config\n");
indio_dev->info = &ad4000_info;
indio_dev->channels = chip->chan_spec;
indio_dev->num_channels = ARRAY_SIZE(chip->chan_spec);
ret = ad4000_prepare_4wire_mode_message(st, &indio_dev->channels[0]);
if (ret)
return dev_err_probe(dev, ret,
"Failed to optimize SPI msg\n");
break;
case AD4000_SDI_GND:
return dev_err_probe(dev, -EPROTONOSUPPORT,
"Unsupported connection mode\n");
default:
return dev_err_probe(dev, -EINVAL, "Unrecognized connection mode\n");
}
indio_dev->name = chip->dev_name;
ret = devm_mutex_init(dev, &st->lock);
if (ret)
return ret;
st->gain_milli = 1000;
if (chip->has_hardware_gain) {
ret = device_property_read_u16(dev, "adi,gain-milli",
&st->gain_milli);
if (!ret) {
/* Match gain value from dt to one of supported gains */
gain_idx = find_closest(st->gain_milli, ad4000_gains,
ARRAY_SIZE(ad4000_gains));
st->gain_milli = ad4000_gains[gain_idx];
} else {
return dev_err_probe(dev, ret,
"Failed to read gain property\n");
}
}
ad4000_fill_scale_tbl(st, &indio_dev->channels[0]);
return devm_iio_device_register(dev, indio_dev);
}
static const struct spi_device_id ad4000_id[] = {
{ "ad4000", (kernel_ulong_t)&ad4000_chip_info },
{ "ad4001", (kernel_ulong_t)&ad4001_chip_info },
{ "ad4002", (kernel_ulong_t)&ad4002_chip_info },
{ "ad4003", (kernel_ulong_t)&ad4003_chip_info },
{ "ad4004", (kernel_ulong_t)&ad4004_chip_info },
{ "ad4005", (kernel_ulong_t)&ad4005_chip_info },
{ "ad4006", (kernel_ulong_t)&ad4006_chip_info },
{ "ad4007", (kernel_ulong_t)&ad4007_chip_info },
{ "ad4008", (kernel_ulong_t)&ad4008_chip_info },
{ "ad4010", (kernel_ulong_t)&ad4010_chip_info },
{ "ad4011", (kernel_ulong_t)&ad4011_chip_info },
{ "ad4020", (kernel_ulong_t)&ad4020_chip_info },
{ "ad4021", (kernel_ulong_t)&ad4021_chip_info },
{ "ad4022", (kernel_ulong_t)&ad4022_chip_info },
{ "adaq4001", (kernel_ulong_t)&adaq4001_chip_info },
{ "adaq4003", (kernel_ulong_t)&adaq4003_chip_info },
{ "ad7685", (kernel_ulong_t)&ad7685_chip_info },
{ "ad7686", (kernel_ulong_t)&ad7686_chip_info },
{ "ad7687", (kernel_ulong_t)&ad7687_chip_info },
{ "ad7688", (kernel_ulong_t)&ad7688_chip_info },
{ "ad7690", (kernel_ulong_t)&ad7690_chip_info },
{ "ad7691", (kernel_ulong_t)&ad7691_chip_info },
{ "ad7693", (kernel_ulong_t)&ad7693_chip_info },
{ "ad7942", (kernel_ulong_t)&ad7942_chip_info },
{ "ad7946", (kernel_ulong_t)&ad7946_chip_info },
{ "ad7980", (kernel_ulong_t)&ad7980_chip_info },
{ "ad7982", (kernel_ulong_t)&ad7982_chip_info },
{ "ad7983", (kernel_ulong_t)&ad7983_chip_info },
{ "ad7984", (kernel_ulong_t)&ad7984_chip_info },
{ "ad7988-1", (kernel_ulong_t)&ad7988_1_chip_info },
{ "ad7988-5", (kernel_ulong_t)&ad7988_5_chip_info },
{ }
};
MODULE_DEVICE_TABLE(spi, ad4000_id);
static const struct of_device_id ad4000_of_match[] = {
{ .compatible = "adi,ad4000", .data = &ad4000_chip_info },
{ .compatible = "adi,ad4001", .data = &ad4001_chip_info },
{ .compatible = "adi,ad4002", .data = &ad4002_chip_info },
{ .compatible = "adi,ad4003", .data = &ad4003_chip_info },
{ .compatible = "adi,ad4004", .data = &ad4004_chip_info },
{ .compatible = "adi,ad4005", .data = &ad4005_chip_info },
{ .compatible = "adi,ad4006", .data = &ad4006_chip_info },
{ .compatible = "adi,ad4007", .data = &ad4007_chip_info },
{ .compatible = "adi,ad4008", .data = &ad4008_chip_info },
{ .compatible = "adi,ad4010", .data = &ad4010_chip_info },
{ .compatible = "adi,ad4011", .data = &ad4011_chip_info },
{ .compatible = "adi,ad4020", .data = &ad4020_chip_info },
{ .compatible = "adi,ad4021", .data = &ad4021_chip_info },
{ .compatible = "adi,ad4022", .data = &ad4022_chip_info },
{ .compatible = "adi,adaq4001", .data = &adaq4001_chip_info },
{ .compatible = "adi,adaq4003", .data = &adaq4003_chip_info },
{ .compatible = "adi,ad7685", .data = &ad7685_chip_info },
{ .compatible = "adi,ad7686", .data = &ad7686_chip_info },
{ .compatible = "adi,ad7687", .data = &ad7687_chip_info },
{ .compatible = "adi,ad7688", .data = &ad7688_chip_info },
{ .compatible = "adi,ad7690", .data = &ad7690_chip_info },
{ .compatible = "adi,ad7691", .data = &ad7691_chip_info },
{ .compatible = "adi,ad7693", .data = &ad7693_chip_info },
{ .compatible = "adi,ad7942", .data = &ad7942_chip_info },
{ .compatible = "adi,ad7946", .data = &ad7946_chip_info },
{ .compatible = "adi,ad7980", .data = &ad7980_chip_info },
{ .compatible = "adi,ad7982", .data = &ad7982_chip_info },
{ .compatible = "adi,ad7983", .data = &ad7983_chip_info },
{ .compatible = "adi,ad7984", .data = &ad7984_chip_info },
{ .compatible = "adi,ad7988-1", .data = &ad7988_1_chip_info },
{ .compatible = "adi,ad7988-5", .data = &ad7988_5_chip_info },
{ }
};
MODULE_DEVICE_TABLE(of, ad4000_of_match);
static struct spi_driver ad4000_driver = {
.driver = {
.name = "ad4000",
.of_match_table = ad4000_of_match,
},
.probe = ad4000_probe,
.id_table = ad4000_id,
};
module_spi_driver(ad4000_driver);
MODULE_AUTHOR("Marcelo Schmitt <marcelo.schmitt@analog.com>");
MODULE_DESCRIPTION("Analog Devices AD4000 ADC driver");
MODULE_LICENSE("GPL");
MODULE_IMPORT_NS("IIO_DMAENGINE_BUFFER");
|